Aufgaben:Aufgabe 4.8: Numerische Auswertung der AWGN-Kanalkapazität: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
K (Textersetzung - „\*\s*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0\.” ein.“ durch „ “)
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID2936__Inf_A_4_8_Tab.png|right|frame|Kapazität <i>C</i> für gegebenes <i>E</i><sub>S</sub>/<i>N</i><sub>0</sub>]]
+
[[Datei:P_ID2936__Inf_A_4_8_Tab.png|right|frame|Kapazität $C$ für gegebenes $E_{\rm S}/{N_0}$]]
Für die Kanalkapazität$C$ des AWGN&ndash;Kanals als obere Schranke für die Coderate $R$ bei Digitalsignalübertragung gibt es zwei verschiedene Gleichungen:
+
Für die Kanalkapazität $C$ des AWGN&ndash;Kanals als obere Schranke für die Coderate $R$ bei Digitalsignalübertragung gibt es zwei verschiedene Gleichungen:
  
'''Kanalkapazität <i>C</i> in Abhängigkeit der Energie pro Symbol: '''
+
'''Kanalkapazität $C$ in Abhängigkeit der Energie pro Symbol: '''
 
:$$C( E_{\rm S}/{N_0}) = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot E_{\rm S}}{N_0})  .$$
 
:$$C( E_{\rm S}/{N_0}) = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot E_{\rm S}}{N_0})  .$$
 
Hierbei sind folgende Abkürzungen verwendet:
 
Hierbei sind folgende Abkürzungen verwendet:
Zeile 13: Zeile 13:
  
  
'''Kanalkapazität <i>C</i> in Abhängigkeit der Energie pro Bit: '''
+
'''Kanalkapazität $C$ in Abhängigkeit der Energie pro Bit: '''
 
:$$C( E_{\rm B}/{N_0}) = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot R \cdot E_{\rm B}}{N_0}) .$$
 
:$$C( E_{\rm B}/{N_0}) = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot R \cdot E_{\rm B}}{N_0}) .$$
  
*Zu berücksichtigen ist der Zusammenhang $E_{\rm S} = R \cdot E_{\rm B}$, wobei $R$ die Coderate der bestmöglichen Kanalcodierung angibt.  
+
*Zu berücksichtigen ist der Zusammenhang &nbsp;$E_{\rm S} = R \cdot E_{\rm B}$, wobei &nbsp;$R$&nbsp; die Coderate der bestmöglichen Kanalcodierung angibt.  
*Eine fehlerfreie Übertragung (unter Berücksichtigung dieses optimalen Codes) ist für das gegebene $E_{\rm B}/N_0$ möglich, so lange $R \le C$ gilt &nbsp;&#8658;&nbsp;  [[Informationstheorie/Anwendung_auf_die_Digitalsignalübertragung#Definition_und_Bedeutung_der_Kanalkapazit.C3.A4t|Kanalcodierungstheorem von Shannon]].  
+
*Eine fehlerfreie Übertragung (unter Berücksichtigung dieses optimalen Codes) ist für das gegebene &nbsp;$E_{\rm B}/N_0$&nbsp; möglich, so lange &nbsp;$R \le C$&nbsp; gilt &nbsp; &#8658; &nbsp;  [[Informationstheorie/Anwendung_auf_die_Digitalsignalübertragung#Definition_und_Bedeutung_der_Kanalkapazit.C3.A4t|Kanalcodierungstheorem von Shannon]].  
 +
 
 +
 
 +
Durch die Tabelle vorgegeben ist der Kurvenverlauf der Kanalkapazität in Abhängigkeit von &nbsp;$E_{\rm S}/N_0$. Im Mittelpunkt dieser Aufgabe steht die numerische Auswertung der zweiten Gleichung.
 +
 
  
  
Durch die Tabelle vorgegeben ist der Kurvenverlauf der Kanalkapazität in Abhängigkeit von $E_{\rm S}/N_0$. Im Mittelpunkt dieser Aufgabe steht die numerische Auswertung der zweiten Gleichung.
 
