Aufgaben:Aufgabe 3.3Z: Faltung und D–Transformation: Unterschied zwischen den Versionen
Zeile 149: | Zeile 149: | ||
'''(5)''' Der Weg über die $D$–Transformierten führt zum <u>Lösungsvorschlag 2</u>. Für diese alternierende Folge $\underline{u}$, beginnend mit 1, erhält man: | '''(5)''' Der Weg über die $D$–Transformierten führt zum <u>Lösungsvorschlag 2</u>. Für diese alternierende Folge $\underline{u}$, beginnend mit 1, erhält man: | ||
:$${X}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 \cdot (1+D) + D^2 \cdot (1+D) + D^4 \cdot (1+D) + ... =$$ | :$${X}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 \cdot (1+D) + D^2 \cdot (1+D) + D^4 \cdot (1+D) + ... =$$ | ||
− | $$\hspace{ | + | $$\hspace{1.85cm} = \ \hspace{-0.15cm} 1 + D + D^2 + D^3 + D^4 + D^5 +\hspace{0.05cm} ... |
\hspace{0.3cm} \Rightarrow \hspace{0.3cm} | \hspace{0.3cm} \Rightarrow \hspace{0.3cm} | ||
\underline{x} = (1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} ... \hspace{0.05cm}) | \underline{x} = (1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} ... \hspace{0.05cm}) |
Version vom 16. Dezember 2017, 15:24 Uhr
In dieser Aufgabe beschreiben wir an einem einfachen Beispiel
- die endliche Impulsantwort eines Filters:
- $$\underline{g} = \left (g_0, g_1, \hspace{0.05cm}...\hspace{0.1cm}, g_l, \hspace{0.05cm}...\hspace{0.1cm}, g_m \right ) \hspace{0.05cm},\hspace{0.2cm}g_l \in {\rm GF(2) } = \{ 0, 1 \}\hspace{0.05cm}, $$
- die Eingangssequenz des Filters:
- $$\underline{u} = \left (u_0, u_1, \hspace{0.05cm}...\hspace{0.1cm}, u_i, \hspace{0.05cm}...\hspace{0.1cm} \right ) \hspace{0.05cm},\hspace{0.2cm}u_i \in {\rm GF(2) } = \{ 0, 1 \}\hspace{0.05cm}, $$
- die Ausgangssequenz des Filters:
- $$\underline{x} = \left (x_0, x_1, \hspace{0.05cm}...\hspace{0.1cm}, x_i, \hspace{0.05cm}...\hspace{0.1cm} \right ) \hspace{0.05cm},\hspace{0.2cm}x_i \in {\rm GF(2) } = \{ 0, 1 \}\hspace{0.05cm}. $$
Die Nomenklatur für diese (digitale) Filterbeschreibung haben wir an das Buch „Einführung in die Kanalcodierung” angepasst. In anderen Büchern bezeichnet oft $\underline{x}$ den Filtereingang, $\underline{y}$ den Filterausgang, und die Impulsantwort wird $h$ genannt.
