Aufgaben:Aufgabe 4.3: WDF–Vergleich bezüglich differentieller Entropie: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 122: Zeile 122:
 
- \hspace{0.05cm}\frac{(x -m_1)^2}{2 \sigma^2} \right ]
 
- \hspace{0.05cm}\frac{(x -m_1)^2}{2 \sigma^2} \right ]
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
* Das zweite Moment $m_2 = {\rm E}\big [X ^2 \big ]$ kann man auch als die Leistung $P$ bezeichnen, während für die Varianz gilt:   $\sigma^2 = {\rm E}\big [|X – m_1|^2 \big ] = \mu_2$ (ist gleichzeitig das zweite Zentralmoment).  
+
* Das zweite Moment $m_2 = {\rm E}\big [X ^2 \big ]$ kann man auch als die Leistung $P$ bezeichnen, während für die Varianz gilt (ist gleichzeitig das zweite Zentralmoment): &
 +
:$$\sigma^2 = {\rm E}\big [|X – m_1|^2 \big ] = \mu_2.$$   
 
* Nach dem Satz von Steiner gilt $P =  m_2 = m_1^2 + \sigma^2$. Unter der Voraussetzung  $m_1 = \sigma = 1$ ist somit $\underline{P/\sigma^2 = 2}$.
 
* Nach dem Satz von Steiner gilt $P =  m_2 = m_1^2 + \sigma^2$. Unter der Voraussetzung  $m_1 = \sigma = 1$ ist somit $\underline{P/\sigma^2 = 2}$.
  
Zeile 129: Zeile 130:
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
[[Datei:P_ID2876__Inf_A_4_3e_neu.png|right|frame|Vervollständigte Tabelle zur differentiellen Entropie]]
 
'''(5)'''&nbsp; In der vervollständigten Tabelle sind auch die numerischen Werte der Kenngrößen <i>&Gamma;</i><sub>L</sub> und <i>&Gamma;</i><sub>A</sub> eingetragen.
 
  
Eine Wahrscheinlichkeitsdichtefunktion <i>f<sub>X</sub></i>(<i>x</i>) ist bei  Leistungsbegrenzung immer dann besonders günstig, wenn der Wert <i>&Gamma;</i><sub>L</sub> (rechte Spalte) möglichst groß ist. Dann ist die differentielle Entropie <i>h</i>(<i>X</i>) ebenfalls groß.
+
[[Datei:P_ID2876__Inf_A_4_3e_neu.png|right|frame|Vervollständigte Ergebnistabelle für $h(X)$]]
 +
'''(5)'''&nbsp; In der vervollständigten Tabelle sind auch die numerischen Werte der Kenngrößen ${\it \Gamma}_{\rm L}$ und ${\it \Gamma}_{\rm A}$ eingetragen.
 +
 
 +
Eine Wahrscheinlichkeitsdichtefunktion $f_X(x)$ ist bei  Leistungsbegrenzung immer dann besonders günstig, wenn der Wert $\Gamma_{\rm L}$ (rechte Spalte) möglichst groß ist. Dann ist die differentielle Entropie $h(X)$ ebenfalls groß.
 +
 
 
Die numerischen Ergebnisse lassen sich wie folgt interpretieren:
 
Die numerischen Ergebnisse lassen sich wie folgt interpretieren:
* Wie imTheorieteil bewiesen wird, führt die Gaußverteilung <i>f</i><sub>4</sub>(<i>x</i>) hier zum größtmöglichen <i>&Gamma;</i><sub>L</sub> &asymp; 17.08 &#8658;&nbsp; <u>Lösungsvorschlag 1</u> ist richtig (Wert in der letzten Spalte rot markiert).
+
* Wie imTheorieteil bewiesen wird, führt die Gaußverteilung $f_4(x)$ hier zum größtmöglichen ${\it \Gamma}_{\rm L} &asymp; 17.08$ &nbsp; &#8658; &nbsp; der <u>Lösungsvorschlag 1</u> ist richtig (der Wert in der letzten Spalte rot markiert).
* Für die Gleichverteilung <i>f</i><sub>1</sub>(<i>x</i>) ist die Kenngröße <i>&Gamma;</i><sub>L</sub> = 12 die kleinste in der gesamten Tabelle &#8658; der Lösungsvorschlag 2 ist falsch.
+
* Für die Gleichverteilung $f_1(x)$ ist die Kenngröße ${\it \Gamma}_{\rm L} = 12$ die kleinste in der gesamten Tabelle &nbsp; &#8658; &nbsp;  der Lösungsvorschlag 2 ist falsch.
* Die Dreieckverteilung <i>f</i><sub>2</sub>(<i>x</i>) ist mit <i>&Gamma;</i><sub>L</sub> = 16.31  günstiger als die Gleichverteilung und auch besser als die Laplaceverteilung (<i>f</i><sub>3</sub>(<i>x</i>), <i>&Gamma;</i><sub>L</sub> = 14.78) &#8658; auch der Lösungsvorschlag 3 ist falsch.
+
* Die Dreieckverteilung $f_2(x)$ ist mit ${\it \Gamma}_{\rm L} = 16.31$ günstiger als die Gleichverteilung &nbsp; &#8658; &nbsp;  der Lösungsvorschlag 3 ist falsch.
 +
*Die Dreieckverteilung $f_2(x)$ ist auch besser als die Laplaceverteilung $f_2(x) \ \ ({\it \Gamma}_{\rm L} = 14.78)$ &nbsp; &#8658; &nbsp; der <u>Lösungsvorschlag 4</u> ist richtig.  
  
