Aufgaben:Aufgabe 3.3: Codesequenzberechnung über U(D) und G(D): Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
(Die Seite wurde neu angelegt: „{{quiz-Header|Buchseite=Kanalcodierung/Algebraische und polynomische Beschreibung }} [[Datei:|right|]] ===Fragebogen=== <quiz display=simple> {Multipl…“)
 
Zeile 1: Zeile 1:
{{quiz-Header|Buchseite=Kanalcodierung/Algebraische und polynomische Beschreibung
+
{{quiz-Header|Buchseite=Kanalcodierung/Algebraische und polynomische Beschreibung}}
  
 +
[[Datei:P_ID2627__KC_A_3_3_v1.png|right|frame|Betrachtete Generatormatrix]]
 +
Nebenstehend ist für den betrachteten Faltungscode der linke obere Ausschnitt der Generatormatrix $\mathbf{G}$ dargestellt. Daraus sollen unter der Randbedingung $m &#8804; 2$ die Teilmatrizen $\mathbf{G}_l$ extrahiert werden, womit dann die Übergangsfunktionsmatrix entsprechend folgender Gleichung zusammengestellt werden kann:
 +
:$${\boldsymbol{\rm G}}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \sum_{l = 0}^{m} {\boldsymbol{\rm G}}_l \cdot D\hspace{0.03cm}^l
 +
=$$
 +
:$$ \ = \ \hspace{-0.15cm} {\boldsymbol{\rm G}}_0 + {\boldsymbol{\rm G}}_1 \cdot D +  ... \hspace{0.05cm}+ {\boldsymbol{\rm G}}_m \cdot D\hspace{0.03cm}^m
 +
\hspace{0.02cm}.$$
  
 +
Gesucht werden die $n$ Codesequenzen $\underline{x}^{(1)}, \ \underline{x}^{(2)}, \ ... \ , \underline{x}^{(n)}$, wobei von der Informationssequenz
 +
:$$\underline{u} =  (0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm}, ... \hspace{0.05cm})  $$
  
 +
auszugehen ist. Diese Sequenz ist dabei in $k$ Teilsequenzen $\underline{u}^{(1)}, \ \underline{u}^{(2)}, \ ... \ , \ \underline{u}^{(k)}$ aufzuspalten. Aus deren $D$&ndash;Transformierten
 +
:$${U}^{(1)}(D) \hspace{0.15cm}\bullet\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\circ\hspace{0.15cm} \underline{u}^{(1)},\hspace{0.25cm} ...\hspace{0.25cm},\hspace{0.05cm}
 +
{U}^{(k)}(D) \hspace{0.15cm}\bullet\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\circ\hspace{0.15cm} \underline{u}^{(k)} $$
  
 +
wird dann der Vektor $\underline{U}(D) = (U^{(1)}(D), \ ... \ , \ U^{(k)}(D))$ gebildet. Dann gilt für den Codesequenzvektor in $D$&ndash;Darstellung:
 +
:$$\underline{X}(D) = \left (\hspace{0.05cm} {X}^{(1)}(D)\hspace{0.05cm}, \hspace{0.05cm} ... \hspace{0.12cm}, \hspace{0.05cm} {X}^{(k)}(D)\hspace{0.05cm}\right ) = \underline{U}(D) \cdot {\boldsymbol{\rm G}}(D)\hspace{0.05cm}.$$
  
}}
 
 
[[Datei:|right|]]
 
  
  
 
===Fragebogen===
 
===Fragebogen===
 
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{Multiple-Choice
 
|type="[]"}
 
|type="[]"}
- Falsch
+
+ correct
+ Richtig
+
- false
 
 
  
 
{Input-Box Frage
 
{Input-Box Frage
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$xyz \ = \ ${ 5.4 3% } $ab$
 
 
 
 
 
 
 
</quiz>
 
</quiz>
  
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp;
'''2.'''
+
'''(2)'''&nbsp;
'''3.'''
+
'''(3)'''&nbsp;
'''4.'''
+
'''(4)'''&nbsp;
'''5.'''
+
'''(5)'''&nbsp;
'''6.'''
 
'''7.'''
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu  Kanalcodierung|^3.2 Algebraische und polynomische Beschreibung
+
[[Category:Aufgaben zu  Kanalcodierung|^3.2 Algebraische und polynomische Beschreibung^]]
 
 
 
 
 
 
 
 
 
 
 
 
^]]
 

Version vom 29. November 2017, 17:53 Uhr

Betrachtete Generatormatrix

Nebenstehend ist für den betrachteten Faltungscode der linke obere Ausschnitt der Generatormatrix $\mathbf{G}$ dargestellt. Daraus sollen unter der Randbedingung $m ≤ 2$ die Teilmatrizen $\mathbf{G}_l$ extrahiert werden, womit dann die Übergangsfunktionsmatrix entsprechend folgender Gleichung zusammengestellt werden kann:

$${\boldsymbol{\rm G}}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \sum_{l = 0}^{m} {\boldsymbol{\rm G}}_l \cdot D\hspace{0.03cm}^l =$$
$$ \ = \ \hspace{-0.15cm} {\boldsymbol{\rm G}}_0 + {\boldsymbol{\rm G}}_1 \cdot D + ... \hspace{0.05cm}+ {\boldsymbol{\rm G}}_m \cdot D\hspace{0.03cm}^m \hspace{0.02cm}.$$

Gesucht werden die $n$ Codesequenzen $\underline{x}^{(1)}, \ \underline{x}^{(2)}, \ ... \ , \underline{x}^{(n)}$, wobei von der Informationssequenz

$$\underline{u} = (0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm}, ... \hspace{0.05cm}) $$

auszugehen ist. Diese Sequenz ist dabei in $k$ Teilsequenzen $\underline{u}^{(1)}, \ \underline{u}^{(2)}, \ ... \ , \ \underline{u}^{(k)}$ aufzuspalten. Aus deren $D$–Transformierten

$${U}^{(1)}(D) \hspace{0.15cm}\bullet\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\circ\hspace{0.15cm} \underline{u}^{(1)},\hspace{0.25cm} ...\hspace{0.25cm},\hspace{0.05cm} {U}^{(k)}(D) \hspace{0.15cm}\bullet\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\circ\hspace{0.15cm} \underline{u}^{(k)} $$

wird dann der Vektor $\underline{U}(D) = (U^{(1)}(D), \ ... \ , \ U^{(k)}(D))$ gebildet. Dann gilt für den Codesequenzvektor in $D$–Darstellung:

$$\underline{X}(D) = \left (\hspace{0.05cm} {X}^{(1)}(D)\hspace{0.05cm}, \hspace{0.05cm} ... \hspace{0.12cm}, \hspace{0.05cm} {X}^{(k)}(D)\hspace{0.05cm}\right ) = \underline{U}(D) \cdot {\boldsymbol{\rm G}}(D)\hspace{0.05cm}.$$


Fragebogen

1

Multiple-Choice

correct
false

2

Input-Box Frage

$xyz \ = \ $

$ab$


Musterlösung

(1)  (2)  (3)  (4)  (5)