Aufgaben:Aufgabe 2.9: Korrelationsdauer: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Mobile Kommunikation/Das GWSSUS–Kanalmodell}} Datei:P_ID2180__Mob_A_2_9.png|right|frame|Doppler–Leistungsdichtespektrum un…“)
 
Zeile 8: Zeile 8:
 
Diese Funktion ist hier für $f_{\rm D, \ max} = 50 \ \rm Hz$ (blaue Kurve) und für $f_{\rm D, \ max} = 100 \ \rm Hz$ (rote Kurve) dargestellt.
 
Diese Funktion ist hier für $f_{\rm D, \ max} = 50 \ \rm Hz$ (blaue Kurve) und für $f_{\rm D, \ max} = 100 \ \rm Hz$ (rote Kurve) dargestellt.
  
Die Funktion $\varphi_{\rm Z}(\Delta t)$
+
Die Funktion $\varphi_{\rm Z}(\Delta t)$ ist die Fourierrücktransformierte des Doppler–Leistungsdichtespektrums ${\it \Phi}_{\rm D}(f)$:
 +
:$$\varphi_{\rm Z}(\Delta t ) =  {\rm J}_0(2 \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot \Delta t ) \hspace{0.05cm}.$$
 +
 
 +
${\rm J}_0$ bezeichnet die <i>Besselfunktion nullter Ordnun</i>. Diese ebenfalls symmetrische Korrelationsfunktion $\varphi_{\rm Z}(\Delta t)$ ist unten skizziert, aus Platzgründen allerdings nur die rechte Hälfte.
 +
 
 +
Aus jeder dieser beiden Beschreibungsfunktionen lässt sich eine Kenngröße ableiten:
 +
* Die <b>Dopplerverbreiterung</b> $B_{\rm D}$ bezieht sich auf das Doppler&ndash;LDS ${\it \Phi}_{\rm D}(f_{\rm D})$ und gibt dessen Streuung $\sigma_D$ an. Zu berücksichtigen ist, dass das Jakes&ndash;Spektrum mittelwertfrei ist, so dass die Varianz $\sigma_D^2$ nach dem Satz von Steiner gleich dem quadratischen Mittelwert ${\rm E}[f_{\rm D}^2]$ ist. Die Berechnung geschieht analog zur Bestimmung der Mehrwegeverbreiterung $T_{\rm V}$ aus dem Verzögerungs&ndash;LDS ${\it \Phi}_{\rm V}(\tau)$ &nbsp;&#8658;&nbsp; [[Aufgaben:2.7_Koh%C3%A4renzbandbreite| Aufgabe A2.7]].
 +
* Die <b>Korrelationsdauer</b> $T_{\rm D}$ bezieht sich dagegen auf die Zeitkorrelationsfunktion $\varphi_{\rm Z}(\Delta t)$ und gibt derjenigen $\Delta t$&ndash;Wert an, bei dem deren Betrag erstmals auf die Hälfte ihres Maximums (stets bei $\Delta t = 0$) abgefallen ist. Man erkennt die Analogie zur Bestimmung der Kohärenzbandbreite $B_{\rm K}$ aus der Frequenzkorrelationsfunktion $\varphi_{\rm F}(\Delta f)$ &nbsp;&#8658;&nbsp; [[Aufgaben:2.7_Koh%C3%A4renzbandbreite| Aufgabe A2.7]].
 +
 
 +
 
 +
''Hinweise:''
 +
* Die Aufgabe bezieht sich auf das Kapitel [[Mobile_Kommunikation/Allgemeine_Beschreibung_zeitvarianter_Systeme| Allgemeine Beschreibung zeitvarianter Systeme]] und das Kapitel [[Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell| Das GWSSUS&ndash;Kanalmodell]].
 +
* Gegeben ist das folgende unbestimmte Integral:
 +
:$$\int \frac{u^2}{\sqrt{1-u^2}} \hspace{0.15cm}{\rm d} u = -\frac{u}{2} \cdot \sqrt{1-u^2} + \frac{1}{2} \cdot {\rm arcsin}\,(u)
 +
\hspace{0.05cm}.$$
 +
* Abschließend noch einige Werte für die Besselfunktion nullter Ordnung (${\rm J}_0$):
 +
:$${\rm J}_0(\pi/2) = 0.472\hspace{0.05cm},\hspace{0.2cm}{\rm J}_0(1.52) = 0.500\hspace{0.05cm},\hspace{0.2cm}{\rm J}_0(\pi) = -0.305\hspace{0.05cm},\hspace{0.2cm} {\rm J}_0(2\pi) = 0.221
 +
  \hspace{0.05cm}.$$
  