  
  
'''(6)'''&nbsp; Eine WDF <i>f<sub>X</sub></i>(<i>x</i>) ist unter der Nebenbedingung der Spitzenwertbegrenzung &nbsp;&#8658;&nbsp;  |<i>X</i>|&nbsp;&#8804;&nbsp;<i>A</i> günstig hinsichtlich der differentiellen Entropie <i>h</i>(<i>X</i>), wenn der Bewertungsfaktor  <i>&Gamma;</i><sub>A</sub> (mittlere Spalte) möglichst groß ist:
+
'''(6)'''&nbsp; Eine WDF $f_X(x)$ ist unter der Nebenbedingung der Spitzenwertbegrenzung &nbsp; &#8658; &nbsp;  $|X| A$ günstig hinsichtlich der differentiellen Entropie $h(X)$, wenn der Bewertungsfaktor  ${\it \Gamma}_{\rm A}$ (mittlere Spalte) möglichst groß ist:
* Wie im Theorieteil gezeigt wird, führt die Gleichverteilung <i>f</i><sub>1</sub>(<i>x</i>) hier zum größtmöglichen <i>&Gamma;</i><sub>A</sub> = 2  &nbsp; &#8658; &nbsp; der <u>Lösungsvorschlag 2</u> ist richtig (Wert in der mittleren Spalte rot markiert).
+
* Wie im Theorieteil gezeigt wird, führt die Gleichverteilung $f_1(x)$ hier zum größtmöglichen ${\it \Gamma}_{\rm A}= 2$ &nbsp; &#8658; &nbsp; der <u>Lösungsvorschlag 2</u> ist richtig (der Wert in der mittleren Spalte ist rot markiert).
* Die ebenfalls spitzenwertbegrenzte Dreieckverteilung <i>f</i><sub>2</sub>(<i>x</i>) ist durch ein etwas kleineres  <i>&Gamma;</i><sub>A</sub> = 1.649 gekennzeichnet &nbsp; &#8658; &nbsp; der Lösungsvorschlag 3 ist falsch.  
+
* Die ebenfalls spitzenwertbegrenzte Dreieckverteilung $f_2(x)$ ist durch ein etwas kleineres  ${\it \Gamma}_{\rm A}= = 1.649$ gekennzeichnet &nbsp; &#8658; &nbsp; der Lösungsvorschlag 3 ist falsch.  
* Die Gaußverteilung <i>f</i><sub>4</sub>(<i>x</i>) ist unendlich weit ausgedehnt. Eine Spitzenwertbegrenzung auf |<i>X</i>| &#8804; <i>A</i> führt hier zu Diracfunktionen in der WDF &nbsp;&#8658;&nbsp; <i>h</i>(<i>X</i>)&nbsp;=&nbsp;&ndash;&#8734;, siehe Musterlösung zur Zusatzaufgabe 4.2Z, Teilaufgabe (4).
+
* Die Gaußverteilung $f_2(x)$ ist unendlich weit ausgedehnt. Eine Spitzenwertbegrenzung auf $|X| A$ führt hier zu Diracfunktionen in der WDF &nbsp; &#8658; &nbsp; $h(X) \to - \infty$, siehe Musterlösung zur Aufgabe 4.2Z, Teilaufgabe '''(4)'''.
* Gleiches würde auch für die Laplaceverteilung <i>f</i><sub>3</sub>(<i>x</i>) gelten.
+
* Gleiches würde auch für die Laplaceverteilung $f_3(x)$ gelten.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Version vom 16. Oktober 2018, 13:18 Uhr

