Aufgaben:Aufgabe 1.7Z: BARBARA-Generator: Unterschied zwischen den Versionen
K (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “) |
|||
Zeile 2: | Zeile 2: | ||
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Markovketten}} | {{quiz-Header|Buchseite=Stochastische Signaltheorie/Markovketten}} | ||
− | [[Datei:P_ID454__Sto_Z_1_7.png|right|BARBARA-Generator]] | + | [[Datei:P_ID454__Sto_Z_1_7.png|right|frame|BARBARA-Generator]] |
Betrachtet wird hier ein ternärer Zufallsgenerator mit den Symbolen $A$, $B$ und $R$, der durch eine homogene und stationäre Markovkette erster Ordnung beschrieben werden kann. | Betrachtet wird hier ein ternärer Zufallsgenerator mit den Symbolen $A$, $B$ und $R$, der durch eine homogene und stationäre Markovkette erster Ordnung beschrieben werden kann. | ||
Die Übergangswahrscheinlichkeiten können dem skizzierten Markovdiagramm entnommen werden. Für die ersten drei Teilaufgaben soll stets $p = 1/4$ gelten. | Die Übergangswahrscheinlichkeiten können dem skizzierten Markovdiagramm entnommen werden. Für die ersten drei Teilaufgaben soll stets $p = 1/4$ gelten. | ||
− | '' | + | |
+ | |||
+ | ''Hinweis:'' | ||
*Die Aufgabe gehört zum Kapitel [[Stochastische_Signaltheorie/Markovketten|Markovketten]]. | *Die Aufgabe gehört zum Kapitel [[Stochastische_Signaltheorie/Markovketten|Markovketten]]. | ||
Zeile 22: | Zeile 24: | ||
- Es gilt hier: ${\rm Pr}(A) = 1/2, \; {\rm Pr}(B) = 1/3, \; {\rm Pr}(R) = 1/6$. | - Es gilt hier: ${\rm Pr}(A) = 1/2, \; {\rm Pr}(B) = 1/3, \; {\rm Pr}(R) = 1/6$. | ||
− | {Wie groß sind die bedingten Wahrscheinlichkeiten $p_{\rm A}$, $p_{\rm B}$ und $p_{\rm C}$, dass im Zeitbereich zwischen $ν+1$ und $ν+7$ $\rm | + | {Wie groß sind die bedingten Wahrscheinlichkeiten $p_{\rm A}$, $p_{\rm B}$ und $p_{\rm C}$, dass im Zeitbereich zwischen $ν+1$ und $ν+7$ die Sequenz $\rm BARBARA$ ausgegeben wird, wenn man sich zum Zeitpunkt $ν$ im Zustand $A$, $B$ bzw. $R$ befindet? Es gelte $p = 1/4$. |
|type="{}"} | |type="{}"} | ||
− | $p_{\rm A} \ =$ { 0.549 3% } $\ \cdot 10^{-3}$ | + | $p_{\rm A} \ = \ $ { 0.549 3% } $\ \cdot 10^{-3}$ |
− | $p_{\rm B} \ =$ { 0. } $\ \cdot 10^{-3}$ | + | $p_{\rm B} \ = \ $ { 0. } $\ \cdot 10^{-3}$ |
− | $p_{\rm C} \ =$ { 0.183 3% } $\ \cdot 10^{-3}$ | + | $p_{\rm C} \ = \ $ { 0.183 3% } $\ \cdot 10^{-3}$ |
{Wie groß ist die Wahrscheinlichkeit insgesamt, dass der Generator zu sieben aufeinanderfolgenden Zeitpunkten die Sequenz $BARBARA$ ausgibt. Es gelte weiter $(p = 1/4)$? | {Wie groß ist die Wahrscheinlichkeit insgesamt, dass der Generator zu sieben aufeinanderfolgenden Zeitpunkten die Sequenz $BARBARA$ ausgibt. Es gelte weiter $(p = 1/4)$? | ||
|type="{}"} | |type="{}"} | ||
− | $p = 1/4\hspace{-0.1cm}: \hspace{0.3cm}{\rm Pr}(BARBARA)\ =$ { 0.244 3% } $\ \cdot 10^{-3}$ | + | $p = 1/4\hspace{-0.1cm}: \hspace{0.3cm}{\rm Pr}(BARBARA)\ = \ $ { 0.244 3% } $\ \cdot 10^{-3}$ |
{Wie ist der Parameter $p_{\rm opt}$ zu wählen, damit $Pr(BARBARA)$ möglichst groß wird? Welche Wahrscheinlichkeit ergibt sich damit für BARBARA? | {Wie ist der Parameter $p_{\rm opt}$ zu wählen, damit $Pr(BARBARA)$ möglichst groß wird? Welche Wahrscheinlichkeit ergibt sich damit für BARBARA? | ||
|type="{}"} | |type="{}"} | ||
− | $p_{\rm opt} \ =$ { 0.8333 3% } | + | $p_{\rm opt} \ = \ $ { 0.8333 3% } |
− | $p = p_{\rm opt}\hspace{-0.1cm}: \hspace{0.3cm}{\rm Pr}(BARBARA)$ | + | $p = p_{\rm opt}\hspace{-0.1cm}: \hspace{0.3cm}{\rm Pr}(BARBARA)\ = \ $ { 22 3% } $\ \cdot 10^{-3}$ |
</quiz> | </quiz> |
Version vom 1. August 2018, 16:38 Uhr
Betrachtet wird hier ein ternärer Zufallsgenerator mit den Symbolen $A$, $B$ und $R$, der durch eine homogene und stationäre Markovkette erster Ordnung beschrieben werden kann.
