Aufgaben:Aufgabe 4.13: Decodierung von LDPC–Codes: Unterschied zwischen den Versionen
Aus LNTwww
Zeile 26: | Zeile 26: | ||
===Fragebogen=== | ===Fragebogen=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Wie viele <i>Variable Nodes</i> und <i>Check Nodes</i> sind zu berücksichtigen? |
|type="{}"} | |type="{}"} | ||
$I_{\rm VN} \ = \ ${ 12 3% } | $I_{\rm VN} \ = \ ${ 12 3% } |
Version vom 13. Dezember 2017, 17:17 Uhr
Die Aufgabe behandelt die Decodierung von LDPC–Codes und den Message–passing Algorithmus gemäß Kapitel 4.4.
Ausgangspunkt ist die dargestellte $9 × 12$–Prüfmatrix $\mathbf{H}$, die zu Beginn der Aufgabe als Tanner–Graph dargestellt werden soll. Dabei ist anzumerken:
- Die Variable Nodes (abgekürzt VNs) $V_i$ bezeichnen die $n$ Codewortbits.
- Die Check Nodes (abgekürzt CNs) $C_j$ stehen für die $m$ Prüfgleichungen.
- Eine Verbindung zwischen $V_i$ und $C_j$ zeigt an, dass das Matrixelement $h_{j, i}$ der Prüfmatrix $\mathbf{H}$ (in Zeile $j$, Spalte $i$) gleich $1$ ist. Für $h_{j,i} = 0$ gibt es keine Verbindung zwischen $V_i$ und $C_j$.
- Als die Nachbarn $N(V_i)$ von $V_i$ bezeichnet man die Menge aller Check Nodes $C_j$, die mit $V_i$ im Tanner–Graphen verbunden sind. Entsprechend gehören zu $N(C_j)$ alle Variable Nodes $V_i$ mit einer Verbindung zu $C_j$.
Die Decodierung erfolgt abwechselnd bezüglich
- den Variable Nodes ⇒ Variable Nodes Decoder (VND), und
- den Check Nodes ⇒ Check Nodes Decoder (CND).
Hierauf wird in den Teilaufgaben (5) und (6) Bezug genommen.
Hinweise:
- Die Aufgabe gehört zum Themengebiet des Kapitels Grundlegendes zu den Low–density Parity–check Codes.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
(1)
(2)
(3)
(4)
(5)