Aufgaben:Aufgabe 3.10Z: Rayleigh? Oder Rice?: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
K (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID149__Sto_Z_3_10.png|right|Beschreibt die WDF Rayleigh oder Rice?]]
+
[[Datei:P_ID149__Sto_Z_3_10.png|right|frame|Beschreibt die vorliegende WDF Rayleigh oder Rice?]]
 
Die Wahrscheinlichkeitsdichtefunktion der Zufallsgröße $x$ ist wie folgt gegeben:
 
Die Wahrscheinlichkeitsdichtefunktion der Zufallsgröße $x$ ist wie folgt gegeben:
$$f_x(x)=\frac{\it x}{\lambda^{2}}\cdot{\rm e}^{-x^{\rm 2}/(\lambda^{\rm 2})}.$$
+
:$$f_x(x)=\frac{\it x}{\lambda^{2}}\cdot{\rm e}^{-x^{\rm 2}/(\lambda^{\rm 2})}.$$
  
 
Entsprechend gilt für die zugehörige Verteilungsfunktion:
 
Entsprechend gilt für die zugehörige Verteilungsfunktion:
Zeile 11: Zeile 11:
  
 
Bekannt ist, dass der Wert $x_0 = 2$ am häufigsten auftritt. Das bedeutet auch, dass die WDF $f_x(x)$ bei $x = x_0 $ maximal ist.
 
Bekannt ist, dass der Wert $x_0 = 2$ am häufigsten auftritt. Das bedeutet auch, dass die WDF $f_x(x)$ bei $x = x_0 $ maximal ist.
 +
 +
 +
  
  
Zeile 17: Zeile 20:
 
*Insbesondere wird auf die Seiten  [[Stochastische_Signaltheorie/Weitere_Verteilungen#Rayleighverteilung|Rayleighverteilung]] und  [[Stochastische_Signaltheorie/Weitere_Verteilungen#Riceverteilung|Riceverteilung]] Bezug genommen .
 
*Insbesondere wird auf die Seiten  [[Stochastische_Signaltheorie/Weitere_Verteilungen#Rayleighverteilung|Rayleighverteilung]] und  [[Stochastische_Signaltheorie/Weitere_Verteilungen#Riceverteilung|Riceverteilung]] Bezug genommen .
 
   
 
   
*Sie können Ihre Ergebnisse mit Berechnungstool [[WDF, VTF und Momente spezieller Verteilungen]] überprüfen.
+
*Sie können Ihre Ergebnisse mit Berechnungstool [[Applets:WDF_VTF|WDF, VTF und Momente spezieller Verteilungen]] überprüfen.
 
*Berücksichtigen Sie bei der Lösung das folgende bestimmte Integral:
 
*Berücksichtigen Sie bei der Lösung das folgende bestimmte Integral:
 
:$$\int_{0}^{\infty}x^{\rm 2}\cdot {\rm e}^{ -x^{\rm 2}/\rm 2}  \, {\rm d}x=\sqrt{{\pi}/{\rm 2}}.$$
 
:$$\int_{0}^{\infty}x^{\rm 2}\cdot {\rm e}^{ -x^{\rm 2}/\rm 2}  \, {\rm d}x=\sqrt{{\pi}/{\rm 2}}.$$
 +
 +
  
  
Zeile 35: Zeile 40:
 
{Welchen Zahlenwert hat hier der Verteilungsparameter $\lambda$?
 
{Welchen Zahlenwert hat hier der Verteilungsparameter $\lambda$?
 
|type="{}"}
 
|type="{}"}
$\lambda \ = $ { 2 3% }
+
$\lambda \ = \ $ { 2 3% }
  
  
 
{Wie groß ist die Wahrscheinlichkeit, dass $x$ kleiner als $x_0$ ist?
 
{Wie groß ist die Wahrscheinlichkeit, dass $x$ kleiner als $x_0$ ist?
 
|type="{}"}
 
|type="{}"}
${\rm Pr}(x < x_0 ) \ = $ { 0.393 3% }
+
${\rm Pr}(x < x_0 ) \ = \ $ { 0.393 3% }
  
  
 
{Wie gro&szlig; ist der Mittelwert der Zufallsgr&ouml;&szlig;e $x$? Interpretation.
 
{Wie gro&szlig; ist der Mittelwert der Zufallsgr&ouml;&szlig;e $x$? Interpretation.
 
|type="{}"}
 
|type="{}"}
$m_x \ = $ { 2.506 3% }
+
$m_x \ = \ $ { 2.506 3% }
  
  
 
{Mit welcher Wahrscheinlichkeit ist $x$ gr&ouml;&szlig;er als sein Mittelwert $m_x$?
 
{Mit welcher Wahrscheinlichkeit ist $x$ gr&ouml;&szlig;er als sein Mittelwert $m_x$?
 
|type="{}"}
 
|type="{}"}
${\rm Pr}(x > m_x) \ = $ { 0.456 3% }
+
${\rm Pr}(x > m_x) \ = \ $ { 0.456 3% }
  
  

Version vom 10. August 2018, 17:03 Uhr

Beschreibt die vorliegende WDF Rayleigh oder Rice?