Die Übergangswahrscheinlichkeiten können dem skizzierten Markovdiagramm entnommen werden. Für die ersten drei Teilaufgaben soll stets $p = 1/4$ gelten.
Hinweis:
- Die Aufgabe gehört zum Kapitel Markovketten.
Fragebogen
Musterlösung
- Die Summe aller abgehenden Pfeile muss immer $1$ sein. Deshalb gilt $q = 1 - p$.
- Aufgrund der Symmetrie des Markovdiagramms sind die ergodischen Wahrscheinlichkeiten alle gleich:
- $${\rm Pr}(A) ={\rm Pr}(B) ={\rm Pr}(R) = 1/3.$$
(2) Wenn man zum Zeitpunkt $\nu$ im Zustand $B$ ist, ist für den Zeitpunkt $\nu+1$ wegen ${\rm Pr}(B\hspace{0.05cm}|\hspace{0.05cm}B) = 0$ der Zustand $B$ nicht möglich. Man scheitert hier bereits beim Anfangsbuchstaben $B$:
- $$p_{\rm B} \; \underline{ =0}.$$
Für die Berechnung von $p_{\rm A}$ ist zu beachten: Ausgehend von $A$ geht man im Markovdiagramm zunächst zu $B$ (mit der Wahrscheinlichkeit $q$), dann fünfmal im Uhrzeigersinn (jeweils mit der Wahrscheinlichkeit $p$) und schließlich noch von $R$ nach $A$ (mit der Wahrscheinlichkeit $q$). Das bedeutet:
- $$p_{\rm A} = q^2 \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 = 3^2 / 4^7 \hspace{0.15cm}\underline {\approx 0.549 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.$$
In ähnlicher Weise erhält man:
- $$p_{\rm R} = q \hspace{0.05cm}\cdot \hspace{0.05cm} p^6 = 3 / 4^7 \hspace{0.15cm}\underline {\approx 0.183 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.$$
(3) Durch Mittelung über die bedingten Wahrscheinlichkeiten erhält man:
- $${\rm Pr}(BARBARA) = p_{\rm A} \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm Pr}(A) \hspace{0.1cm} + \hspace{0.1cm}p_{\rm B} \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm Pr}(B) \hspace{0.1cm} + \hspace{0.1cm}p_{\rm R} \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm Pr}(R).$$
Dies führt zum Ergebnis:
- $${\rm Pr}(BARBARA) = {1}/{3} \cdot \left( q^2 \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 \hspace{0.1cm} +\hspace{0.1cm}0 \hspace{0.1cm} +\hspace{0.1cm}q \hspace{0.05cm}\cdot \hspace{0.05cm} p^6 \right) = \frac{q \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 }{3} \cdot (p+q) = \hspace{-0.15cm} \frac{q \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 }{3} \hspace{0.15cm}\underline { \approx 0.244 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.$$
(4) Die im Punkt (3) berechnete Wahrscheinlichkeit lautet $p^5 \cdot (1-p)/3$, wobei $q= 1-p$ berücksichtigt ist. Durch Nullsetzen des Differentials erhält man die Bestimmungsgleichung:
- $$5 \cdot p^4 - 6 \cdot p^5 = 0 \hspace{0.5cm} \Rightarrow \hspace{0.5cm} p_{\rm opt} = 5/6 \hspace{0.15cm}\underline { \approx \rm 0.833}.$$
Damit ergibt sich ein gegenüberder Teilaufgabe (3) etwa um den Faktor 90 größerer Wert:
- $${\rm Pr}(BARBARA) \hspace{0.15cm}\underline { \approx 22 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.$$