Aufgaben:Aufgabe 3.7: Einige Entropieberechnungen: Unterschied zwischen den Versionen
Zeile 3: | Zeile 3: | ||
}} | }} | ||
− | [[Datei:P_ID2766__Inf_A_3_6.png|right|frame|Schaubild | + | [[Datei:P_ID2766__Inf_A_3_6.png|right|frame|Schaubild: Entropien und Information]] |
Wir betrachten die beiden Zufallsgrößen $XY$ und $UV$ mit den folgenden 2D-Wahrscheinlichkeitsfunktionen: | Wir betrachten die beiden Zufallsgrößen $XY$ und $UV$ mit den folgenden 2D-Wahrscheinlichkeitsfunktionen: | ||
:$$P_{XY}(X, Y) = \begin{pmatrix} 0.18 & 0.16\\ 0.02 & 0.64 \end{pmatrix}\hspace{0.05cm} \hspace{0.05cm}$$ | :$$P_{XY}(X, Y) = \begin{pmatrix} 0.18 & 0.16\\ 0.02 & 0.64 \end{pmatrix}\hspace{0.05cm} \hspace{0.05cm}$$ |
Version vom 9. Oktober 2018, 16:09 Uhr
Wir betrachten die beiden Zufallsgrößen $XY$ und $UV$ mit den folgenden 2D-Wahrscheinlichkeitsfunktionen:
- $$P_{XY}(X, Y) = \begin{pmatrix} 0.18 & 0.16\\ 0.02 & 0.64 \end{pmatrix}\hspace{0.05cm} \hspace{0.05cm}$$
- $$P_{UV}(U, V) \hspace{0.05cm}= \begin{pmatrix} 0.068 & 0.132\\ 0.272 & 0.528 \end{pmatrix}\hspace{0.05cm}$$
Für die Zufallsgröße $XY$ sollen in dieser Aufgabe berechnet werden:
- die Verbundentropie (englisch: Joint Entropy):
- $$H(XY) = -{\rm E}\big [\log_2 P_{ XY }( X,Y) \big ],$$
- die beiden Einzelentropien:
- $$H(X) = -{\rm E}\big [\log_2 P_X( X)\big ],$$
- $$H(Y) = -{\rm E}\big [\log_2 P_Y( Y)\big ].$$
Daraus lassen sich gemäß dem obigen Schema – dargestellt für die Zufallsgröße $XY$ – auch folgende Beschreibungsgrößen sehr einfach bestimmen:
- die bedingten Entropien (englisch: Conditional Entropies):
- $$H(X \hspace{0.05cm}|\hspace{0.05cm} Y) = -{\rm E}\big [\log_2 P_{ X \hspace{0.05cm}|\hspace{0.05cm}Y }( X \hspace{0.05cm}|\hspace{0.05cm} Y)\big ],$$
- $$H(Y \hspace{0.05cm}|\hspace{0.05cm} X) = -{\rm E}\big [\log_2 P_{ Y \hspace{0.05cm}|\hspace{0.05cm} X }( Y \hspace{0.05cm}|\hspace{0.05cm} X)\big ],$$
- die Transinformation (englisch: Mutual Information) zwischen $X$ und $Y$:
- $$I(X;Y) = {\rm E} \hspace{-0.08cm}\left [ \hspace{0.02cm}{\rm log}_2 \hspace{0.1cm} \frac{P_{XY}(X, Y)} {P_{X}(X) \cdot P_{Y}(Y) }\right ] \hspace{0.05cm}.$$
Abschließend sind qualitative Aussagen hinsichtlich der zweiten Zufallsgröße $UV$ zu verifizieren.
Hinweise:
- Die Aufgabe gehört zum Kapitel Verschiedene Entropien zweidimensionaler Zufallsgrößen.
- Insbesondere wird Bezug genommen auf die Seiten Bedingte Wahrscheinlichkeit und bedingte Entropie sowie Transinformation zwischen zwei Zufallsgrößen.
Fragebogen
Musterlösung
(1) Aus der gegebenen Verbundwahrscheinlichkeit erhält man
- $$H(XY) = 0.18 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.18} + 0.16\cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.16}+ \hspace{-0.15cm} 0.02\cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.02}+ 0.64\cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.64} \hspace{0.15cm} \underline {= 1.393\,{\rm (bit)}} \hspace{0.05cm}.$$
(2) Die 1D–Wahrscheinlichkeitsfunktionen lauten $P_X(X) = [0.2, 0.8]$ und $P_Y(Y) = [0.34, 0.66]$. Daraus folgt:
- $$H(X) = 0.2 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.2} + 0.8\cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.8}\hspace{0.15cm} \underline {= 0.722\,{\rm (bit)}} \hspace{0.05cm},$$
- $$H(Y) =0.34 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.34} + 0.66\cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.66}\hspace{0.15cm} \underline {= 0.925\,{\rm (bit)}} \hspace{0.05cm}.$$
(3) Aus der Grafik auf der Angabenseite erkennt man den Zusammenhang:
- $$I(X;Y) = H(X) + H(Y) - H(XY) = 0.722\,{\rm (bit)} + 0.925\,{\rm (bit)}- 1.393\,{\rm (bit)}\hspace{0.15cm} \underline {= 0.254\,{\rm (bit)}} \hspace{0.05cm}.$$
(4) Ebenso gilt entsprechend der Grafik auf der Angabenseite:
- $$H(X \hspace{-0.1cm}\mid \hspace{-0.08cm} Y) = H(XY) - H(Y) = 1.393- 0.925\hspace{0.15cm} \underline {= 0.468\,{\rm (bit)}} \hspace{0.05cm},$$
- $$H(Y \hspace{-0.1cm}\mid \hspace{-0.08cm} X) = H(XY) - H(X) = 1.393- 0.722\hspace{0.15cm} \underline {= 0.671\,{\rm (bit)}} \hspace{0.05cm}$$
Die linke Grafik fasst die Ergebnisse der Teilaufgaben (1), ... , (4) maßstabsgetreu zusammen. Grau hinterlegt ist die Verbundentropie und gelb die Transinformation. Eine rote Hinterlegung bezieht sich auf die Zufallsgröße $X$, eine grüne auf $Y$. Schraffierte Felder deuten auf eine bedingte Entropie hin.
Die rechte Grafik beschreibt den gleichen Sachverhalt für die Zufallsgröße $UV$ ⇒ Teilaufgabe (5).
(5) Richtig sind demzufolge die Aussagen 1, 2 und 4:
- Man erkennt die Gültigkeit von $P_{ UV } (⋅) = P_U (⋅) · P_V(⋅)$ ⇒ Transinformation $I(U; V) = 0$ daran, dass die zweite Zeile der $P_{ UV }$–Matrix sich von der ersten Zeile nur durch einen konstanten Faktor ($4$) unterscheidet.
- Es ergeben sich gleiche 1D–Wahrscheinlichkeitsfunktionen wie für die Zufallsgröße $XY$ ⇒ $P_U(U) = [0.2, 0.8]$, $P_V(V) = [0.34, 0.66]$.
- Deshalb ist auch $H(U) = H(X) = 0.722\ \rm bit$ und $H(V) = H(Y) = 0.925 \ \rm bit$.
- Hier gilt aber nun für die Verbundentropie: $H(UV) = H(U) + H(V) ≠ H(XY)$.