Aufgaben:Aufgabe 3.3Z: Faltung und D–Transformation: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 57: Zeile 57:
 
===Fragebogen===
 
===Fragebogen===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice
+
{Wie lauten die vorliegenden Filterkoeffizienten?
 +
|type="{}"}
 +
$g_0 \ = \ ${ 1 3% }
 +
$g_1 \ = \ ${ 1 3% }
 +
$g_2 \ = \ ${ 0 3% }
 +
 
 +
{Die Sequenz $\underline{u} = (1, \, 0, \, 0, \, 1)$ sei endlich. Wie lautet die Ausgangssequenz?
 +
|type="[]"}
 +
- $\underline{x} = (1, \, 0, \, 0, \, ...)$.
 +
- $\underline{x} = (1, \, 0, \, 0, \, 1, \, 0, \, 0, \, ...)$.
 +
+ $\underline{x} = (1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 0, \, ...)$.
 +
- $\underline{x} = (1, \, 1, \, 1, \, 1, \, ...)$ &nbsp;&#8658;&nbsp; &bdquo;Dauer&ndash;Einsfolge&rdquo;.
 +
 
 +
{Die Sequenz $\underline{u} = (1, \, 1, \, 1)$ sei endlich. Wie lautet die Ausgangssequenz?
 +
|type="[]"}
 +
- $\underline{x} = (1, \, 0, \, 0, \, ...)$.
 +
+ $\underline{x} = (1, \, 0, \, 0, \, 1, \, 0, \, 0, \, ...)$.
 +
- $\underline{x} = (1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 0, \, ...)$.
 +
- $\underline{x} = (1, \, 1, \, 1, \, 1, \, ...)$ &nbsp;&#8658;&nbsp; &bdquo;Dauer&ndash;Einsfolge&rdquo;.
 +
 
 +
{Wie lautet die Ausgangssequenz für $\underline{u} = (1, \, 1, \, 1, \, 1, \, ...)$ &nbsp;&#8658;&nbsp; &bdquo;Dauer&ndash;Einsfolge&rdquo;?
 
|type="[]"}
 
|type="[]"}
+ correct
+
+ $\underline{x} = (1, \, 0, \, 0, \, ...)$.
- false
+
- $\underline{x} = (1, \, 0, \, 0, \, 1, \, 0, \, 0, \, ...)$.
 +
- $\underline{x} = (1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 0, \, ...)$.
 +
- $\underline{x} = (1, \, 1, \, 1, \, 1, \, ...)$ &nbsp;&#8658;&nbsp; &bdquo;Dauer&ndash;Einsfolge&rdquo;.
  
{Input-Box Frage
+
{Für welchen Vektor $\underline{u}$ tritt am Ausgang die Folge $\underline{x} = (1, \, 1, \, 1, \, 1, \ ...)$ auf?
|type="{}"}
+
|type="[]"}
$xyz \ = \ ${ 5.4 3% } $ab$
+
- $\underline{u} = (1, \, 1, \, 1, \, 1, \, ...)$ &nbsp;&#8658;&nbsp; &bdquo;Dauer&ndash;Einsfolge&rdquo;
 +
+ $\underline{u} = (1, \, 0, \, 1, \, 0, \, 1, \, 0, \, ...)$ &nbsp;&#8658;&nbsp; alternierende Folge, beginnend mit $1$.
 +
- $\underline{u} = (0, \, 1, \, 0, \, 1, \, 0, \, 1, \, ...)$ &nbsp;&#8658;&nbsp; alternierende Folge, beginnend mit $0$.
 
</quiz>
 
</quiz>
  

Version vom 29. November 2017, 22:02 Uhr

Vorgegebene Filter

In dieser Aufgabe beschreiben wir an einem einfachen Beispiel

  • die endliche Impulsantwort eines Filters:
$$\underline{g} = \left (g_0, g_1, \hspace{0.05cm}...\hspace{0.1cm}, g_l, \hspace{0.05cm}...\hspace{0.1cm}, g_m \right ) \hspace{0.05cm},\hspace{0.2cm}g_l \in {\rm GF(2) } = \{ 0, 1 \}\hspace{0.05cm}, $$
  • die Eingangssequenz des Filters:
$$\underline{u} = \left (u_0, u_1, \hspace{0.05cm}...\hspace{0.1cm}, u_i, \hspace{0.05cm}...\hspace{0.1cm} \right ) \hspace{0.05cm},\hspace{0.2cm}u_i \in {\rm GF(2) } = \{ 0, 1 \}\hspace{0.05cm}, $$
  • die Ausgangssequenz des Filters:
$$\underline{x} = \left (x_0, x_1, \hspace{0.05cm}...\hspace{0.1cm}, x_i, \hspace{0.05cm}...\hspace{0.1cm} \right ) \hspace{0.05cm},\hspace{0.2cm}x_i \in {\rm GF(2) } = \{ 0, 1 \}\hspace{0.05cm}. $$

Die Nomenklatur für diese (digitale) Filterbeschreibung haben wir an das Buch „Einführung in die Kanalcodierung” angepasst. In anderen Büchern bezeichnet oft $\underline{x}$ den Filtereingang, $\underline{y}$ den Filterausgang, und die Impulsantwort wird $h$ genannt.

