Aufgaben:Aufgabe 2.15: RS-Blockfehlerwahrscheinlichkeit bei AWGN: Unterschied zwischen den Versionen
Zeile 9: | Zeile 9: | ||
soll die Berechnung der Blockfehlerwahrscheinlichkeit beim [[Kanalcodierung/Fehlerwahrscheinlichkeit_und_Anwendungsgebiete#Blockfehlerwahrscheinlichkeit_f.C3.BCr_RSC_und_BDD|Bounded Distance Decoding]] (BDD) gezeigt werden. Die entsprechende Gleichung lautet: | soll die Berechnung der Blockfehlerwahrscheinlichkeit beim [[Kanalcodierung/Fehlerwahrscheinlichkeit_und_Anwendungsgebiete#Blockfehlerwahrscheinlichkeit_f.C3.BCr_RSC_und_BDD|Bounded Distance Decoding]] (BDD) gezeigt werden. Die entsprechende Gleichung lautet: | ||
− | :$${\rm Pr(Blockfehler)} = | + | :$${\rm Pr(Blockfehler)} = {\rm Pr}(\underline{v} \ne \underline{u}) = |
\sum_{f = t + 1}^{n} {n \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{n-f} \hspace{0.05cm}.$$ | \sum_{f = t + 1}^{n} {n \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{n-f} \hspace{0.05cm}.$$ | ||
Zeile 73: | Zeile 73: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' Aus der Tabelle auf der Angabenseite kann der BSC–Parameter $\ | + | '''(1)''' Aus der Tabelle auf der Angabenseite kann der BSC–Parameter $\varepsilon = 0.0505$ abgelesen werden. Damit erhält man für die Symbolverfälschungswahrscheinlichkeit $\varepsilon_{\rm S}$ mit $m = 3$: |
:$$1 - \varepsilon_{\rm S} = (1 - 0.0505)^3 \approx 0.856 | :$$1 - \varepsilon_{\rm S} = (1 - 0.0505)^3 \approx 0.856 | ||
\hspace{0.3cm}\Rightarrow \hspace{0.3cm} | \hspace{0.3cm}\Rightarrow \hspace{0.3cm} | ||
Zeile 80: | Zeile 80: | ||
Der schnellste Weg zur Berechnung der Blockfehlerwahrscheinlichkeit führt hier über die Formel | Der schnellste Weg zur Berechnung der Blockfehlerwahrscheinlichkeit führt hier über die Formel | ||
− | :$${\rm Pr(Blockfehler)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 - {\rm Pr}(f=0) - {\rm Pr}(f=1) - {\rm Pr}(f=2) = | + | :$${\rm Pr(Blockfehler)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 - {\rm Pr}(f=0) - {\rm Pr}(f=1) - {\rm Pr}(f=2) = 1 - 1 \cdot 0.856^7 - |
− | + | 7 \cdot 0.144^1 \cdot 0.856^6 - 21 \cdot 0.144^2 \cdot 0.856^5$$ | |
− | 7 \cdot 0.144^1 \cdot 0.856^6 - 21 \cdot 0.144^2 \cdot 0.856^5 | + | :$$\Rightarrow \hspace{0.3cm} {\rm Pr(Blockfehler)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Pr}(\underline{v} \ne \underline{u}) =1 - 0.3368 - 0.3965 - 0.2001 \hspace{0.15cm} \underline{=0.0666} |
− | :$$\hspace{ | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | '''(2)''' Nach gleichem Rechengang wie in Teilaufgabe (1) ergibt sich mit $\ | + | '''(2)''' Nach gleichem Rechengang wie in Teilaufgabe (1) ergibt sich mit $\varepsilon_{\rm S} \approx 0.03 \ \Rightarrow \ 1 - \varepsilon_{\rm S} = 0.97$: |
:$${\rm Pr(Blockfehler)} | :$${\rm Pr(Blockfehler)} | ||
− | \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 - 1 \cdot 0.97^7 - | + | \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 \hspace{-0.05cm}-\hspace{-0.05cm} 1 \cdot 0.97^7 \hspace{-0.05cm}-\hspace{-0.05cm} |