  
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum  Kapitel [[Informationstheorie/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang|AWGN–Kanalkapazität bei wertkontinuierlichem Eingang]].
+
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Informationstheorie/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang|AWGN–Kanalkapazität bei wertkontinuierlichem Eingang]].
*Bezug genommen wird insbesondere auf die Seiten [[Informationstheorie/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang#Die_Kanalkapazit.C3.A4t_.7FUNIQ-MathJax74-QINU.7F_als_Funktion_von_.7FUNIQ-MathJax75-QINU.7F|Die Kanalkapazität <i>C</i> als Funktion von <i>E</i><sub>S</sub>/<i>N</i><sub>0</sub>]] sowie [[Informationstheorie/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang#Die_Kanalkapazit.C3.A4t_.7FUNIQ-MathJax112-QINU.7F_als_Funktion_von_.7FUNIQ-MathJax113-QINU.7F|Die Kanalkapazität <i>C</i> als Funktion von <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>]]  
+
*Bezug genommen wird insbesondere auf die Seiten&nbsp;
 +
**[[Informationstheorie/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang#Die_Kanalkapazit.C3.A4t_.7FUNIQ-MathJax74-QINU.7F_als_Funktion_von_.7FUNIQ-MathJax75-QINU.7F|Die Kanalkapazität $C$ als Funktion von $E_{\rm S}/{N_0}$]],
 +
**[[Informationstheorie/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang#Die_Kanalkapazit.C3.A4t_.7FUNIQ-MathJax112-QINU.7F_als_Funktion_von_.7FUNIQ-MathJax113-QINU.7F|Die Kanalkapazität $C$ als Funktion von $E_{\rm B}/{N_0}$]].
 
*Da die Ergebnisse in &bdquo;bit&rdquo; angegeben werden sollen, wird in den Gleichungen  &bdquo;log&rdquo; &nbsp;&#8658;&nbsp; &bdquo;log<sub>2</sub>&rdquo; verwendet.  
 
*Da die Ergebnisse in &bdquo;bit&rdquo; angegeben werden sollen, wird in den Gleichungen  &bdquo;log&rdquo; &nbsp;&#8658;&nbsp; &bdquo;log<sub>2</sub>&rdquo; verwendet.  
 
   
 
   
Zeile 34: Zeile 39:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Gleichungen beschreiben den Zusammenhang zwischen $E_{\rm B}/{N_0}$ und der Rate $R$ beim AWGN&ndash;Kanal exakt?
+
{Welche Gleichungen beschreiben den Zusammenhang zwischen &nbsp;$E_{\rm B}/{N_0}$&nbsp; und der Rate $R$ beim AWGN&ndash;Kanal exakt?
 
|type="[]"}
 
|type="[]"}
 
+ Es gilt: &nbsp; $R = 1/2 \cdot \log_2  (1 + 2 \cdot  R \cdot E_{\rm B}/{N_0})$.
 
+ Es gilt: &nbsp; $R = 1/2 \cdot \log_2  (1 + 2 \cdot  R \cdot E_{\rm B}/{N_0})$.
Zeile 41: Zeile 46:
  
  
{Geben Sie den kleinstmöglichen Wert für $E_{\rm B}/{N_0}$ an, mit dem man über den AWGN&ndash;Kanal noch fehlerfrei übertragen kann.
+
{Geben Sie den kleinstmöglichen Wert für &nbsp;$E_{\rm B}/{N_0}$&nbsp; an, mit dem man über den AWGN&ndash;Kanal noch fehlerfrei übertragen kann.
 
|type="{}"}
 
|type="{}"}
$\text{Min} \ [E_{\rm B}/{N_0}] \ = \ $ { 0.693 3% }
+
$\text{Min} \ \big[E_{\rm B}/{N_0}\big] \ = \ $ { 0.693 3% }
  
{Welche Ergebnis erhält man in dB?
+
{Welche Ergebnis erhält man in $\rm dB$?
 
