Aufgaben:Aufgabe 1.4: AMI– und MMS43–Code: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 55: Zeile 55:
 
'''(1)'''&nbsp; Richtig sind <u>die zwei ersten Aussagen</u>. Der modifizierte AMI–Code ist ein sog. Pseudo–Ternärcode mit $T_{\rm S} = T_{\rm B}$ und symbolweiser Codierung. Die angegebenen Zuordnungen gelten für den herkömmlichen AMI–Code. Dagegen wird beim modifizierten AMI–Code die binäre „$1$” durch den Spannungswert $0 \ \rm V$ repräsentiert und die binäre „$0$” alternierend durch $+s_{0}$ bzw. $–s_{0}$, wobei für $s_{0} = 0.75 \ \rm V$ zu setzen ist.
 
'''(1)'''&nbsp; Richtig sind <u>die zwei ersten Aussagen</u>. Der modifizierte AMI–Code ist ein sog. Pseudo–Ternärcode mit $T_{\rm S} = T_{\rm B}$ und symbolweiser Codierung. Die angegebenen Zuordnungen gelten für den herkömmlichen AMI–Code. Dagegen wird beim modifizierten AMI–Code die binäre „$1$” durch den Spannungswert $0 \ \rm V$ repräsentiert und die binäre „$0$” alternierend durch $+s_{0}$ bzw. $–s_{0}$, wobei für $s_{0} = 0.75 \ \rm V$ zu setzen ist.
  
'''(2)'''&nbsp;
+
'''(1)'''&nbsp; Richtig sind <u>die zwei ersten Aussagen</u>. Der modifizierte AMI–Code ist ein sog. Pseudo–Ternärcode mit $T_{\rm S} = T_{\rm B}$ und symbolweiser Codierung. Die angegebenen Zuordnungen gelten für den herkömmlichen AMI–Code. Dagegen wird beim modifizierten AMI–Code die binäre „$1$” durch den Spannungswert $0 \ \rm V$ repräsentiert und die binäre „$0$” alternierend durch $+s_{0}$ bzw. $–s_{0}$, wobei für $s_{0} = 0.75 \ \rm V$ zu setzen ist.
'''(3)'''&nbsp;
+
 
'''(4)'''&nbsp;
+
'''(2)'''&nbsp; Die äquivalente Bitrate des AMI–codierten Signals beträgt $R_{\rm C} = {\rm ld}(3)/T_{\rm S}$, während die Bitrate des redundanzfreien binären Quellensignals gleich $R_{\rm B} = 1/T_{\rm B}$ ist. Mit $T_{\rm S} = T_{\rm B}$ erhält man entsprechend dem [[Digitalsignalübertragung/Grundlagen_der_codierten_Übertragung|Grundlagen der codierten Übertragung]] des Buches „Digitalsignalübertragung” für die (relative) Redundanz des modifizierten AMI–Codes:
'''(5)'''&nbsp;
+
:$$r_{\rm AMI} = \frac{R_{\rm C}-R_{\rm B}}{R_{\rm C}} = 1 - \frac{1}{{\rm ld}\,(3)} \hspace{0.15cm}\underline{\approx 36.9\,\%} \hspace{0.05cm}.$$
'''(6)'''&nbsp;
+
 
'''(7)'''&nbsp;
+
'''(3)'''&nbsp; Unter Verwendung des Einheitswiderstandes $R = 1 \ \rm \Omega $ gilt für die Sendeleistung (mit der Einheit $\rm V^{2}$):
 +
:$$P_{\rm S,\,AMI} = {1}/{2} \cdot {s_0}^2 = {1}/{2} \cdot {0.75\,{\rm V}}^2 \approx 0.28\,{\rm V^2} \hspace{0.05cm}.$$
 +
Hierbei ist berücksichtigt, dass das AMI–codierte Signal in der Hälfte der Zeit gleich $0 \ \rm V$ ist. Bei Berücksichtigung des Widerstandes $R = 100 \ \rm \Omega$ ergibt sich schließlich:
 +
:$$P_{\rm S,\,AMI} = \frac{0.28\,{\rm V^2}}{100\,\Omega} \hspace{0.15cm}\underline{ = 2.8\,{\rm mW}} \hspace{0.05cm}.$$
 +
 
