Aufgaben:Aufgabe 3.10Z: ML–Decodierung von Faltungscodes: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 2: Zeile 2:
  
 
[[Datei:P_ID2678__KC_Z_3_10.png|right|frame|Betrachtetes Systemmodell]]
 
[[Datei:P_ID2678__KC_Z_3_10.png|right|frame|Betrachtetes Systemmodell]]
Der Viterbi–Algorithmus stellt die bekannteste Realisierungsform für die Maximum–Likelihood–Decodierung eines Faltungscodes dar.
+
Der Viterbi–Algorithmus stellt die bekannteste Realisierungsform für die Maximum–Likelihood–Decodierung eines Faltungscodes dar. Wir gehen hier von folgendem Modell aus:
 +
* Die Informationssequenz $\underline{u}$ wird durch einen Faltungscode in die Codesequenz $\underline{x}$ umgesetzt. Es gelte $u_i ∈ \{0, \, 1\}$. Dagegen werden die Codesymbole bipolar dargestellt: $x_i ∈ \{–1, \, +1\}$.
 +
* Der Kanal sei durch das [[BSC–Modell]] gegeben  ⇒  $y_i ∈ \{–1, \, +1\}$ oder es wird der [[AWGN–Kanal]] vorausgesetzt  ⇒  reellwertige $y_i$.
 +
* Bei gegebener Empfangssequenz $\underline{y}$ entscheidet sich der Viterbi–Algorithmus für die Codesequenz $\underline{z}$ entsprechend
 +
:$$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.03cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} |\hspace{0.05cm} \underline{y} ) \hspace{0.05cm}.$$
 +
 
 +
 
 +
Dies entspricht dem [[Maximum–a–posteriori]] (MAP)–Kriterium. Sind die Informationssequenzen $\underline{u}$ gleichwahrscheinlich, so geht dieses in das etwas einfachere [[Maximum–Likelihood–Kriterium]] über:
 +
:$$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{y}  \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) \hspace{0.05cm}.$$
 +
 
 +
Als weiteres Ergebnis gibt der Viterbi–Algorithmus zusätzlich die Sequenz $\upsilon$ als Schätzung für die Informationssequenz $\underline{u}$ aus.
 +
 
 +
In dieser Aufgabe soll der Zusammenhang zwischen der [[Hamming–Distanz]] $d_{\rm H}(\underline{x}, \, \underline{y})$ sowie die [[Euklidischen Distanz]]
 +
:$$d_{\rm E}(\underline{x}  \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) =
 +
\sqrt{\sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2}\hspace{0.05cm}$$
 +
 
 +
ermittelt werden. Anschließend ist das obige ML–Kriterium mit
 +
* der Hamming–Distanz $d_{\rm H}(\underline{x}, \, \underline{y})$,
 +
* der Euklidischen Distanz $d_{\rm E}(\underline{x}, \, \underline{y})$, und
 +
* dem [[Korrelationswert]] $&#9001; x \cdot < &#9002;$ zu formulieren.
 +
 
 +
 
 +
''Hinweise:''
 +
* Die Aufgabe bezieht sich auf die [[Theorieseite 6]] des Kapitels .
 +
* Zur Vereinfachung wird auf Tilden und Apostroph verzichtet.
 +
* Weitere Informationen zu diesem Thema finden Sie auf folgenden Seiten dieses Buches:
 +
** [[MAP&ndash; und ML&ndash;Kriterium]],
 +
** [[ML&ndash;Entscheidung beim BSC&ndash;Kanal]],
 +
** [[ML&ndash;Entscheidung beim AWGN&ndash;Kanal]],
 +
** [[Decodierung linearer Blockcodes &ndash; Seite 1]].
 +
 
  
  

Version vom 4. Dezember 2017, 15:27 Uhr

Betrachtetes Systemmodell

Der Viterbi–Algorithmus stellt die bekannteste Realisierungsform für die Maximum–Likelihood–Decodierung eines Faltungscodes dar. Wir gehen hier von folgendem Modell aus:

  • Die Informationssequenz $\underline{u}$ wird durch einen Faltungscode in die Codesequenz $\underline{x}$ umgesetzt. Es gelte $u_i ∈ \{0, \, 1\}$. Dagegen werden die Codesymbole bipolar dargestellt: $x_i ∈ \{–1, \, +1\}$.
  • Der Kanal sei durch das BSC–Modell gegeben  ⇒  $y_i ∈ \{–1, \, +1\}$ oder es wird der AWGN–Kanal vorausgesetzt  ⇒  reellwertige $y_i$.
  • Bei gegebener Empfangssequenz $\underline{y}$ entscheidet sich der Viterbi–Algorithmus für die Codesequenz $\underline{z}$ entsprechend
$$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.03cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} |\hspace{0.05cm} \underline{y} ) \hspace{0.05cm}.$$


Dies entspricht dem Maximum–a–posteriori (MAP)–Kriterium. Sind die Informationssequenzen $\underline{u}$ gleichwahrscheinlich, so geht dieses in das etwas einfachere Maximum–Likelihood–Kriterium über:

$$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) \hspace{0.05cm}.$$

Als weiteres Ergebnis gibt der Viterbi–Algorithmus zusätzlich die Sequenz $\upsilon$ als Schätzung für die Informationssequenz $\underline{u}$ aus.

In dieser Aufgabe soll der Zusammenhang zwischen der Hamming–Distanz $d_{\rm H}(\underline{x}, \, \underline{y})$ sowie die Euklidischen Distanz

$$d_{\rm E}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) = \sqrt{\sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2}\hspace{0.05cm}$$

ermittelt werden. Anschließend ist das obige ML–Kriterium mit

  • der Hamming–Distanz $d_{\rm H}(\underline{x}, \, \underline{y})$,
  • der Euklidischen Distanz $d_{\rm E}(\underline{x}, \, \underline{y})$, und
  • dem Korrelationswert $〈 x \cdot < 〉$ zu formulieren.


Hinweise:



Fragebogen

1

Multiple-Choice

correct
false

2

Input-Box Frage

$xyz \ = \ $

$ab$


Musterlösung

(1)  (2)  (3)  (4)  (5)