$h(X)$ für vier Dichtefunktionen

Nebenstehende Tabelle zeigt das Vergleichsergebnis hinsichtlich der differentiellen Entropie $h(X)$ für

$$f_1(x) = \left\{ \begin{array}{c} 1/(2A) \\ 0 \\ \end{array} \right. \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \hspace{0.1cm} |x| \le A \\ {\rm sonst} \\ \end{array} ,$$
$$f_2(x) = \left\{ \begin{array}{c} 1/A \cdot \big [1 - |x|/A \big ] \\ 0 \\ \end{array} \right. \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \hspace{0.1cm} |x| \le A \\ {\rm sonst} \\ \end{array} ,$$
$$f_3(x) = \lambda/2 \cdot {\rm e}^{-\lambda \hspace{0.05cm} \cdot \hspace{0.05cm}|x|}\hspace{0.05cm}.$$

Die Werte für die Gaußverteilung   ⇒   $f_X(x) = f_4(x)$ mit

$$f_4(x) = \frac{1}{\sqrt{2\pi \sigma^2}} \cdot {\rm e}^{ - \hspace{0.05cm}{x ^2}/{(2 \sigma^2})}$$

sind hier noch nicht eingetragen. Diese sollen in den Teilaufgaben (1) bis (3) ermittelt werden.

Alle hier betrachteten Wahrscheinlichkeitsdichtefunktionen sind

  • symmetrisch um $x = 0$   ⇒   $f_X(-x) = f_X(x)$
  • und damit mittelwertfrei   ⇒  $m_1 = 0$.


In allen hier betrachteten Fällen kann die differentielle Entropie wie folgt dargestellt werden:

$$h(X) = {\rm log} \hspace{0.1cm} ({\it \Gamma}_{\hspace{-0.05cm}\rm A} \cdot A) \hspace{0.05cm},$$
  • Unter der Nebenbedingung ${\rm E}\big [|X – m_1|^2 \big ] ≤ σ^2$   ⇒   Leistungsbegrenzung:
$$h(X) = {1}/{2} \cdot {\rm log} \hspace{0.1cm} ({\it \Gamma}_{\hspace{-0.05cm}\rm L} \cdot \sigma^2) \hspace{0.05cm}.$$

Je größer die jeweilige Kenngröße ${\it \Gamma}_{\hspace{-0.05cm}\rm A}$ bzw. ${\it \Gamma}_{\hspace{-0.05cm}\rm L}$ ist, desto günstiger ist bei der vereinbarten Nebenbedingung die vorliegende WDF hinsichtlich der differentiellen Entropie.



Hinweise:

  • Die Aufgabe gehört zum Kapitel  Differentielle Entropie.
  • Nützliche Hinweise zur Lösung dieser Aufgabe finden Sie insbesondere auf den Seiten
Differentielle Entropie einiger spitzenwertbegrenzter Zufallsgrößen sowie
Differentielle Entropie einiger leistungsbegrenzter Zufallsgrößen.



Fragebogen

1

Welche Gleichung gilt für den Logarithmus der Gauß–WDF?

Es gilt:   $\ln \big[f_X(x) \big] = \ln (A) - x^2/(2 \sigma^2)$   mit   $A = f_X(x=0)$.
Es gilt:   $\ln \big [f_X(x) \big] = A - \ln (x^2/(2 \sigma^2)$   mit   $A = f_X(x=0)$.

2

Welche Gleichung gilt für die differentielle Entropie der Gauß–WDF?

Es gilt:   $h(X)= 1/2 \cdot \ln (2\pi\hspace{0.05cm}{\rm e}\hspace{0.05cm}\sigma^2)$  mit der Pseudoeinheit „nat”.
Es gilt:   $h(X)= 1/2 \cdot \log_2 (2\pi\hspace{0.05cm}{\rm e}\hspace{0.05cm}\sigma^2)$  mit der Pseudoeinheit „bit”.

3

Ergänzen Sie den fehlenden Eintrag für die Gauß–WDF in obiger Tabelle.

${\it \Gamma}_{\rm L} \ = \ $

4

Welche Werte erhält man für die Gauß–WDF mit dem Gleichanteil  $m_1 = \sigma = 1$?

$P/\sigma^2 \ = \ $

$h(X) \ = \ $

$\ \rm bit$

5

Welche der Aussagen stimmen für die differentielle Entropie $h(X)$ unter der Nebenbedingung „Leistungsbegrenzung” auf ${\rm E}\big[|X – m_1|^2\big] ≤ σ^2$?