  

Version vom 21. November 2017, 12:05 Uhr

Doppler–Leistungsdichtespektrum und Zeitkorrelationsfunktion

Im Frequenzbereich wird der Einfluss des Rayleigh–Fadings durch das Jakes–Spektrum beschrieben. Mit dem Rayleigh–Parameter $\sigma = 2^{–0.5}$ (Wurzel aus $1/2$) gilt für dieses im Doppler–Frequenzbereich $|f_{\rm D}| ≤ f_{\rm D, \ max}$:

$${\it \Phi}_{\rm D}(f_{\rm D}) = \frac{1}{ \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot \sqrt{1 - \left (\frac{f_{\rm D}}{f_{\rm D,\hspace{0.05cm}max}} \right )^2} } \hspace{0.05cm}.$$

Diese Funktion ist hier für $f_{\rm D, \ max} = 50 \ \rm Hz$ (blaue Kurve) und für $f_{\rm D, \ max} = 100 \ \rm Hz$ (rote Kurve) dargestellt.

Die Funktion $\varphi_{\rm Z}(\Delta t)$ ist die Fourierrücktransformierte des Doppler–Leistungsdichtespektrums ${\it \Phi}_{\rm D}(f)$:

$$\varphi_{\rm Z}(\Delta t ) = {\rm J}_0(2 \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot \Delta t ) \hspace{0.05cm}.$$

${\rm J}_0$ bezeichnet die Besselfunktion nullter Ordnun. Diese ebenfalls symmetrische Korrelationsfunktion $\varphi_{\rm Z}(\Delta t)$ ist unten skizziert, aus Platzgründen allerdings nur die rechte Hälfte.

Aus jeder dieser beiden Beschreibungsfunktionen lässt sich eine Kenngröße ableiten:

  • Die Dopplerverbreiterung $B_{\rm D}$ bezieht sich auf das Doppler–LDS ${\it \Phi}_{\rm D}(f_{\rm D})$ und gibt dessen Streuung $\sigma_D$ an. Zu berücksichtigen ist, dass das Jakes–Spektrum mittelwertfrei ist, so dass die Varianz $\sigma_D^2$ nach dem Satz von Steiner gleich dem quadratischen Mittelwert ${\rm E}[f_{\rm D}^2]$ ist. Die Berechnung geschieht analog zur Bestimmung der Mehrwegeverbreiterung $T_{\rm V}$ aus dem Verzögerungs–LDS ${\it \Phi}_{\rm V}(\tau)$  ⇒  Aufgabe A2.7.
  • Die Korrelationsdauer $T_{\rm D}$ bezieht sich dagegen auf die Zeitkorrelationsfunktion $\varphi_{\rm Z}(\Delta t)$ und gibt derjenigen $\Delta t$–Wert an, bei dem deren Betrag erstmals auf die Hälfte ihres Maximums (stets bei $\Delta t = 0$) abgefallen ist. Man erkennt die Analogie zur Bestimmung der Kohärenzbandbreite $B_{\rm K}$ aus der Frequenzkorrelationsfunktion $\varphi_{\rm F}(\Delta f)$  ⇒  Aufgabe A2.7.


Hinweise:

$$\int \frac{u^2}{\sqrt{1-u^2}} \hspace{0.15cm}{\rm d} u = -\frac{u}{2} \cdot \sqrt{1-u^2} + \frac{1}{2} \cdot {\rm arcsin}\,(u) \hspace{0.05cm}.$$
  • Abschließend noch einige Werte für die Besselfunktion nullter Ordnung (${\rm J}_0$):
$${\rm J}_0(\pi/2) = 0.472\hspace{0.05cm},\hspace{0.2cm}{\rm J}_0(1.52) = 0.500\hspace{0.05cm},\hspace{0.2cm}{\rm J}_0(\pi) = -0.305\hspace{0.05cm},\hspace{0.2cm} {\rm J}_0(2\pi) = 0.221 \hspace{0.05cm}.$$


Fragebogen

1

Multiple-Choice

correct
false

2

Input-Box Frage

$xyz \ = \ $

$ab$


Musterlösung

(1)  (2)  (3)  (4)  (5)