|type="{}"}
 
|type="{}"}
$\text{Min} \ [10 \cdot \lg (E_{\rm B}/{N_0})] \ = \ $ { -1.62--0.156 } $ \ \rm dB$
+
$\text{Min} \ \big[10 \cdot \lg (E_{\rm B}/{N_0})\big] \ = \ $ { -1.62--0.156 } $ \ \rm dB$
  
  
{Geben Sie die AWGN&ndash;Kanalkapazität $C$ für $10 \cdot \lg (E_{\rm B}/{N_0})  = 0$ dB an.
+
{Geben Sie die AWGN&ndash;Kanalkapazität $C$ für &nbsp;$10 \cdot \lg (E_{\rm B}/{N_0})  = 0$&nbsp; dB an.
 
|type="{}"}
 
|type="{}"}
 
$C \ = \ $ { 0.5 3% } $ \ \rm bit/Kanalzugriff$
 
$C \ = \ $ { 0.5 3% } $ \ \rm bit/Kanalzugriff$
Zeile 57: Zeile 62:
 
{Geben Sie das erforderliche $E_{\rm B}/{N_0}$ für fehlerfreie Übertragung mit $R = 1$ an. <br><u>Hinweis:</u> Die Lösung findet man in der Tabelle auf der Angabenseite.
 
{Geben Sie das erforderliche $E_{\rm B}/{N_0}$ für fehlerfreie Übertragung mit $R = 1$ an. <br><u>Hinweis:</u> Die Lösung findet man in der Tabelle auf der Angabenseite.
 
|type="{}"}
 
|type="{}"}
$\text{Min} \ [E_{\rm B}/{N_0}] \ = \ $ { 1.5 3% }
+
$\text{Min} \ \big[E_{\rm B}/{N_0}\big] \ = \ $ { 1.5 3% }
  
  
{Wie kann ein Punkt der $C(E_{\rm B}/{N_0})$&ndash;Kurve einfacher ermittelt werden?
+
{Wie kann ein Punkt der &nbsp;$C(E_{\rm B}/{N_0})$&ndash;Kurve einfacher ermittelt werden?
 
|type="[]"}
 
|type="[]"}
- Berechnung der Kanalkapazität $C$ für das vorgegebene $E_{\rm B}/{N_0}$.
+
- Berechnung der Kanalkapazität $C$ für das vorgegebene &nbsp;$E_{\rm B}/{N_0}$.
+ Berechnung des  erforderlichen $E_{\rm B}/{N_0}$ für das vorgegebene $C$.
+
+ Berechnung des  erforderlichen &nbsp;$E_{\rm B}/{N_0}$ für das vorgegebene $C$.
  
  

Version vom 20. Oktober 2018, 09:57 Uhr

Kapazität $C$ für gegebenes $E_{\rm S}/{N_0}$

Für die Kanalkapazität $C$ des AWGN–Kanals als obere Schranke für die Coderate $R$ bei Digitalsignalübertragung gibt es zwei verschiedene Gleichungen:

Kanalkapazität $C$ in Abhängigkeit der Energie pro Symbol:

$$C( E_{\rm S}/{N_0}) = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot E_{\rm S}}{N_0}) .$$

Hierbei sind folgende Abkürzungen verwendet:

  • $E_{\rm S}$ bezeichnet die (mittlere) Energie pro Symbol des Digitalsignals,
  • $N_0$ gibt die AWGN–Rauschleistungsdichte an.


Kanalkapazität $C$ in Abhängigkeit der Energie pro Bit:

$$C( E_{\rm B}/{N_0}) = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot R \cdot E_{\rm B}}{N_0}) .$$
  • Zu berücksichtigen ist der Zusammenhang  $E_{\rm S} = R \cdot E_{\rm B}$, wobei  $R$  die Coderate der bestmöglichen Kanalcodierung angibt.
  • Eine fehlerfreie Übertragung (unter Berücksichtigung dieses optimalen Codes) ist für das gegebene  $E_{\rm B}/N_0$  möglich, so lange  $R \le C$  gilt   ⇒   Kanalcodierungstheorem von Shannon.