Die Gaußverteilung   ⇒   $f_4(x)$ führt zum maximalen $h(X)$.
Die Gleichverteilung   ⇒   $f_1(x)$ führt zum maximalen $h(X)$.
Die Dreieck–WDF   ⇒   $f_2(x)$ ist sehr ungünstig, da spitzenwertbegrenzt.
Die Dreieck–WDF   ⇒   $f_2(x)$ ist günstiger als die Laplaceverteilung   ⇒   $f_3(x)$.

6

Welche der Aussagen stimmen bei „Spitzenwertbegrenzung” auf den Bereich $|X| ≤ A$. Die maximale differentielle Entropie $h(X)$ ergibt sich für

eine Gauß–WDF   ⇒   $f_4(x)$ mit anschließender Begrenzung   ⇒  $|X| ≤ A$,
die Gleichverteilung   ⇒   $f_1(x)$,
die Dreieckverteilung   ⇒   $f_2(x)$.


Musterlösung

(1)  Wir gehen von der mittelwertfreien Gauß–WDF aus:

$$f_X(x) = f_4(x) =A \cdot {\rm exp} [ - \hspace{0.05cm}\frac{x ^2}{2 \sigma^2}] \hspace{0.5cm}{\rm mit}\hspace{0.5cm} A = \frac{1}{\sqrt{2\pi \sigma^2}}\hspace{0.05cm}.$$

Logarithmiert man diese Funktion, so erhält man als Ergebnis den Lösungsvorschlag 1:

$${\rm ln}\hspace{0.1cm} \big [f_X(x) \big ] = {\rm ln}\hspace{0.1cm}(A) + {\rm ln}\hspace{0.1cm}\left [{\rm exp} ( - \hspace{0.05cm}\frac{x ^2}{2 \sigma^2}) \right ] = {\rm ln}\hspace{0.1cm}(A) - \frac{x ^2}{2 \sigma^2}\hspace{0.05cm}.$$


(2)  Beide Lösungsvorschläge sind richtig.

  • Mit dem Ergebnis aus (1) erhält man für die differentielle Entropie in „nat”:
$$h_{\rm nat}(X)= -\hspace{-0.1cm} \int_{-\infty}^{+\infty} \hspace{-0.15cm} f_X(x) \cdot {\rm ln} \hspace{0.1cm} [f_X(x)] \hspace{0.1cm}{\rm d}x = - {\rm ln}\hspace{0.1cm}(A) \cdot \int_{-\infty}^{+\infty} \hspace{-0.15cm} f_X(x) \hspace{0.1cm}{\rm d}x + \frac{1}{2 \sigma^2} \cdot \int_{-\infty}^{+\infty} \hspace{-0.15cm} x^2 \cdot f_X(x) \hspace{0.1cm}{\rm d}x = - {\rm ln}\hspace{0.1cm}(A) + {1}/{2} \hspace{0.05cm}.$$
  • Hierbei ist berücksichtigt, dass das erste Integral gleich $1$ ist (WDF–Fläche) und das zweite Integral gleich die Varianz $\sigma^2$ angibt (wenn wie hier der Gleichanteil $m_1 = = 0$ ist).
  • Ersetzt man die Abkürzungsvariable $A$, so erhält man:
$$h_{\rm nat}(X) \hspace{-0.15cm} = \hspace{-0.15cm} - {\rm ln}\hspace{0.05cm}\left (\frac{1}{\sqrt{2\pi \sigma^2}} \right ) + {1}/{2} = {1}/{2}\cdot {\rm ln}\hspace{0.05cm}\left ({2\pi \sigma^2} \right ) + {1}/{2} \cdot {\rm ln}\hspace{0.05cm}\left ( {\rm e} \right ) = {1}/{2} \cdot {\rm ln}\hspace{0.05cm}\left ({{2\pi {\rm e} \cdot \sigma^2}} \right ) \hspace{0.05cm}.$$
  • Soll die differentielle Entropie $h(X)$ nicht in „nat” angegeben werden, sondern in „bit”, so ist für den Logarithmus die Basis 2 zu wählen:
$$h_{\rm bit}(X) = {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ({{2\pi {\rm e} \cdot \sigma^2}} \right ) \hspace{0.05cm}.$$


(3)  Nach der impliziten Definition $h(X) = {1}/{2} \cdot {\rm log} \hspace{0.1cm} ({\it \Gamma}_{\hspace{-0.05cm}\rm L} \cdot \sigma^2)$ ergibt sich somit für die Kenngröße:

$${\it \Gamma}_{\rm L} = 2\pi {\rm e} \hspace{0.15cm}\underline{\approx 17.08} \hspace{0.05cm}.$$