− | 7 \cdot 0.03^1 \cdot 0.97^6 - 21 \cdot 0.03^2 \cdot 0.97^5 = | + | 7 \cdot 0.03^1 \cdot 0.97^6 \hspace{-0.05cm}-\hspace{-0.05cm} 21 \cdot 0.03^2 \cdot 0.97^5 =1 \hspace{-0.05cm}-\hspace{-0.05cm} 0.8080 \hspace{-0.05cm}-\hspace{-0.05cm} 0.1749\hspace{-0.05cm}-\hspace{-0.05cm} 0.0162= 1 \hspace{-0.05cm}-\hspace{-0.05cm} 0.9991 = 9 \cdot 10^{-4} |
− | |||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
Zeile 101: | Zeile 99: | ||
:$${\rm Pr}(f=5) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} | :$${\rm Pr}(f=5) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} | ||
{7 \choose 5} \cdot \varepsilon_{\rm S}^5 \cdot (1 - \varepsilon_{\rm S})^2 = 21 \cdot 0.03^5 \cdot 0.97^2 = 0.005 \cdot 10^{-4}$$ | {7 \choose 5} \cdot \varepsilon_{\rm S}^5 \cdot (1 - \varepsilon_{\rm S})^2 = 21 \cdot 0.03^5 \cdot 0.97^2 = 0.005 \cdot 10^{-4}$$ | ||
− | :$$\Rightarrow \hspace{0.3cm} {\rm Pr(Blockfehler)} \approx {\rm Pr}(f=3) + {\rm Pr}(f=4) + {\rm Pr}(f=5) \hspace{0.15cm} \underline{=8.63 \cdot 10^{-4}} \hspace{0.05cm}.$$ | + | :$$\Rightarrow \hspace{0.3cm} {\rm Pr(Blockfehler)} = {\rm Pr}(\underline{v} \ne \underline{u}) \approx {\rm Pr}(f=3) + {\rm Pr}(f=4) + {\rm Pr}(f=5) \hspace{0.15cm} \underline{=8.63 \cdot 10^{-4}} \hspace{0.05cm}.$$ |
Auf die Terme für $f = 6$ und $f = 7$ kann hier verzichtet werden. Sie liefern keinen relevanten Beitrag. | Auf die Terme für $f = 6$ und $f = 7$ kann hier verzichtet werden. Sie liefern keinen relevanten Beitrag. | ||
− | '''(3)''' Hier ist bereits $\ | + | '''(3)''' Hier ist bereits $\varepsilon_{\rm S} = 0.005 \ \Rightarrow \ 1 - \varepsilon_{\rm S} = 0.995$ in der Tabelle vorgegeben. Der (weitaus) dominierende Term bei der Berechnung der Blockfehlerwahrscheinlichkeit ist ${\rm Pr}(f = 3)$: |
− | :$${\rm Pr(Blockfehler)} \approx {\rm Pr}(f=3) = {7 \choose 3} \cdot 0.005^3 \cdot 0.995^4 | + | :$${\rm Pr(Blockfehler)} = {\rm Pr}(\underline{v} \ne \underline{u}) \approx {\rm Pr}(f=3) = {7 \choose 3} \cdot 0.005^3 \cdot 0.995^4 |
\hspace{0.15cm} \underline{\approx 4.3 \cdot 10^{-6}} \hspace{0.05cm}.$$ | \hspace{0.15cm} \underline{\approx 4.3 \cdot 10^{-6}} \hspace{0.05cm}.$$ | ||
− | '''(4)''' Für den BSC–Parameter $\ | + | '''(4)''' Für den BSC–Parameter $\varepsilon$ gilt mit $\varepsilon_{\rm S} = 0.1$: |
:$$\varepsilon = 1 -(1 - \varepsilon_{\rm S})^{1/3} = 1 - 0.9^{1/3} \approx 0.0345 | :$$\varepsilon = 1 -(1 - \varepsilon_{\rm S})^{1/3} = 1 - 0.9^{1/3} \approx 0.0345 | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | Der Zusammenhang zwischen $\ | + | Der Zusammenhang zwischen $\varepsilon$ und $E_{\rm B}/N_0$ lautet: |
:$$\varepsilon = {\rm Q}(x)\hspace{0.05cm}, \hspace{0.5cm} x = \sqrt{2 \cdot R \cdot E_{\rm B}/N_0}\hspace{0.05cm}.$$ | :$$\varepsilon = {\rm Q}(x)\hspace{0.05cm}, \hspace{0.5cm} x = \sqrt{2 \cdot R \cdot E_{\rm B}/N_0}\hspace{0.05cm}.$$ | ||
