Aufgaben:Aufgabe 4.3: Algebraische und Modulo-Summe: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 32: Zeile 32:
 
{Berechnen Sie die Wahrscheinlichkeiten der Zufallsgröße $m_\nu$. Wie groß ist die Wahrscheinlichkeit, dass die Modulo-2-Summe gleich $0$ ist?
 
{Berechnen Sie die Wahrscheinlichkeiten der Zufallsgröße $m_\nu$. Wie groß ist die Wahrscheinlichkeit, dass die Modulo-2-Summe gleich $0$ ist?
 
|type="{}"}
 
|type="{}"}
${\rm Pr}(m_\nu = 0) \ = $  { 0.5 3% }
+
${\rm Pr}(m_\nu = 0) \ = \ $  { 0.5 3% }
  
  
{Bestehen statistiche Abhängigkeiten innerhalb der Folge $\langle m_\nu \rangle$?
+
{Bestehen statistische Abhängigkeiten innerhalb der Folge $\langle m_\nu \rangle$?
 
|type="[]"}
 
|type="[]"}
 
+ Die Folgenelemente $m_\nu$ sind statistisch unabhängig.
 
+ Die Folgenelemente $m_\nu$ sind statistisch unabhängig.

Version vom 15. August 2018, 15:05 Uhr

Algebraische Summe und Modulo-2-Summe

Ein „getakteter” Zufallsgenerator liefert eine Folge $\langle x_\nu \rangle$ von binären Zufallszahlen.

  • Es wird nun vorausgesetzt, dass die Binärzahlen $0$ und $1$ mit gleichen Wahrscheinlichkeiten auftreten und dass die einzelnen Zufallszahlen nicht statistisch voneinander abhängen.
  • Die Zufallszahlen $ x_\nu \in \{0, 1\}$ werden in die erste Speicherstelle eines Schieberegisters eingetragen und mit jeden Takt um eine Stelle nach unten verschoben.


Aus den Inhalten des dreistelligen Schieberegisters werden zwei neue Zufallsfolgen $\langle a_\nu \rangle$ und $\langle m_\nu \rangle$ gebildet. Hierbei bezeichnet:

  • $a_\nu$  die algebraische Summe:
$$a_\nu=x_\nu+x_{\nu-1}+x_{\nu-2},$$
  • $m_\nu$  die Modulo-2-Summe:
$$m_\nu=x_\nu\oplus x_{\nu-1}\oplus x_{\nu-2}.$$

Dieser Sachverhalt ist in der nachfolgenden Tabelle nochmals dargestellt:

Tabelle zur Momentenberechnung



Hinweis:   Die Aufgabe gehört zum Kapitel Zweidimensionale Zufallsgrößen.



Fragebogen

1

Berechnen Sie die Wahrscheinlichkeiten der Zufallsgröße $m_\nu$. Wie groß ist die Wahrscheinlichkeit, dass die Modulo-2-Summe gleich $0$ ist?

${\rm Pr}(m_\nu = 0) \ = \ $

2

Bestehen statistische Abhängigkeiten innerhalb der Folge $\langle m_\nu \rangle$?

Die Folgenelemente $m_\nu$ sind statistisch unabhängig.
Es bestehen statistische Bindungen innerhalb der Folge $\langle m_\nu \rangle$.

3

Ermitteln Sie die Verbund-WDF $f_{xm}(x_\nu, m_\nu)$. Bewerten Sie aufgrund des Resultats die folgenden Aussagen (zutreffend oder nicht).

Die Zufallsgrößen $x_\nu$ und $m_\nu$ sind statistisch abhängig.
Die Zufallsgrößen $x_\nu$ und $m_\nu$ sind statistisch unabhängig.
Die Zufallsgrößen $x_\nu$ und $m_\nu$ sind korreliert.
Die Zufallsgrößen $x_\nu$ und $m_\nu$ sind unkorreliert.

4

Bestehen innerhalb der Folge $\langle a_\nu \rangle$ statistische Abhängigkeiten?

Die Folgenelemente $a_\nu$ sind statistisch unabhängig.
Es bestehen statistische Bindungen innerhalb der Folge $\langle a_\nu \rangle$.

5

Ermitteln Sie die 2D-WDF $f_{am}(a_\nu, m_\nu)$ und den Korrelationskoeffizienten $\rho_{am}$. Welche der folgenden Aussagen treffen zu?