Allgemein gilt für die Ausgangssequenz entsprechend der Faltung (englisch: Convolution):
- $$\underline{x} = \underline{u}* \underline{g} = \left (x_0, x_1, \hspace{0.05cm}...\hspace{0.1cm}, x_i, \hspace{0.05cm}...\hspace{0.1cm} \right )\hspace{0.05cm},\hspace{0.1cm} {\rm mit} \hspace{0.2cm} x_i = \sum_{l = 0}^{m} g_l \cdot u_{i-l}\hspace{0.05cm}.$$
Wir repräsentieren nun die Zeitfunktionen $\underline{g}, \ \underline{u}$ und $\underline{x}$ durch Polynome in einer Dummy–Variablen $D$ und nennen diese die $D$–Transformierten:
- $$\underline{g} \hspace{0.25cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.25cm} {G}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \sum_{l = 0}^{m} g_l \cdot D\hspace{0.03cm}^l = g_0 + g_1 \cdot D + g_2 \cdot D^2 + ... + g_m \cdot D\hspace{0.03cm}^m\hspace{0.05cm},$$
- $$\underline{u} \hspace{0.25cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.25cm} {U}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \sum_{i = 0}^{\infty} u_i \cdot D\hspace{0.03cm}^i = u_0 + u_1 \cdot D + u_2 \cdot D^2 + ... \hspace{0.05cm},$$
- $$\underline{x} \hspace{0.25cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.25cm} {X}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \sum_{i = 0}^{\infty} x_i \cdot D\hspace{0.03cm}^i = x_0 + x_1 \cdot D + x_2 \cdot D^2 + ... \hspace{0.05cm}.$$
Damit wird aus der (komplizierteren) Faltung eine Multiplikation:
- $$\underline{x} = \underline{u}* \underline{g} \hspace{0.25cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.25cm} {X}(D) = U(D) \cdot G(D) \hspace{0.05cm}.$$
Formal lässt sich dieser Zusammenhang wie folgt nachweisen:
- $${X}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \sum_{i = 0}^{\infty} x_i \cdot D\hspace{0.03cm}^i = \sum_{i = 0}^{\infty} \sum_{l = 0}^{m}\hspace{0.1cm} g_l \cdot u_{i-l} \cdot D\hspace{0.03cm}^{i} = \sum_{l = 0}^{m} \hspace{0.1cm} g_l \cdot \sum_{j = -l}^{\infty} \hspace{0.1cm} u_{j} \cdot D\hspace{0.03cm}^{j+l} = $$
- $$ \ = \ \hspace{-0.15cm} \sum_{l = 0}^{m} \hspace{0.1cm} g_l \cdot D\hspace{0.03cm}^l \hspace{0.1cm} \cdot \hspace{0.1cm} \sum_{j = 0}^{\infty} \hspace{0.1cm} u_{j} \cdot D\hspace{0.03cm}^{j}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}{X}(D) = U(D) \cdot G(D) \hspace{0.05cm}.$$
Hierbei wurde berücksichtigt, dass alle $u_j$ für $j < 0$ nicht existieren und zu $0$ gesetzt werden können.
Beide Vorgehensweisen zur Berechnung der Ausgangssequenz $\underline{x}$, nämlich
- über die Faltung
- mit Hilfe der $D$–Transformation,
sollen für das oben skizzierte Digitale Filter demonstriert werden.
Hinweise:
- Die Aufgabe bezieht sich auf den Lehrstoff von Seite 4 des Kapitels Algebraische und polynomische Beschreibung.
- Berücksichtigen Sie bei der Lösung die folgende Identität für Berechnungen in GF(2):
- $$1 + D + D^2 + D^3 + \hspace{0.05cm}... \hspace{0.1cm}= \frac{1}{1+D} \hspace{0.05cm}.$$
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
- $$\underline{g} = (1\hspace{0.05cm},\hspace{0.05cm} 1) \hspace{0.25cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.25cm} {G}(D) = 1+ D \hspace{0.05cm}.$$
(2) Die Impulsantwort des betrachteten Filters ist $\underline{g} = (1, \, 1, \, 0, \, 0, \, ...)$. Für die Ausgangssequenz erhält man deshalb das Faltungsprodukt
- $$\underline{x} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \underline{u}* \underline{g} = (1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0,\hspace{0.05cm} ...\hspace{0.05cm}) * (1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} ... \hspace{0.05cm}) =$$
- $$\hspace{0.35cm} = \ \hspace{-0.15cm} (1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0,\hspace{0.05cm} ...\hspace{0.05cm}) \hspace{0.05cm}.$$
Zum gleichen Ergebnis kommt man über die $D$–Transformierten $U(D) = 1 + D^3$ und $G(D) = 1 + D$:
- $${X}(D) = U(D) \cdot G(D) = ( 1+D^3) \cdot (1+D) = 1 +D + D^3 +D^4 \hspace{0.05cm}.$$
Die Rücktransformation führt wieder zum Ergebnis $\underline{x} = (1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 0, \, ...)$ ⇒ Lösungsvorschlag 3.