Allgemein gilt für die Ausgangssequenz entsprechend der Faltung (englisch: Convolution):

$$\underline{x} = \underline{u}* \underline{g} = \left (x_0, x_1, \hspace{0.05cm}...\hspace{0.1cm}, x_i, \hspace{0.05cm}...\hspace{0.1cm} \right )\hspace{0.05cm},\hspace{0.1cm} {\rm mit} \hspace{0.2cm} x_i = \sum_{l = 0}^{m} g_l \cdot u_{i-l}\hspace{0.05cm}.$$

Wir repräsentieren nun die Zeitfunktionen $\underline{g}, \ \underline{u}$ und $\underline{x}$ durch Polynome in einer Dummy–Variablen $D$ und nennen diese die $D$–Transformierten:

$$\underline{g} \hspace{0.25cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.25cm} {G}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \sum_{l = 0}^{m} g_l \cdot D\hspace{0.03cm}^l = g_0 + g_1 \cdot D + g_2 \cdot D^2 + ... + g_m \cdot D\hspace{0.03cm}^m\hspace{0.05cm},$$
$$\underline{u} \hspace{0.25cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.25cm} {U}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \sum_{i = 0}^{\infty} u_i \cdot D\hspace{0.03cm}^i = u_0 + u_1 \cdot D + u_2 \cdot D^2 + ... \hspace{0.05cm},$$
$$\underline{x} \hspace{0.25cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.25cm} {X}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \sum_{i = 0}^{\infty} x_i \cdot D\hspace{0.03cm}^i = x_0 + x_1 \cdot D + x_2 \cdot D^2 + ... \hspace{0.05cm}.$$

Damit wird aus der (komplizierteren) Faltung eine Multiplikation:

$$\underline{x} = \underline{u}* \underline{g} \hspace{0.25cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.25cm} {X}(D) = U(D) \cdot G(D) \hspace{0.05cm}.$$

Formal lässt sich dieser Zusammenhang wie folgt nachweisen:

$${X}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \sum_{i = 0}^{\infty} x_i \cdot D\hspace{0.03cm}^i = \sum_{i = 0}^{\infty} \sum_{l = 0}^{m}\hspace{0.1cm} g_l \cdot u_{i-l} \cdot D\hspace{0.03cm}^{i} = \sum_{l = 0}^{m} \hspace{0.1cm} g_l \cdot \sum_{j = -l}^{\infty} \hspace{0.1cm} u_{j} \cdot D\hspace{0.03cm}^{j+l} = $$
$$ \ = \ \hspace{-0.15cm} \sum_{l = 0}^{m} \hspace{0.1cm} g_l \cdot D\hspace{0.03cm}^l \hspace{0.1cm} \cdot \hspace{0.1cm} \sum_{j = 0}^{\infty} \hspace{0.1cm} u_{j} \cdot D\hspace{0.03cm}^{j}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}{X}(D) = U(D) \cdot G(D) \hspace{0.05cm}.$$

Hierbei wurde berücksichtigt, dass alle $u_j$ für $j < 0$ nicht existieren und zu $0$ gesetzt werden können.

Beide Vorgehensweisen zur Berechnung der Ausgangssequenz $\underline{x}$, nämlich

  • über die Faltung
  • mit Hilfe der $D$–Transformation,


sollen für das oben skizzierte Digitale Filter demonstriert werden.

Hinweis:

  • Die Aufgabe bezieht sich auf den Lehrstoff von Seite 4 des Kapitels Algebraische und polynomische Beschreibung.
  • Berücksichtigen Sie bei der Lösung die folgende Identität für Berechnungen in GF(2):
$$1 + D + D^2 + D^3 + \hspace{0.05cm}... \hspace{0.1cm}= \frac{1}{1+D} \hspace{0.05cm}.$$


Fragebogen

1

Wie lauten die vorliegenden Filterkoeffizienten?

$g_0 \ = \ $

$g_1 \ = \ $

$g_2 \ = \ $

2

Die Sequenz $\underline{u} = (1, \, 0, \, 0, \, 1)$ sei endlich. Wie lautet die Ausgangssequenz?

$\underline{x} = (1, \, 0, \, 0, \, ...)$.
$\underline{x} = (1, \, 0, \, 0, \, 1, \, 0, \, 0, \, ...)$.
$\underline{x} = (1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 0, \, ...)$.
$\underline{x} = (1, \, 1, \, 1, \, 1, \, ...)$  ⇒  „Dauer–Einsfolge”.

3

Die Sequenz $\underline{u} = (1, \, 1, \, 1)$ sei endlich. Wie lautet die Ausgangssequenz?

$\underline{x} = (1, \, 0, \, 0, \, ...)$.
$\underline{x} = (1, \, 0, \, 0, \, 1, \, 0, \, 0, \, ...)$.
$\underline{x} = (1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 0, \, ...)$.
$\underline{x} = (1, \, 1, \, 1, \, 1, \, ...)$  ⇒  „Dauer–Einsfolge”.

4

Wie lautet die Ausgangssequenz für $\underline{u} = (1, \, 1, \, 1, \, 1, \, ...)$  ⇒  „Dauer–Einsfolge”?

$\underline{x} = (1, \, 0, \, 0, \, ...)$.
$\underline{x} = (1, \, 0, \, 0, \, 1, \, 0, \, 0, \, ...)$.
$\underline{x} = (1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 0, \, ...)$.
$\underline{x} = (1, \, 1, \, 1, \, 1, \, ...)$  ⇒  „Dauer–Einsfolge”.

5

Für welchen Vektor $\underline{u}$ tritt am Ausgang die Folge $\underline{x} = (1, \, 1, \, 1, \, 1, \ ...)$ auf?

$\underline{u} = (1, \, 1, \, 1, \, 1, \, ...)$  ⇒  „Dauer–Einsfolge”
$\underline{u} = (1, \, 0, \, 1, \, 0, \, 1, \, 0, \, ...)$  ⇒  alternierende Folge, beginnend mit $1$.
$\underline{u} = (0, \, 1, \, 0, \, 1, \, 0, \, 1, \, ...)$  ⇒  alternierende Folge, beginnend mit $0$.


Musterlösung

(1)  (2)  (3)  (4)  (5)