− | Die Inverse $x = {\rm Q}^{-1}(0.0345)$ ergibt sich mit dem | + | Die Inverse $x = {\rm Q}^{-1}(0.0345)$ ergibt sich mit dem Applet [[Applets:QFunction|Komplementäre Gaußsche Fehlerfunktionen]] zu $x = 1.82$. Damit erhält man weiter: |
:$$E_{\rm B}/N_0 = \frac{x^2}{2R} = \frac{1.82^2}{2R \cdot 3/7} \approx 3.864 | :$$E_{\rm B}/N_0 = \frac{x^2}{2R} = \frac{1.82^2}{2R \cdot 3/7} \approx 3.864 | ||
\hspace{0.3cm} \Rightarrow \hspace{0.3cm} | \hspace{0.3cm} \Rightarrow \hspace{0.3cm} | ||
Zeile 126: | Zeile 124: | ||
'''(5)''' Nach gleicher Rechnung erhält man | '''(5)''' Nach gleicher Rechnung erhält man | ||
− | * für $\ | + | * für $\varepsilon_{\rm S} = 10^{-2} \ \Rightarrow \ \varepsilon \approx 0.33 \cdot 10^{-2} \ \Rightarrow \ x = {\rm Q}^{-1}(\varepsilon) = 2.71$ |
:$$E_{\rm B}/N_0 = \frac{x^2}{2R} = \frac{2.71^2}{2R \cdot 3/7} \approx 8.568 | :$$E_{\rm B}/N_0 = \frac{x^2}{2R} = \frac{2.71^2}{2R \cdot 3/7} \approx 8.568 | ||
\hspace{0.3cm} \Rightarrow \hspace{0.3cm} | \hspace{0.3cm} \Rightarrow \hspace{0.3cm} | ||
Zeile 132: | Zeile 130: | ||
\hspace{0.15cm} \underline{\approx 9.32 \,\, {\rm dB}} \hspace{0.05cm}, $$ | \hspace{0.15cm} \underline{\approx 9.32 \,\, {\rm dB}} \hspace{0.05cm}, $$ | ||
− | * für $\ | + | * für $\varepsilon_{\rm S} = 10^{-3} \ \Rightarrow \ \varepsilon \approx 0.33 \cdot 10^{-3} \ \Rightarrow \ x = {\rm Q}^{-1}(\varepsilon) = 3.4$: |
:$$E_{\rm B}/N_0 = \frac{x^2}{2R} = \frac{3.4^2}{2R \cdot 3/7} \approx 13.487 | :$$E_{\rm B}/N_0 = \frac{x^2}{2R} = \frac{3.4^2}{2R \cdot 3/7} \approx 13.487 | ||
\hspace{0.3cm} \Rightarrow \hspace{0.3cm} | \hspace{0.3cm} \Rightarrow \hspace{0.3cm} | ||
Zeile 140: | Zeile 138: | ||
[[Datei:P_ID2572__KC_A_2_15e_neu.png|center|frame|Ergebnisse zur $\rm RSC \, (7, \, 3, \, 5)_8$–Decodierung]] | [[Datei:P_ID2572__KC_A_2_15e_neu.png|center|frame|Ergebnisse zur $\rm RSC \, (7, \, 3, \, 5)_8$–Decodierung]] | ||
− | Die Grafik zeigt den Verlauf der Blockfehlerwahrscheinlichkeit in Abhängigkeit von $10 \cdot \lg {E_{\rm B}/N_0}$ sowie die vollständig ausgefüllte Ergebnistabelle. Man erkennt das deutlich ungünstigere (asymptotische) Verhalten dieses kurzen (grünen) Codes $\rm RSC \, (7, \, 5, \, 3)_8$ gegenüber dem (roten) Vergleichscode $\rm RSC \, (255, \, 223, \, 33)_8$ | + | Die Grafik zeigt den Verlauf der Blockfehlerwahrscheinlichkeit in Abhängigkeit von $10 \cdot \lg {E_{\rm B}/N_0}$ sowie die vollständig ausgefüllte Ergebnistabelle. Man erkennt das deutlich ungünstigere (asymptotische) Verhalten dieses kurzen (grünen) Codes $\rm RSC \, (7, \, 5, \, 3)_8$ gegenüber dem (roten) Vergleichscode $\rm RSC \, (255, \, 223, \, 33)_8$: |
− | Für Abszissenwerte kleiner als $10 \ \rm dB$ ergibt sich sogar ein schlechteres Ergebnis als ohne Codierung. Deshalb soll hier nochmals darauf hingewiesen werden, dass dieser $\rm RSC \, (7, \, 3, \, 5)_8$ wenig praktische Bedeutung hat. Er wurde für diese Aufgabe nur deshalb ausgewählt, um mit vertretbarem Aufwand die Berechnung der BDD | + | *Für Abszissenwerte kleiner als $10 \ \rm dB$ ergibt sich sogar ein schlechteres Ergebnis als ohne Codierung. |