 +
'''(4)'''&nbsp; Der MMS43–Code arbeitet tatsächlich blockweise, wobei $m_{q} = 4 \ \rm Binärsymbole$ durch  $m_{c} = 3 \ \rm Ternärsymbole$ ersetzt werden:
 +
:$$4 \cdot T_{\rm B} = 3 \cdot T_{\rm S}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} T_{\rm S} = {4}/{3} \cdot T_{\rm B} \hspace{0.05cm}.$$
 +
Das heißt: Der erste Lösungsvorschlag trifft nicht zu ebenso wie der letzte. Richtig ist  <u>der Vorschlag 2</u>.
 +
Bei Blockcodierung kann das Binärsymbol „$0$” nicht einheitlich durch das gleiche Codesymbol ersetzt werden. Vielmehr lässt sich die Codierung wie folgt beschreiben, wenn man zu Beginn von der laufenden digitalen Summe $\Sigma_{0} = 0$ ausgeht (siehe Grafik auf der Angabenseite):
 +
:$$\mathbf{0 1 0 1} \hspace{0.1cm} \ \Rightarrow \ \hspace{0.1cm}\mathbf{0 + +}\hspace{0.2cm}({\it \Sigma}_1 = 2)\hspace{0.05cm},$$
 +
:$$ \mathbf{0 1 1 1} \hspace{0.1cm} \ \Rightarrow \ \hspace{0.1cm}\mathbf{- \,0 \,\,+}\hspace{0.2cm}({\it \Sigma}_2 = 2)\hspace{0.05cm},$$
 +
:$$ \mathbf{0 1 0 1} \hspace{0.1cm} \ \Rightarrow \ \hspace{0.1cm}\mathbf{- \,0\,\,\, 0}\hspace{0.2cm}({\it \Sigma}_3 = 1) \hspace{0.05cm}.$$
 +
In der Aufgabe 1.4Z wird der MMS43–Code noch ausführlicher behandelt.
 +
 
 +
'''(5)'''&nbsp; Der MMS43–Code gehört zur Klasse der 4B3T–Codes. Für diesen gilt:
 +
:$$R_{\rm B} = \frac{1}{T_{\rm B}}, \hspace{0.2cm} R_{\rm C} = \frac{{\rm ld}\,(3)}{T_{\rm S}}$$
 +
:$$\Rightarrow \hspace{0.3cm}r_{\rm MMS43} = 1 - \frac{R_{\rm B}}{R_{\rm C}} = 1 - \frac{T_{\rm S}/T_{\rm B}}{{\rm ld}\,(3)} = 1 - \frac{4/3}{{\rm ld}\,(3)} \hspace{0.15cm}\underline{\approx 15.9\,\%} \hspace{0.05cm}.$$
 +
 
 +
'''(6)'''&nbsp; Pro Millisekunde werden auf dem $U_{K0}$–Bus die folgende Anzahl an Ternärsymbolen übertragen:
 +
*Kanal B1: $64 \ {\rm Binärsymbole} \Rightarrow 48 \ {\rm Ternärsymbole}$,
 +
*Kanal B2: $64 \ {\rm Binärsymbole} \Rightarrow 48 \ {\rm Ternärsymbole}$,
 +
*D–Kanal: $16  \ {\rm Binärsymbole} \Rightarrow 12 \ {\rm Ternärsymbole}$,
 +
*Synchronisations– und Steuersymbole $\Rightarrow 12 \ {\rm Ternärsymbole}$.
 +
 
 +
 
 +
Dies ergibt als Summe $120$ Ternärsymbole pro Millisekunde bzw. <u>120 000  Ternärsymbole pro Sekunde</u>.
 +
 
 +
'''(7)'''&nbsp; Unter Berücksichtigung des Hinweises auf der Angabenseite und der gegenüber dem (modifizierten) AMI–Code größeren Sendeamplitude $s_{0} = 2.5 \ \rm V$ erhält man:
 +
:$$P_{\rm S,\,MMS43} = \frac{2}{3} \cdot \frac{{s_0}^2}{R} = \frac{2}{3} \cdot \frac{({2.5\,{\rm V}})^2}{100\,{\rm \Omega}} \hspace{0.15cm}\underline{\approx 4.2\,{\rm mW}} \hspace{0.05cm}.$$
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Version vom 26. November 2017, 16:41 Uhr

Modifizierter AMI- und MMS43-Code

Bei ISDN werden zwei verschiedene ternäre Übertragungscodes eingesetzt, die in der Grafik an einem beispielhaften binären Eingangssignal verdeutlicht werden sollen. Im oberen Diagramm sind $12 \ \rm Bit$ (jeweils mit der Bitdauer $T_{\rm B}$) dargestellt.

  • Auf der $S_{0}$–Schnittstelle (zwischen NTBA und Endgerät) verwendet man wird den modifizierten AMI–Code. Der Unterschied zum herkömmlichen AMI–Code ist die Vertauschung $0 \Leftrightarrow 1$ des binären Eingangssignals.
  • Dagegen wird auf der $U_{K0}$–Schnittstelle der MMS43–Code (Modified Monitoring Sum 4B3T) eingesetzt, wobei jeweils $4$ Binärsymbole durch $3$ Ternärsymbole (Spannungswerte $0 \ {\rm V}, +2.5 \ {\rm V}$ und $–2.5 \ {\rm V}$) ersetzt werden. Die Zuordnung erfolgt abhängig von den vorher codierten Symbolen.