Die Wahrscheinlichkeitsdichtefunktion der Zufallsgröße $x$ ist wie folgt gegeben:

$$f_x(x)=\frac{\it x}{\lambda^{2}}\cdot{\rm e}^{-x^{\rm 2}/(\lambda^{\rm 2})}.$$

Entsprechend gilt für die zugehörige Verteilungsfunktion:

$$F_x(r)= {\rm Pr}(x \le r) = 1-{\rm e}^{- r^{\rm 2}/(2 \lambda^{\rm 2})}.$$

Bekannt ist, dass der Wert $x_0 = 2$ am häufigsten auftritt. Das bedeutet auch, dass die WDF $f_x(x)$ bei $x = x_0 $ maximal ist.



Hinweise:

$$\int_{0}^{\infty}x^{\rm 2}\cdot {\rm e}^{ -x^{\rm 2}/\rm 2} \, {\rm d}x=\sqrt{{\pi}/{\rm 2}}.$$



Fragebogen

1

Welche der folgenden Aussagen treffen zu?

Es handelt sich um eine riceverteilte Zufallsgröße.
Es handelt sich um eine rayleighverteilte Zufallsgröße.
Das Zentralmoment 3. Ordnung   ⇒   $\mu_3$ ist $0$.
Die Kurtosis hat den Wert $K_x = 3$.

2

Welchen Zahlenwert hat hier der Verteilungsparameter $\lambda$?

$\lambda \ = \ $

3

Wie groß ist die Wahrscheinlichkeit, dass $x$ kleiner als $x_0$ ist?

${\rm Pr}(x < x_0 ) \ = \ $

4

Wie groß ist der Mittelwert der Zufallsgröße $x$? Interpretation.

$m_x \ = \ $

5

Mit welcher Wahrscheinlichkeit ist $x$ größer als sein Mittelwert $m_x$?

${\rm Pr}(x > m_x) \ = \ $


Musterlösung

(1)  Richtig ist allein der zweite Lösungsvorschlag.

  • Aufgrund der gegebenen WDF liegt keine Riceverteilung, sondern eine Rayleighverteilung vor.
  • Diese ist um den Mittelwert $m_x$ unsymmetrisch, so dass $\mu_3 \ne 0$ ist.
  • Nur bei einer gaußverteilten Zufallsgröße gilt für die Kurtosis $K = 3$.
  • Bei der Rayleighverteilung ergibt sich aufgrund ausgeprägterer WDF–Ausläufer ein größerer Wert ($K = 3.245$), und zwar unabhängig von $\lambda$.


(2)  Die Ableitung der WDF nach $x$ liefert: $$\frac{{\rm d} f_x(x)}{{\rm d} x} = \frac{\rm 1}{\lambda^{\rm 2}}\cdot{\rm e}^{ -{x^{\rm 2}}/({2 \lambda^{\rm 2}})}+\frac{ x}{ \lambda^{\rm 2}}\cdot{\rm e}^{ -{x^{\rm 2}}/({ 2 \lambda^{\rm 2}})}\cdot(-\frac{2 x}{2 \lambda^{\rm 2}}).$$

Daraus folgt als Bestimmungsgleichung für $x_0$ (nur die positive Lösung ist sinnvoll): $$\frac{1}{\lambda^{\rm 2}}\cdot{\rm e}^{ -{x_{\rm 0}^{\rm 2}}/{(2 \lambda^{\rm 2}})}\cdot(\rm 1-\frac{\it x_{\rm 0}^{\rm 2}}{\it \lambda^{\rm 2}})=0 \quad \Rightarrow \quad {\it x}_0=\it \lambda.$$

Somit erhält man für den Verteilungsparameter $\lambda = x_0\hspace{0.15cm}\underline{= 2}$.


(3)  Die gesuchte Wahrscheinlichkeit ist gleich der Verteilungsfunktion an der Stelle $r = x_0 = \lambda$: $${\rm Pr}(x<x_{\rm 0})={\rm Pr}( x \le x_{\rm 0})= F_x(x_{\rm 0})=1-{\rm e}^{-{\lambda^{\rm 2}}/({ 2 \lambda^{\rm 2}})}=1-{\rm e}^{-0.5}\hspace{0.15cm}\underline{=\rm 0.393}.$$


(4)  Der Mittelwert kann beispielsweise nach folgender Gleichung ermittelt werden: $$m_x=\int_{-\infty}^{+\infty}\hspace{-0.45cm}x\cdot f_x(x)\,{\rm d}x=\int_{\rm 0}^{\infty}\frac{\it x^{\rm 2}}{\it \lambda^{\rm 2}} \cdot \rm e^{-{\it x^{\rm 2}}/({\rm 2\it \lambda^{\rm 2}})}\,{\rm d}\it x = \sqrt{{\rm \pi}/{\rm 2}}\cdot \it \lambda\hspace{0.15cm}\underline{=\rm 2.506}.$$

Der Mittelwert $m_x$ ist natürlich größer als $x_0$ (= Maximalwert der WDF), da die WDF zwar nach unten, aber nicht nach oben begrenzt ist.


(5)  Allgemein gilt für die gesuchte Wahrscheinlichkeit: $${\rm Pr}(x>m_x)=1- F_x(m_x).$$

Mit der angegebenen Verteilungsfunktion und dem Ergebnis der Teilaufgabe (4) erhält man: $${\rm Pr}(x>m_x)={\rm e}^{-{m_x^{\rm 2}}/({ 2\lambda^{\rm 2})}}={\rm e}^{-\pi/ 4}\hspace{0.15cm}\underline{\approx \rm 0.456}.$$