+ | *Deshalb soll hier nochmals darauf hingewiesen werden, dass dieser $\rm RSC \, (7, \, 3, \, 5)_8$ wenig praktische Bedeutung hat. | ||
+ | *Er wurde für diese Aufgabe nur deshalb ausgewählt, um mit vertretbarem Aufwand die Berechnung der Blockfehlerwahrscheinlichkeit bei ''Bounded Distance Decoding'' (BDD) demonstrieren zu können. | ||
{{ML-Fuß}} | {{ML-Fuß}} | ||
[[Category:Aufgaben zu Kanalcodierung|^2.6 RSC–Fehlerwahrscheinlichkeit^]] | [[Category:Aufgaben zu Kanalcodierung|^2.6 RSC–Fehlerwahrscheinlichkeit^]] |
Version vom 13. Januar 2018, 17:42 Uhr
Am Beispiel des $\rm RSC \, (7, \, 3, \, 5)_8$ mit den Parametern
- $n = 7$ (Anzahl der Codesymbole),
- $k =3$ (Anzahl der Informationssymbole),
- $t = 2$ (Korrekturfähigkeit)
soll die Berechnung der Blockfehlerwahrscheinlichkeit beim Bounded Distance Decoding (BDD) gezeigt werden. Die entsprechende Gleichung lautet:
- $${\rm Pr(Blockfehler)} = {\rm Pr}(\underline{v} \ne \underline{u}) = \sum_{f = t + 1}^{n} {n \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{n-f} \hspace{0.05cm}.$$
Die Berechnung erfolgt für den AWGN–Kanal, der durch den Parameter $E_{\rm B}/N_0$ gekennzeichnet ist.
- Der Quotient $E_{\rm B}/{N_0}$ lässt sich über die Beziehung
- $$\varepsilon = {\rm Q} \big (\sqrt{{2 \cdot R \cdot E_{\rm B}}/{N_0}} \big ) $$
in das BSC–Modell überführen, wobei $R$ die Coderate bezeichnet (hier: $R = 3/7$) und ${\rm Q}(x)$ das komplementäre Gaußsche Fehlerintegral angibt.
- Da aber beim betrachteten Code die Symbole aus $\rm GF(2^3)$ entstammen, muss das BSC–Modell mit Parameter $\epsilon$ ebenfalls noch an die Aufgabenstellung adaptiert werden. Für die Verfälschungwahrscheinlichkeit des m–BSC–Modells gilt, wobei hier $m = 3$ zu setzen ist (3 Bit pro Codesymbol):
- $$\varepsilon_{\rm S} = 1 - (1 - \varepsilon)^m \hspace{0.05cm},$$
Für einige $E_{\rm B}/N_0$–Werte sind die Ergebnisse bereits in obiger Tabelle eingetragen. Die beiden gelb hinterlegten Zeilen werden hier kurz erläutert.
- Für $10 \cdot \lg {E_{\rm B}/N_0} = 4 \ \rm dB$ ergibt sich $\varepsilon \approx {\rm Q}(1.47) \approx 0.071$ und $\varepsilon_{\rm S} \approx 0.2$. Am einfachsten kann hier die Blockfehlerwahrscheinlichkeit über das Komplement berechnet werden:
- $${\rm Pr(Blockfehler)} = 1 - \big [ {7 \choose 0} \cdot 0.8^7 + {7 \choose 1} \cdot 0.2 \cdot 0.8^6 + {7 \choose 2} \cdot 0.2^2 \cdot 0.8^5\big ] \approx 0.148 \hspace{0.05cm}.$$
- Für $10 \cdot \lg {E_{\rm B}/N_0} = 12 \ \rm dB$ erhält man $\varepsilon \approx 1.2 \cdot 10^{-4}$ und $\varepsilon_{\rm S} \approx 3.5 \cdot 10^{-4}$. Mit dieser sehr kleinen Verfälschungswahrscheinlichkeit dominiert der $f = 3$–Term und man erhält:
- $${\rm Pr(Blockfehler)} \approx {7 \choose 3} \cdot (3.5 \cdot 10^{-4})^3 \cdot (1- 3.5 \cdot 10^{-4})^4 \approx 1.63 \cdot 10^{-9} \hspace{0.05cm}.$$
- Sie sollen nun für die rot hinterlegten Zeilen $(10 \cdot \lg {E_{\rm B}/N_0} = 5 \ \rm dB, \ 8 \ dB$ und $10 \ \rm dB)$ die Blockfehlerwahrscheinlichkeiten berechnen.