Hinweis:

Die Aufgabe behandelt das Themengebiet von ISDN-Basisanschluss des vorliegenden Buches. Angaben zum MMS43–Code finden Sie im Blockweise Codierung mit 4B3T-Codes des Buches „Digitalsignalübertragung” und zum AMI–Code im Symbolweise Codierung mit Pseudoternärcodes des gleichen Buches.

Fragebogen

1

Welche Eigenschaften weist der modifizierte AMI–Code auf?

Symboldauer $T_{\rm S}$ und Bitdauer $T_{\rm B}$ des Binärsignals sind gleich.
Die Codierung geschieht symbolweise.
Jede binäre „$0$” wird durch „$0 \ \rm V$” dargestellt.
Die binäre „$1$” wird alternierend mit $+s_{0}$ und $–s_{0}$ repräsentiert.

2

Wie groß ist die Redundanz des (modifizierten) AMI–Codes?

$r_{\rm AMI} \ = \ $

$\ \%$

3

Es gelte $s_{0} = 0.75 \ {\rm V}, R = 100 \ {\rm Ω}$. Wie groß ist die mittlere Sendeleistung?

$P_{\rm S, \ AMI} \ = \ $

$\ \rm mW$

4

Welche Eigenschaften zeigt der MMS43–Code?

Symboldauer $T_{\rm S}$ und Bitdauer $T_{\rm B}$ des Binärsignals sind gleich.
Die Codierung erfolgt blockweise.
Jede binäre „$0$” wird durch „$0 \ \rm V$” dargestellt.

5

Wie groß ist die Redundanz des MMS43–Codes?

$r_{\rm MMS43} \ = \ $

$\ \%$

6

Wie groß ist die Symbolrate auf dem $U_{\rm K0}$–Bus, wenn pro Millisekunde $12$ ternäre Synchronisations– und Steuersymbole zu berücksichtigen sind?

$R_{\rm UK0} \ = \ $

$\ \rm Ternärsymbole/Sekunde$

7

Es gelte $s_{0} = 2.5 \ {\rm V}, R = 100 \ {\rm \Omega }$. Wie groß ist die Sendeleistung? Hinweis: Gehen Sie von gleichwahrscheinlichen Ternärsymbolen aus.

$P_{\rm S,\ MMS43} \ = \ $

$\ \rm mW$


Musterlösung

(1)  Richtig sind die zwei ersten Aussagen. Der modifizierte AMI–Code ist ein sog. Pseudo–Ternärcode mit $T_{\rm S} = T_{\rm B}$ und symbolweiser Codierung. Die angegebenen Zuordnungen gelten für den herkömmlichen AMI–Code. Dagegen wird beim modifizierten AMI–Code die binäre „$1$” durch den Spannungswert $0 \ \rm V$ repräsentiert und die binäre „$0$” alternierend durch $+s_{0}$ bzw. $–s_{0}$, wobei für $s_{0} = 0.75 \ \rm V$ zu setzen ist.

(1)  Richtig sind die zwei ersten Aussagen. Der modifizierte AMI–Code ist ein sog. Pseudo–Ternärcode mit $T_{\rm S} = T_{\rm B}$ und symbolweiser Codierung. Die angegebenen Zuordnungen gelten für den herkömmlichen AMI–Code. Dagegen wird beim modifizierten AMI–Code die binäre „$1$” durch den Spannungswert $0 \ \rm V$ repräsentiert und die binäre „$0$” alternierend durch $+s_{0}$ bzw. $–s_{0}$, wobei für $s_{0} = 0.75 \ \rm V$ zu setzen ist.

(2)  Die äquivalente Bitrate des AMI–codierten Signals beträgt $R_{\rm C} = {\rm ld}(3)/T_{\rm S}$, während die Bitrate des redundanzfreien binären Quellensignals gleich $R_{\rm B} = 1/T_{\rm B}$ ist. Mit $T_{\rm S} = T_{\rm B}$ erhält man entsprechend dem Grundlagen der codierten Übertragung des Buches „Digitalsignalübertragung” für die (relative) Redundanz des modifizierten AMI–Codes:

$$r_{\rm AMI} = \frac{R_{\rm C}-R_{\rm B}}{R_{\rm C}} = 1 - \frac{1}{{\rm ld}\,(3)} \hspace{0.15cm}\underline{\approx 36.9\,\%} \hspace{0.05cm}.$$