Durch die Tabelle vorgegeben ist der Kurvenverlauf der Kanalkapazität in Abhängigkeit von  $E_{\rm S}/N_0$. Im Mittelpunkt dieser Aufgabe steht die numerische Auswertung der zweiten Gleichung.



Hinweise:



Fragebogen

1

Welche Gleichungen beschreiben den Zusammenhang zwischen  $E_{\rm B}/{N_0}$  und der Rate $R$ beim AWGN–Kanal exakt?

Es gilt:   $R = 1/2 \cdot \log_2 (1 + 2 \cdot R \cdot E_{\rm B}/{N_0})$.
Es gilt:   $2^{2R} = 1 + 2 \cdot R \cdot E_{\rm B}/{N_0}$.
Es gilt:   $E_{\rm B}/{N_0} = (2^{2R} -1)/(2R) $.

2

Geben Sie den kleinstmöglichen Wert für  $E_{\rm B}/{N_0}$  an, mit dem man über den AWGN–Kanal noch fehlerfrei übertragen kann.

$\text{Min} \ \big[E_{\rm B}/{N_0}\big] \ = \ $

3

Welche Ergebnis erhält man in $\rm dB$?

$\text{Min} \ \big[10 \cdot \lg (E_{\rm B}/{N_0})\big] \ = \ $

$ \ \rm dB$

4

Geben Sie die AWGN–Kanalkapazität $C$ für  $10 \cdot \lg (E_{\rm B}/{N_0}) = 0$  dB an.

$C \ = \ $

$ \ \rm bit/Kanalzugriff$

5

Geben Sie das erforderliche $E_{\rm B}/{N_0}$ für fehlerfreie Übertragung mit $R = 1$ an.
Hinweis: Die Lösung findet man in der Tabelle auf der Angabenseite.

$\text{Min} \ \big[E_{\rm B}/{N_0}\big] \ = \ $

6

Wie kann ein Punkt der  $C(E_{\rm B}/{N_0})$–Kurve einfacher ermittelt werden?

Berechnung der Kanalkapazität $C$ für das vorgegebene  $E_{\rm B}/{N_0}$.
Berechnung des erforderlichen  $E_{\rm B}/{N_0}$ für das vorgegebene $C$.


Musterlösung

(1)  Alle Lösungsvorschläge sind richtig:

  • Ausgehend von der Gleichung
$$C = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + { 2 \cdot E_{\rm S}}/{N_0}) $$

erhält man mit C = R und ES = R · EB die Gleichung gemäß Lösungsvorschlag 1:

$$R = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + { 2 \cdot R \cdot E_{\rm B}}/{N_0})\hspace{0.05cm}. $$
  • Bringt man den Faktor 1/2 auf die linke Seite der Gleichung und bildet die Potenz zur Basis 2, so erhält man den Lösungsvorschlag 2:
$$2^{2R} = 1 + 2 \cdot R \cdot E_{\rm B}/{N_0}\hspace{0.05cm}. $$
  • Löst man diese Gleichung nach EB/N0 auf, so ergibt sich
$$E_{\rm B}/{N_0} = \frac{2^{2R} - 1} { 2 R} \hspace{0.05cm}. $$

(2)  Über einen Kanal mit der Kanalkapazität C ist eine fehlerfreie Übertragung möglich, solange die Coderate RC ist. Die absolute Grenze ergibt sich im Grenzfall C = R = 0. Oder präziser ausgedrückt: Für ein beliebig kleines positives ε: C = R = ε mit ε → 0.

Mit dem Ergebnis der Teilaufgabe (1) lautet die Bestimmungsgleichung:

$${\rm Min}\hspace{0.1cm}[E_{\rm B}/{N_0}] = \lim\limits_{R \hspace{0.05cm}\rightarrow \hspace{0.05cm}0}\frac{2^{2R} - 1} { 2 R} \hspace{0.05cm}. $$