Die Zufallsgrößen $a_\nu$ und $m_\nu$ sind statistisch abhängig.
Die Zufallsgrößen $a_\nu$ und $m_\nu$ sind statistisch unabhängig.
Die Zufallsgrößen $a_\nu$ und $m_\nu$ sind korreliert.
Die Zufallsgrößen $a_\nu$ und $m_\nu$ sind unkorreliert.


Musterlösung

(1)  Aus der Tabelle auf der Angabenseite ist ersichtlich, dass bei der Modulo-2-Summe die beiden Werte $0$ und $1$ mit gleicher Wahrscheinlichkeit auftreten:   ${\rm Pr}(m_\nu = 0) = {\rm Pr}(m_\nu = 1)\hspace{0.15cm}\underline{=0.5}$

(2)  Die Tabelle zeigt, dass bei jeder Vorbelegung   ⇒   $( x_{\nu-1}, x_{\nu-2}) = (0,0), (0,1), (1,0), (1,1)$   die Werte $m_\nu = 0$ bzw. $m_\nu = 1$ mit gleicher Wahrscheinlichkeit auftreten. Anders ausgedrückt:   ${\rm Pr}(m_{\nu}\hspace{0.05cm}|\hspace{0.05cm}m_{\nu-1}) = {\rm Pr}( m_{\nu}).$ Dies entspricht genau der Definition der statistischen Unabhängigkeit.

2D-WDF zwischen x und m

(3)  Richtig sind der zweite und der letzte Lösungsvorschlag.

  • Die 2D–WDF besteht aus vier Diracfunktionen, jeweils mit dem Gewicht $1/4$. Man erhält dieses Ergebnis beispielsweise durch Auswertung der Tabelle auf der Angabenseite.
  • Da $f_{xm}(x_\nu, m_\nu)$ gleich dem Produkt $f_{x}(x_\nu) \cdot f_{m}(m_\nu)$ ist, sind die Größen $x_\nu$ und $m_\nu$ statistisch unabhängig.
  • Statistisch unabhängige Zufallsgrößen sind aber natürlich auch linear statistisch unabhängig, also mit Sicherheit unkorreliert.


(4)  Innerhalb der Folge $\langle a_\nu \rangle$ der algebraischen Summe gibt es statistische Bindungen   ⇒   Vorschlag 2. Man erkennt dies daran, dass die unbedingte Wahrscheinlichkeit $ {\rm Pr}( a_{\nu} = 0) =1/8$ ist , während zum Beispiel ${\rm Pr}(a_{\nu} = 0\hspace{0.05cm}|\hspace{0.05cm}a_{\nu-1} = 3) =0$ ist.

2D-WDF zwischen a und m

(5)  Richtig sind der erste und der letzte Lösungsvorschlag:

  • Wie bei der Teilaufgabe (3) erhält man wieder vier Diracfunktionen, diesmal aber nicht mit jeweils gleichem Impulsgewicht $1/4$.
  • Die zweidimensionale WDF lässt sich somit nicht als Produkt der zwei Randwahrscheinlichkeitsdichten schreiben. Das bedeutet aber, dass statistische Bindungen zwischen $a_\nu$ und $m_\nu$ bestehen müssen.
  • Für den gemeinsamen Erwartungswert erhält man:
$${\rm E}[a\cdot m] = \rm \frac{1}{8}\cdot 0 \cdot 0 +\frac{3}{8}\cdot 2 \cdot 0 +\frac{3}{8}\cdot 1 \cdot 1 + \frac{1}{8}\cdot 3 \cdot 1 = \frac{3}{4}.$$
  • Mit den linearen Mittelwerten ${\rm E}[a] = 1.5$ und ${\rm E}[m] = 0.5$ folgt damit für die Kovarianz:
$$\mu_{am}= {\rm E}[ a\cdot m] - {\rm E}[ a]\cdot {\rm E}[ m] = \rm 0.75-1.5\cdot 0.5 = \rm 0.$$
  • Damit ist auch der Korrelationskoeffizient $\rho_{am}= 0$. Das heißt: Die vorhandenen Abhängigkeiten sind nichtlinear.
  • Die Größen $a_\nu$ und $m_\nu$ sind zwar statistisch abhängig, trotzdem aber unkorreliert.