(4)  Wir betrachten nun eine Gaußsche Wahrscheinlichkeitsdichtefunktion mit Mittelwert $m_1$:

$$f_X(x) = \frac{1}{\sqrt{2\pi \sigma^2}} \cdot {\rm exp}\left [ - \hspace{0.05cm}\frac{(x -m_1)^2}{2 \sigma^2} \right ] \hspace{0.05cm}.$$
  • Das zweite Moment $m_2 = {\rm E}\big [X ^2 \big ]$ kann man auch als die Leistung $P$ bezeichnen, während für die Varianz gilt (ist gleichzeitig das zweite Zentralmoment): &
$$\sigma^2 = {\rm E}\big [|X – m_1|^2 \big ] = \mu_2.$$
  • Nach dem Satz von Steiner gilt $P = m_2 = m_1^2 + \sigma^2$. Unter der Voraussetzung  $m_1 = \sigma = 1$ ist somit $\underline{P/\sigma^2 = 2}$.
  • Durch den Gleichanteil wird zwar die Leistung verdoppelt. An der differentiellen Entropie ändert sich dadurch aber nichts. Es gilt somit weiterhin:
$$h(X) = {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ({{2\pi {\rm e} \cdot \sigma^2}} \right )= {1}/{2} \cdot {\rm log}_2\hspace{0.05cm} (17.08)\hspace{0.15cm}\underline{\approx 2.047\,{\rm bit}} \hspace{0.05cm}.$$


Vervollständigte Ergebnistabelle für $h(X)$

(5)  In der vervollständigten Tabelle sind auch die numerischen Werte der Kenngrößen ${\it \Gamma}_{\rm L}$ und ${\it \Gamma}_{\rm A}$ eingetragen.

Eine Wahrscheinlichkeitsdichtefunktion $f_X(x)$ ist bei Leistungsbegrenzung immer dann besonders günstig, wenn der Wert $\Gamma_{\rm L}$ (rechte Spalte) möglichst groß ist. Dann ist die differentielle Entropie $h(X)$ ebenfalls groß.

Die numerischen Ergebnisse lassen sich wie folgt interpretieren:

  • Wie imTheorieteil bewiesen wird, führt die Gaußverteilung $f_4(x)$ hier zum größtmöglichen ${\it \Gamma}_{\rm L} ≈ 17.08$   ⇒   der Lösungsvorschlag 1 ist richtig (der Wert in der letzten Spalte rot markiert).
  • Für die Gleichverteilung $f_1(x)$ ist die Kenngröße ${\it \Gamma}_{\rm L} = 12$ die kleinste in der gesamten Tabelle   ⇒   der Lösungsvorschlag 2 ist falsch.
  • Die Dreieckverteilung $f_2(x)$ ist mit ${\it \Gamma}_{\rm L} = 16.31$ günstiger als die Gleichverteilung   ⇒   der Lösungsvorschlag 3 ist falsch.
  • Die Dreieckverteilung $f_2(x)$ ist auch besser als die Laplaceverteilung $f_2(x) \ \ ({\it \Gamma}_{\rm L} = 14.78)$   ⇒   der Lösungsvorschlag 4 ist richtig.


(6)  Eine WDF $f_X(x)$ ist unter der Nebenbedingung der Spitzenwertbegrenzung   ⇒   $|X| ≤ A$ günstig hinsichtlich der differentiellen Entropie $h(X)$, wenn der Bewertungsfaktor ${\it \Gamma}_{\rm A}$ (mittlere Spalte) möglichst groß ist:

  • Wie im Theorieteil gezeigt wird, führt die Gleichverteilung $f_1(x)$ hier zum größtmöglichen ${\it \Gamma}_{\rm A}= 2$   ⇒   der Lösungsvorschlag 2 ist richtig (der Wert in der mittleren Spalte ist rot markiert).
  • Die ebenfalls spitzenwertbegrenzte Dreieckverteilung $f_2(x)$ ist durch ein etwas kleineres ${\it \Gamma}_{\rm A}= = 1.649$ gekennzeichnet   ⇒   der Lösungsvorschlag 3 ist falsch.
  • Die Gaußverteilung $f_2(x)$ ist unendlich weit ausgedehnt. Eine Spitzenwertbegrenzung auf $|X| ≤ A$ führt hier zu Diracfunktionen in der WDF   ⇒   $h(X) \to - \infty$, siehe Musterlösung zur Aufgabe 4.2Z, Teilaufgabe (4).
  • Gleiches würde auch für die Laplaceverteilung $f_3(x)$ gelten.