Da hier der Quotient im Grenzübergang R → 0 das Ergebnis „0 geteilt durch 0” liefert, ist hier die Regel anzuwenden: Man differenziert Zähler und Nenner, bildet den Quotienten und setzt schließlich R = 0 ein. Mit x = 2R lautet das Ergebnis:

$${\rm Min}\hspace{0.1cm}[E_{\rm B}/{N_0}] = \lim\limits_{x \hspace{0.05cm}\rightarrow \hspace{0.05cm}0}\frac{2^{x} - 1} { x} = \frac{{\rm ln}\hspace{0.1cm} (2) \cdot 2^{x} } { 1} \hspace{0.05cm}\bigg |_{x=0} = {\rm ln}\hspace{0.1cm} (2) \hspace{0.15cm}\underline{= 0.693} \hspace{0.05cm}.$$

(3)  In logarithmierter Form erhält man:

$${\rm Min}\hspace{0.1cm}[10\cdot {\rm lg} \hspace{0.1cm}(E_{\rm B}/{N_0})] = 10\cdot {\rm lg} \hspace{0.1cm}(0.693) \hspace{0.15cm}\underline{= -1.59\,{\rm dB}} \hspace{0.05cm}. $$

(4)  Der Abszissenwert lautet somit in nichtlogarithmierter Form: EB/N0 = 1. Daraus folgt mit C = R:

$$\frac{2^{2C} - 1} { 2 C} \stackrel{!}{=} 1 \hspace{0.3cm}\Rightarrow\hspace{0.3cm}\underline{C = 0.5} \hspace{0.05cm}. $$

(5)  Für R = 1 ist EB = ES. Deshalb gilt:

$$ C(E_{\rm B}/{N_0}) = 1 \hspace{0.3cm}\Longleftrightarrow \hspace{0.3cm} C(E_{\rm S}/{N_0}) = 1 \hspace{0.05cm}.$$

Aus der Tabelle auf der Angabenseite ist abzulesen:

$$ C(E_{\rm S}/{N_0}) = 1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} E_{\rm S}/{N_0} = 1.5 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \underline{E_{\rm B}/{N_0} = 1.5}\hspace{0.05cm}.$$

Der dazugehörige dB–Wert ist 10 · lg (EB/N0) = 1.76 dB.

Zum gleichen Ergebnis kommt man mit R = 1 über die Gleichung $$E_{\rm B}/{N_0} = \frac{2^{2R} - 1} { 2 \cdot R} = \frac{4 - 1} { 2 } = 1.5 \hspace{0.05cm}.$$

(6)  Richtig ist der Lösungsvorschlag 2, wie an einem Beispiel gezeigt werden soll:

  • Gesucht ist die Kanalkapazität C für 10 · lg (EB/N0) = 15 dB  ⇒  EB/N0 = 31.62. Dann gilt entsprechend dem Lösungsvorschlag 1 mit x = 2C:
$$31.62 = \frac{2^{x} - 1} { x} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 31.62 \cdot x = 2^{x} - 1 \hspace{0.05cm}. $$

Die Lösung x = 7.986  ⇒  C = 3.993 (bit/use) kann nur grafisch oder iterativ gefunden werden.

  • Gesucht ist der notwendige Abszissenwert 10 · lg (EB/N0) für die Kapazität C = 4 bit/Symbol:
$$E_{\rm B}/{N_0} = \frac{2^{2C} - 1} { 2 \cdot C} = \frac{2^8 - 1} { 8 } = 31.875 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10\cdot {\rm lg} \hspace{0.1cm}(E_{\rm B}/{N_0}) = 15.03\,{\rm dB} \hspace{0.05cm}.$$
Kanalkapazitätskurven als Funktion von 10 · lg (ES/N0) und 10 · lg (EB/N0)

Die Grafik zeigt die AWGN–Kanalkapazität abhängig von

  • 10 · lg (ES/N0)  ⇒  rote Kurve und rote Zahlen;
    diese geben die Kanalkapazität C für das vorgegebene 10 · lg (ES/N0) an;
  • 10 · lg (EB/N0)  ⇒  grüne Kurve und und grüne Zahlen;
    diese geben das erforderliche 10 · lg (EB/N0) für die vorgegebene Kanalkapazität C an.


Der Schnittpunkt der beiden Kurven liegt bei 1.76 dB.