(3)  Unter Verwendung des Einheitswiderstandes $R = 1 \ \rm \Omega $ gilt für die Sendeleistung (mit der Einheit $\rm V^{2}$):

$$P_{\rm S,\,AMI} = {1}/{2} \cdot {s_0}^2 = {1}/{2} \cdot {0.75\,{\rm V}}^2 \approx 0.28\,{\rm V^2} \hspace{0.05cm}.$$

Hierbei ist berücksichtigt, dass das AMI–codierte Signal in der Hälfte der Zeit gleich $0 \ \rm V$ ist. Bei Berücksichtigung des Widerstandes $R = 100 \ \rm \Omega$ ergibt sich schließlich:

$$P_{\rm S,\,AMI} = \frac{0.28\,{\rm V^2}}{100\,\Omega} \hspace{0.15cm}\underline{ = 2.8\,{\rm mW}} \hspace{0.05cm}.$$

(4)  Der MMS43–Code arbeitet tatsächlich blockweise, wobei $m_{q} = 4 \ \rm Binärsymbole$ durch $m_{c} = 3 \ \rm Ternärsymbole$ ersetzt werden:

$$4 \cdot T_{\rm B} = 3 \cdot T_{\rm S}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} T_{\rm S} = {4}/{3} \cdot T_{\rm B} \hspace{0.05cm}.$$

Das heißt: Der erste Lösungsvorschlag trifft nicht zu ebenso wie der letzte. Richtig ist der Vorschlag 2. Bei Blockcodierung kann das Binärsymbol „$0$” nicht einheitlich durch das gleiche Codesymbol ersetzt werden. Vielmehr lässt sich die Codierung wie folgt beschreiben, wenn man zu Beginn von der laufenden digitalen Summe $\Sigma_{0} = 0$ ausgeht (siehe Grafik auf der Angabenseite):

$$\mathbf{0 1 0 1} \hspace{0.1cm} \ \Rightarrow \ \hspace{0.1cm}\mathbf{0 + +}\hspace{0.2cm}({\it \Sigma}_1 = 2)\hspace{0.05cm},$$
$$ \mathbf{0 1 1 1} \hspace{0.1cm} \ \Rightarrow \ \hspace{0.1cm}\mathbf{- \,0 \,\,+}\hspace{0.2cm}({\it \Sigma}_2 = 2)\hspace{0.05cm},$$
$$ \mathbf{0 1 0 1} \hspace{0.1cm} \ \Rightarrow \ \hspace{0.1cm}\mathbf{- \,0\,\,\, 0}\hspace{0.2cm}({\it \Sigma}_3 = 1) \hspace{0.05cm}.$$

In der Aufgabe 1.4Z wird der MMS43–Code noch ausführlicher behandelt.

(5)  Der MMS43–Code gehört zur Klasse der 4B3T–Codes. Für diesen gilt:

$$R_{\rm B} = \frac{1}{T_{\rm B}}, \hspace{0.2cm} R_{\rm C} = \frac{{\rm ld}\,(3)}{T_{\rm S}}$$
$$\Rightarrow \hspace{0.3cm}r_{\rm MMS43} = 1 - \frac{R_{\rm B}}{R_{\rm C}} = 1 - \frac{T_{\rm S}/T_{\rm B}}{{\rm ld}\,(3)} = 1 - \frac{4/3}{{\rm ld}\,(3)} \hspace{0.15cm}\underline{\approx 15.9\,\%} \hspace{0.05cm}.$$

(6)  Pro Millisekunde werden auf dem $U_{K0}$–Bus die folgende Anzahl an Ternärsymbolen übertragen:

  • Kanal B1: $64 \ {\rm Binärsymbole} \Rightarrow 48 \ {\rm Ternärsymbole}$,
  • Kanal B2: $64 \ {\rm Binärsymbole} \Rightarrow 48 \ {\rm Ternärsymbole}$,
  • D–Kanal: $16 \ {\rm Binärsymbole} \Rightarrow 12 \ {\rm Ternärsymbole}$,
  • Synchronisations– und Steuersymbole $\Rightarrow 12 \ {\rm Ternärsymbole}$.


Dies ergibt als Summe $120$ Ternärsymbole pro Millisekunde bzw. 120 000 Ternärsymbole pro Sekunde.

(7)  Unter Berücksichtigung des Hinweises auf der Angabenseite und der gegenüber dem (modifizierten) AMI–Code größeren Sendeamplitude $s_{0} = 2.5 \ \rm V$ erhält man:

$$P_{\rm S,\,MMS43} = \frac{2}{3} \cdot \frac{{s_0}^2}{R} = \frac{2}{3} \cdot \frac{({2.5\,{\rm V}})^2}{100\,{\rm \Omega}} \hspace{0.15cm}\underline{\approx 4.2\,{\rm mW}} \hspace{0.05cm}.$$