- Die blau hinterlegten Zeilen zeigen einige Ergebnisse der Aufgabe 2.15Z. Dort wird ${\rm Pr}(\underline{v} ≠ \underline{u})$ für $\varepsilon_{\rm S} = 10\%, \ 1\%$ und $0.1\%$ berechnet.
- In den Teilaufgaben (4) und (5) sollen Sie den Zusammenhang zwischen dieser Größe $\varepsilon_{\rm S}$ und dem AWGN–Parameter $E_{\rm B}/N_0$ herstellen und somit die obige Tabelle vervollständigen.
Hinweise:
- Die Aufgabe gehört zum Kapitel Fehlerwahrscheinlichkeit und Anwendungsgebiete.
- Wir verweisen Sie hier auf die beiden Interaktionsmodule Komplementäre Gaußsche Fehlerfunktionen und Wahrscheinlichkeiten der Binomialverteilung.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
- $$1 - \varepsilon_{\rm S} = (1 - 0.0505)^3 \approx 0.856 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \varepsilon_{\rm S} \approx 0.144 \hspace{0.05cm}.$$
Der schnellste Weg zur Berechnung der Blockfehlerwahrscheinlichkeit führt hier über die Formel
- $${\rm Pr(Blockfehler)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 - {\rm Pr}(f=0) - {\rm Pr}(f=1) - {\rm Pr}(f=2) = 1 - 1 \cdot 0.856^7 - 7 \cdot 0.144^1 \cdot 0.856^6 - 21 \cdot 0.144^2 \cdot 0.856^5$$
- $$\Rightarrow \hspace{0.3cm} {\rm Pr(Blockfehler)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Pr}(\underline{v} \ne \underline{u}) =1 - 0.3368 - 0.3965 - 0.2001 \hspace{0.15cm} \underline{=0.0666} \hspace{0.05cm}.$$
(2) Nach gleichem Rechengang wie in Teilaufgabe (1) ergibt sich mit $\varepsilon_{\rm S} \approx 0.03 \ \Rightarrow \ 1 - \varepsilon_{\rm S} = 0.97$:
- $${\rm Pr(Blockfehler)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 \hspace{-0.05cm}-\hspace{-0.05cm} 1 \cdot 0.97^7 \hspace{-0.05cm}-\hspace{-0.05cm} 7 \cdot 0.03^1 \cdot 0.97^6 \hspace{-0.05cm}-\hspace{-0.05cm} 21 \cdot 0.03^2 \cdot 0.97^5 =1 \hspace{-0.05cm}-\hspace{-0.05cm} 0.8080 \hspace{-0.05cm}-\hspace{-0.05cm} 0.1749\hspace{-0.05cm}-\hspace{-0.05cm} 0.0162= 1 \hspace{-0.05cm}-\hspace{-0.05cm} 0.9991 = 9 \cdot 10^{-4} \hspace{0.05cm}.$$
Man sieht, dass hier die Differenz zwischen zwei fast gleich großen Zahlen gebildet werden muss, so dass das Ergebnis mit einem Fehler behaftet sein könnte. Deshalb berechnen wir noch folgende Größen:
- $${\rm Pr}(f=3) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {7 \choose 3} \cdot \varepsilon_{\rm S}^3 \cdot (1 - \varepsilon_{\rm S})^4 = 35 \cdot 0.03^3 \cdot 0.97^4 = 8.366 \cdot 10^{-4}\hspace{0.05cm},$$
- $${\rm Pr}(f=4) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {7 \choose 4} \cdot \varepsilon_{\rm S}^4 \cdot (1 - \varepsilon_{\rm S})^3 = 35 \cdot 0.03^4 \cdot 0.97^3 = 0.259 \cdot 10^{-4}\hspace{0.05cm},$$
- $${\rm Pr}(f=5) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {7 \choose 5} \cdot \varepsilon_{\rm S}^5 \cdot (1 - \varepsilon_{\rm S})^2 = 21 \cdot 0.03^5 \cdot 0.97^2 = 0.005 \cdot 10^{-4}$$
- $$\Rightarrow \hspace{0.3cm} {\rm Pr(Blockfehler)} = {\rm Pr}(\underline{v} \ne \underline{u}) \approx {\rm Pr}(f=3) + {\rm Pr}(f=4) + {\rm Pr}(f=5) \hspace{0.15cm} \underline{=8.63 \cdot 10^{-4}} \hspace{0.05cm}.$$
Auf die Terme für $f = 6$ und $f = 7$ kann hier verzichtet werden. Sie liefern keinen relevanten Beitrag.
