Aufgaben:Aufgabe 3.09Z: Nochmals Viterbi–Algorithmus: Unterschied zwischen den Versionen
Aus LNTwww
Wael (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „{{quiz-Header|Buchseite=Kanalcodierung/Decodierung von Faltungscodes }} [[Datei:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choice Fra…“) |
|||
Zeile 1: | Zeile 1: | ||
− | {{quiz-Header|Buchseite=Kanalcodierung/Decodierung von Faltungscodes | + | {{quiz-Header|Buchseite=Kanalcodierung/Decodierung von Faltungscodes}} |
+ | [[Datei:P_ID2656__KC_Z_3_8_neu.png|right|frame|Trellis für einen Rate–1/2–Code mit Gedächtnis $m = 1$]] | ||
+ | Die Grafik zeigt das Trellisdiagramm das Faltungscodes entsprechend [[Aufgaben:3.6_Zustands%C3%BCbergangsdiagramm| Aufgabe A3.6]], gekennzeichnet durch folgende Größen: | ||
+ | * Rate 1/2 ⇒ $k = 1, \ n = 2$, | ||
+ | * Gedächtnis $m = 1$, | ||
+ | * Übertragungsfunktionsmatrix $\mathbf{G}(D) = (1, \ 1 + D)$, | ||
+ | * Länge der Informationssequenz: $L = 4$, | ||
+ | * Sequenzlänge inclusive Terminierung: $L' = L + m = 5$. | ||
+ | Anhand dieser Darstellung soll die Viterbi–Decodierung schrittweise nachvollzogen werde, wobei von der folgenden Empfangssequenz auszugehen ist: $\underline{y} = (11, \, 01, \, 01, \, 11, \, 01)$. | ||
+ | In das Trellis eingezeichnet sind: | ||
+ | * Der Initialwert ${\it \Gamma}_0(S_0)$ für den Viterbi–Algorithmus wird stets zu $0$ gewählt. | ||
+ | * Die beiden Fehlergrößen für den ersten Decodierschritt $(i = 1)$ erhält man mit $\underline{y}_1 = (11)$ wie folgt: | ||
+ | :$${\it \Gamma}_1(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\it \Gamma}_0(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (11) \big ) = 2 \hspace{0.05cm},$$ | ||
+ | :$${\it \Gamma}_1(S_1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\it \Gamma}_0(S_0) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (11) \big ) = 0 \hspace{0.05cm}.$$ | ||
+ | * Die Fehlergrößen zum Schritt $i = 2$ ⇒ $\underline{y}_2 = (01)$ egeben sich durch folgende Vergleiche: | ||
+ | :$${\it \Gamma}_2(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{1}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm}, \hspace{0.2cm}{\it \Gamma}_{1}(S_1) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] =$$ | ||
+ | :$$\ = \ \hspace{-0.15cm} {\rm min} \left [ 2+1\hspace{0.05cm},\hspace{0.05cm} 0+0 \right ] = 0\hspace{0.05cm},$$ | ||
+ | :$${\it \Gamma}_2(S_1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{1}(S_0) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm}, \hspace{0.2cm}{\it \Gamma}_{1}(S_1) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] =$$ | ||
+ | :$$\ = \ \hspace{-0.15cm} {\rm min} \left [ 2+1\hspace{0.05cm},\hspace{0.05cm} 0+2 \right ] = 2\hspace{0.05cm}.$$ | ||
− | |||
− | |||
− | |||
===Fragebogen=== | ===Fragebogen=== | ||
− | |||
<quiz display=simple> | <quiz display=simple> | ||
− | {Multiple-Choice | + | {Multiple-Choice |
|type="[]"} | |type="[]"} | ||
− | + | + correct | |
− | + | + | - false |
− | |||
{Input-Box Frage | {Input-Box Frage | ||
|type="{}"} | |type="{}"} | ||
− | $\ | + | $xyz \ = \ ${ 5.4 3% } $ab$ |
− | |||
− | |||
− | |||
</quiz> | </quiz> | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1 | + | '''(1)''' |
− | '''2 | + | '''(2)''' |
− | '''3 | + | '''(3)''' |
− | '''4 | + | '''(4)''' |
− | '''5 | + | '''(5)''' |
− | |||
− | |||
{{ML-Fuß}} | {{ML-Fuß}} | ||
− | [[Category:Aufgaben zu Kanalcodierung|^3.4 Decodierung von Faltungscodes | + | [[Category:Aufgaben zu Kanalcodierung|^3.4 Decodierung von Faltungscodes^]] |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | ^]] |
Version vom 3. Dezember 2017, 21:37 Uhr
Die Grafik zeigt das Trellisdiagramm das Faltungscodes entsprechend Aufgabe A3.6, gekennzeichnet durch folgende Größen:
- Rate 1/2 ⇒ $k = 1, \ n = 2$,
- Gedächtnis $m = 1$,
- Übertragungsfunktionsmatrix $\mathbf{G}(D) = (1, \ 1 + D)$,
- Länge der Informationssequenz: $L = 4$,
- Sequenzlänge inclusive Terminierung: $L' = L + m = 5$.
Anhand dieser Darstellung soll die Viterbi–Decodierung schrittweise nachvollzogen werde, wobei von der folgenden Empfangssequenz auszugehen ist: $\underline{y} = (11, \, 01, \, 01, \, 11, \, 01)$.
In das Trellis eingezeichnet sind:
- Der Initialwert ${\it \Gamma}_0(S_0)$ für den Viterbi–Algorithmus wird stets zu $0$ gewählt.
- Die beiden Fehlergrößen für den ersten Decodierschritt $(i = 1)$ erhält man mit $\underline{y}_1 = (11)$ wie folgt:
- $${\it \Gamma}_1(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\it \Gamma}_0(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (11) \big ) = 2 \hspace{0.05cm},$$
- $${\it \Gamma}_1(S_1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\it \Gamma}_0(S_0) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (11) \big ) = 0 \hspace{0.05cm}.$$
- Die Fehlergrößen zum Schritt $i = 2$ ⇒ $\underline{y}_2 = (01)$ egeben sich durch folgende Vergleiche:
- $${\it \Gamma}_2(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{1}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm}, \hspace{0.2cm}{\it \Gamma}_{1}(S_1) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] =$$
- $$\ = \ \hspace{-0.15cm} {\rm min} \left [ 2+1\hspace{0.05cm},\hspace{0.05cm} 0+0 \right ] = 0\hspace{0.05cm},$$
- $${\it \Gamma}_2(S_1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{1}(S_0) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm}, \hspace{0.2cm}{\it \Gamma}_{1}(S_1) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] =$$
- $$\ = \ \hspace{-0.15cm} {\rm min} \left [ 2+1\hspace{0.05cm},\hspace{0.05cm} 0+2 \right ] = 2\hspace{0.05cm}.$$
Fragebogen
Musterlösung
(1)
(2)
(3)
(4)
(5)