Aufgaben:Aufgabe 2.11: RS–Decodierung nach „Erasures”: Unterschied zwischen den Versionen
Aus LNTwww
Zeile 2: | Zeile 2: | ||
[[Datei:P_ID2542__KC_A_2_11_neu.png|right|frame|${\rm GF}(2^3)$ in Potenz–, Polynom– u. Koeffizientenvektordarstellung]] | [[Datei:P_ID2542__KC_A_2_11_neu.png|right|frame|${\rm GF}(2^3)$ in Potenz–, Polynom– u. Koeffizientenvektordarstellung]] | ||
+ | Wir betrachten hier ein Codier– und Decodiersystem entsprechend der [[Kanalcodierung/Reed%E2%80%93Solomon%E2%80%93Decodierung_beim_Ausl%C3%B6schungskanal#Blockschaltbild_und_Voraussetzungen_zur_RS.E2.80.93Fehlererkennung| Grafik]] im Theorieteil zu diesem Kapitel. Anzumerken ist: | ||
+ | * Der Reed–Solomon–Code ist durchdie Generator $\mathbf{G}$ und die Prüfmatrix $\mathbf{H}$ vorgegeben, wobei alle Elemente aus dem Galoisfeld $\rm GF(2^3) \ \backslash \ \{0\}$ stammen: | ||
+ | :$${ \boldsymbol{\rm G}} \hspace{-0.15cm} & = & \hspace{-0.15cm} | ||
+ | \begin{pmatrix} | ||
+ | 1 & 1 & 1 & 1 & 1 & 1 & 1\\ | ||
+ | 1 & \alpha^1 & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\ | ||
+ | 1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5}\\ | ||
+ | 1 & \alpha^3 & \alpha^6 & \alpha^2 & \alpha^{5} & \alpha^{1} & \alpha^{4} | ||
+ | \end{pmatrix} \hspace{0.05cm},\\\\ | ||
+ | { \boldsymbol{\rm H}} \hspace{-0.15cm} & = & \hspace{-0.15cm} | ||
+ | \begin{pmatrix} | ||
+ | 1 & \alpha^1 & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\ | ||
+ | 1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5}\\ | ||
+ | 1 & \alpha^3 & \alpha^6 & \alpha^2 & \alpha^{5} & \alpha^{1} & \alpha^{4} | ||
+ | \end{pmatrix} \hspace{0.05cm}.$$ | ||
+ | * Alle Codesymbole $c_i ∈ \{0, \, 1, \, \alpha, \, \alpha^2, \, \alpha^3, \, \alpha^3, \, \alpha^4, \, \alpha^5, \, \alpha^6\}$ werden durch $m = 3 \ \rm Bit$ dargestellt und über den grün hinterlegten Auslöschungskanal ($m$–BEC) übertragen. Ein Codesymbol wird bereits dann als Auslöschung (<i>Erasure</i>) E markiert, wenn eines der drei zugehörigen Bit unsicher ist. | ||
+ | * Der <i>Codewortfinder</i> (CWF) hat die Aufgabe, aus dem teilweise ausgelöschten Empfangswort $\underline{y}$ das regenerierte Codewort $\underline{z}$ zu erzeugen. Dabei muss sicher gestellt sein, dass das Ergebnis $\underline{z}$ tatsächlich ein gültiges Reed–Solomon–Codewort ist. | ||
+ | * Beinhaltet das Empfangswort $\underline{y}$ zu viele Auslöschungen, so gibt der Decoder eine Meldung der Art „Symbol ist nicht decodierbar” aus. Es wird also nicht versucht, das Codewort zu schätzen. Wird $\underline{z}$ ausgegeben, so ist dieses auch richtig: $\underline{z} = \underline{c}$. | ||
+ | * Das gesuchte Informationswert $\underline{\upsilon} = \underline{u}$ ergibt sich durch die inverse Coderfunktion $\underline{\upsilon} = \enc^{-1}{(\underline{u})}. Mit der Generatormatrix $\mathbf{G}$ lässt sich diese wie folgt realisieren: | ||
+ | :$$\underline{c} = {\rm enc}(\underline{u}) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \underline{u} \cdot {\boldsymbol{\rm G}} | ||
