Aufgaben:Aufgabe 2.10Z: Coderate und minimale Distanz: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 3: Zeile 3:
 
[[Datei:P_ID2526__KC_Z_2_10.png|right|frame|Die Erfinder der Reed–Solomon–Codes]]
 
[[Datei:P_ID2526__KC_Z_2_10.png|right|frame|Die Erfinder der Reed–Solomon–Codes]]
 
Die von [[Irving Story Reed]] und [[Gustav Solomon]] Anfang der 1960er Jahre entwickelten Codes werden in diesem Tutorial wie folgt:
 
Die von [[Irving Story Reed]] und [[Gustav Solomon]] Anfang der 1960er Jahre entwickelten Codes werden in diesem Tutorial wie folgt:
<font size="4"><span style="color: rgb(204, 0, 0);">${\rm RSC} \, (n, \, k, \, d_{\rm min})_q$</span></font>&nbsp; .
+
<font size="4"><span style="color: rgb(204, 0, 0);">${\rm RSC} \, (n, \, k, \, d_{\rm min})_q\\$</span></font>&nbsp; .
  
 
Die Codeparameter haben folgende Bedeutungen:
 
Die Codeparameter haben folgende Bedeutungen:

Version vom 16. Dezember 2017, 23:32 Uhr

Die Erfinder der Reed–Solomon–Codes

Die von Irving Story Reed und Gustav Solomon Anfang der 1960er Jahre entwickelten Codes werden in diesem Tutorial wie folgt: ${\rm RSC} \, (n, \, k, \, d_{\rm min})_q\\$</span></font>  . Die Codeparameter haben folgende Bedeutungen: * $q = 2^m$ ist ein Hinweis auf die Größe des Galoisfeldes  ⇒  ${\rm GF}(q)$, * $n = q - 1$ ist die Codelänge (Symbolanzahl eines Codewortes), * $k$ gibt die Dimension an (Symbolanzahl eines Informationsblocks), * $d_{\rm min}$ bezeichnet die minimale Distanz zwischen zwei Codeworten. Bei RS–Codes erreicht $d_{\rm min} = n - k + 1$ seinen größten Wert.


Hinweise:



Fragebogen

1

Multiple-Choice

correct
false

2

Input-Box Frage

$xyz \ = \ $

$ab$


Musterlösung

(1)  (2)  (3)  (4)  (5)