(3) Hier verwenden wir sofort den Weg über die $D$–Transformierten:
- $${X}(D) = ( 1+D+D^2) \cdot (1+D) = 1 +D + D +D^2 +D^2 +D^3 = 1+ D^3$$
- $$\Rightarrow \hspace{0.3cm} \underline{x} = (1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0,\hspace{0.05cm} ...\hspace{0.05cm}) \hspace{0.05cm}.$$
Das Ergebnis entspricht dem Lösungsvorschlag 2. Die folgende Berechnung soll den Weg im Zeitbereich veranschaulichen:
- $$(1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} ...\hspace{0.05cm}) * (1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} ... \hspace{0.05cm})\hspace{-0.15cm} \ = \ \hspace{-0.15cm}(1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0,\hspace{0.05cm} ...\hspace{0.05cm}) \hspace{0.05cm},$$
- $$(0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} ...\hspace{0.05cm}) * (1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} ... \hspace{0.05cm})\hspace{-0.15cm} \ = \ \hspace{-0.15cm}(0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0,\hspace{0.05cm} ...\hspace{0.05cm}) \hspace{0.05cm},$$
- $$(0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} ...\hspace{0.05cm}) * (1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} ... \hspace{0.05cm})\hspace{-0.15cm} \ = \ \hspace{-0.15cm}(0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0,\hspace{0.05cm} ...\hspace{0.05cm}) \hspace{0.05cm}.$$
Da die Faltung eine lineare Operation ist, ergibt sich im Galoisfeld ${\rm GF}(2)$ aus der Summation:
- $$(1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} ...\hspace{0.05cm}) * (1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} ... \hspace{0.05cm})\hspace{0.08cm}=\hspace{0.08cm}(1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0,\hspace{0.05cm} ...\hspace{0.05cm}) \hspace{0.05cm}.$$
Hätte man die Faltung nicht in ${\rm GF}(2)$, sondern für reelle Zahlen durchgeführt, so hätte man das Ergebnis $\underline{x} = (1, \, 2, \, 2, \, 1, \, 0, \, 0, \, ...)$ erhalten.
(4) Die Musterlösung zur Teilaufgabe (3) lässt bereits vermuten, dass hier der Lösungsvorschlag 1 richtig ist. Der Weg über die $D$–Transformierten bestätigt dieses Ergebnis:
- $$\underline{u} = (1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} ... \hspace{0.05cm}) \hspace{0.25cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.25cm} {U}(D)= 1+ D + D^2+ D^3 + ... \hspace{0.15cm}.$$
Mit der für Berechnungen in ${\rm GF}(2)$ gültigen Gleichung
- $$1 + D + D^2 + D^3 + \hspace{0.05cm}... \hspace{0.1cm}= \frac{1}{1+D}$$
erhält man weiter:
- $${X}(D) = U(D) \cdot G(D) = \frac{1}{1+D} \cdot (1+D) = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{x} = (1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} ... \hspace{0.05cm}) \hspace{0.05cm}.$$
(5) Der Weg über die $D$–Transformierten führt zum Lösungsvorschlag 2. Für diese alternierende Folge $\underline{u}$, beginnend mit 1, erhält man:
- $${X}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 \cdot (1+D) + D^2 \cdot (1+D) + D^4 \cdot (1+D) + ... =$$
$$\hspace{1.85cm} = \ \hspace{-0.15cm} 1 + D + D^2 + D^3 + D^4 + D^5 +\hspace{0.05cm} ... \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{x} = (1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} ... \hspace{0.05cm}) \hspace{0.05cm}.$$
Auch bei direkter Anwendung der Faltung wie in Teilaufgabe (2) kann man dieses Ergebnis ablesen. Mit $\underline{u} = (0, \, 1, \, 0, \, 1, \, 0, \, 1, \, ...)$ erhält man dagegen $\underline{x} = (0, \, 1, \, 1, \, 1, \, 1, \, 1, \, ...)$. Diese unterscheidet sich von der „Dauer–Einsfolge” nur im ersten Bit. Es ist dann $x_1 = 0$ statt $x_1 = 1$.