(3) Hier ist bereits $\varepsilon_{\rm S} = 0.005 \ \Rightarrow \ 1 - \varepsilon_{\rm S} = 0.995$ in der Tabelle vorgegeben. Der (weitaus) dominierende Term bei der Berechnung der Blockfehlerwahrscheinlichkeit ist ${\rm Pr}(f = 3)$:
- $${\rm Pr(Blockfehler)} = {\rm Pr}(\underline{v} \ne \underline{u}) \approx {\rm Pr}(f=3) = {7 \choose 3} \cdot 0.005^3 \cdot 0.995^4 \hspace{0.15cm} \underline{\approx 4.3 \cdot 10^{-6}} \hspace{0.05cm}.$$
(4) Für den BSC–Parameter $\varepsilon$ gilt mit $\varepsilon_{\rm S} = 0.1$:
- $$\varepsilon = 1 -(1 - \varepsilon_{\rm S})^{1/3} = 1 - 0.9^{1/3} \approx 0.0345 \hspace{0.05cm}.$$
Der Zusammenhang zwischen $\varepsilon$ und $E_{\rm B}/N_0$ lautet:
- $$\varepsilon = {\rm Q}(x)\hspace{0.05cm}, \hspace{0.5cm} x = \sqrt{2 \cdot R \cdot E_{\rm B}/N_0}\hspace{0.05cm}.$$
Die Inverse $x = {\rm Q}^{-1}(0.0345)$ ergibt sich mit dem Applet Komplementäre Gaußsche Fehlerfunktionen zu $x = 1.82$. Damit erhält man weiter:
- $$E_{\rm B}/N_0 = \frac{x^2}{2R} = \frac{1.82^2}{2R \cdot 3/7} \approx 3.864 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.15cm}(E_{\rm B}/N_0) \hspace{0.15cm} \underline{\approx 5.87 \,\, {\rm dB}} \hspace{0.05cm}. $$
(5) Nach gleicher Rechnung erhält man
- für $\varepsilon_{\rm S} = 10^{-2} \ \Rightarrow \ \varepsilon \approx 0.33 \cdot 10^{-2} \ \Rightarrow \ x = {\rm Q}^{-1}(\varepsilon) = 2.71$
- $$E_{\rm B}/N_0 = \frac{x^2}{2R} = \frac{2.71^2}{2R \cdot 3/7} \approx 8.568 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.15cm}(E_{\rm B}/N_0) \hspace{0.15cm} \underline{\approx 9.32 \,\, {\rm dB}} \hspace{0.05cm}, $$
- für $\varepsilon_{\rm S} = 10^{-3} \ \Rightarrow \ \varepsilon \approx 0.33 \cdot 10^{-3} \ \Rightarrow \ x = {\rm Q}^{-1}(\varepsilon) = 3.4$:
- $$E_{\rm B}/N_0 = \frac{x^2}{2R} = \frac{3.4^2}{2R \cdot 3/7} \approx 13.487 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.15cm}(E_{\rm B}/N_0) \hspace{0.15cm} \underline{\approx 11.3 \,\, {\rm dB}} \hspace{0.05cm}. $$
Die Grafik zeigt den Verlauf der Blockfehlerwahrscheinlichkeit in Abhängigkeit von $10 \cdot \lg {E_{\rm B}/N_0}$ sowie die vollständig ausgefüllte Ergebnistabelle. Man erkennt das deutlich ungünstigere (asymptotische) Verhalten dieses kurzen (grünen) Codes $\rm RSC \, (7, \, 5, \, 3)_8$ gegenüber dem (roten) Vergleichscode $\rm RSC \, (255, \, 223, \, 33)_8$:
- Für Abszissenwerte kleiner als $10 \ \rm dB$ ergibt sich sogar ein schlechteres Ergebnis als ohne Codierung.
- Deshalb soll hier nochmals darauf hingewiesen werden, dass dieser $\rm RSC \, (7, \, 3, \, 5)_8$ wenig praktische Bedeutung hat.
- Er wurde für diese Aufgabe nur deshalb ausgewählt, um mit vertretbarem Aufwand die Berechnung der Blockfehlerwahrscheinlichkeit bei Bounded Distance Decoding (BDD) demonstrieren zu können.