+ | \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{z} = {\rm enc}(\underline{\upsilon}) | ||
+ | = \underline{\upsilon} \cdot {\boldsymbol{\rm G}}$$ | ||
+ | :$$\Rightarrow \hspace{0.3cm} \underline{\upsilon} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm enc}^{-1}(\underline{z}) = \underline{z} \cdot {\boldsymbol{\rm G}}^{\rm T}\hspace{0.05cm}.$$ | ||
Version vom 17. Dezember 2017, 00:09 Uhr
Wir betrachten hier ein Codier– und Decodiersystem entsprechend der Grafik im Theorieteil zu diesem Kapitel. Anzumerken ist:
- Der Reed–Solomon–Code ist durchdie Generator $\mathbf{G}$ und die Prüfmatrix $\mathbf{H}$ vorgegeben, wobei alle Elemente aus dem Galoisfeld $\rm GF(2^3) \ \backslash \ \{0\}$ stammen:
- $${ \boldsymbol{\rm G}} \hspace{-0.15cm} & = & \hspace{-0.15cm} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1\\ 1 & \alpha^1 & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5}\\ 1 & \alpha^3 & \alpha^6 & \alpha^2 & \alpha^{5} & \alpha^{1} & \alpha^{4} \end{pmatrix} \hspace{0.05cm},\\\\ { \boldsymbol{\rm H}} \hspace{-0.15cm} & = & \hspace{-0.15cm} \begin{pmatrix} 1 & \alpha^1 & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5}\\ 1 & \alpha^3 & \alpha^6 & \alpha^2 & \alpha^{5} & \alpha^{1} & \alpha^{4} \end{pmatrix} \hspace{0.05cm}.$$
- Alle Codesymbole $c_i ∈ \{0, \, 1, \, \alpha, \, \alpha^2, \, \alpha^3, \, \alpha^3, \, \alpha^4, \, \alpha^5, \, \alpha^6\}$ werden durch $m = 3 \ \rm Bit$ dargestellt und über den grün hinterlegten Auslöschungskanal ($m$–BEC) übertragen. Ein Codesymbol wird bereits dann als Auslöschung (Erasure) E markiert, wenn eines der drei zugehörigen Bit unsicher ist.
- Der Codewortfinder (CWF) hat die Aufgabe, aus dem teilweise ausgelöschten Empfangswort $\underline{y}$ das regenerierte Codewort $\underline{z}$ zu erzeugen. Dabei muss sicher gestellt sein, dass das Ergebnis $\underline{z}$ tatsächlich ein gültiges Reed–Solomon–Codewort ist.
- Beinhaltet das Empfangswort $\underline{y}$ zu viele Auslöschungen, so gibt der Decoder eine Meldung der Art „Symbol ist nicht decodierbar” aus. Es wird also nicht versucht, das Codewort zu schätzen. Wird $\underline{z}$ ausgegeben, so ist dieses auch richtig: $\underline{z} = \underline{c}$.
- Das gesuchte Informationswert $\underline{\upsilon} = \underline{u}$ ergibt sich durch die inverse Coderfunktion $\underline{\upsilon} = \enc^{-1}{(\underline{u})}. Mit der Generatormatrix $\mathbf{G}$ lässt sich diese wie folgt realisieren:
- $$\underline{c} = {\rm enc}(\underline{u}) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \underline{u} \cdot {\boldsymbol{\rm G}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{z} = {\rm enc}(\underline{\upsilon}) = \underline{\upsilon} \cdot {\boldsymbol{\rm G}}$$
- $$\Rightarrow \hspace{0.3cm} \underline{\upsilon} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm enc}^{-1}(\underline{z}) = \underline{z} \cdot {\boldsymbol{\rm G}}^{\rm T}\hspace{0.05cm}.$$
Fragebogen
Musterlösung
(1)
(2)
(3)
(4)
(5)