Aufgaben:Aufgabe 5.8Z: Zyklisches Präfix und Guard–Intervall: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
K (Textersetzung - „\*\s*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0\.” ein.“ durch „ “)
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID1664__Z_5_8.png|right|frame|Zyklisches Präfix, <br>Guard-Intervall und Ausgangssysmbol]]
+
[[Datei:P_ID1664__Z_5_8.png|right|frame|OFDM&ndash;Schema mit zyklischem Präfix]]
Wir gehen in dieser Aufgabe von einem OFDM–System mit $N = 8$ Trägern und zyklischem Präfix aus. Der Subträgerabstand sei $f_0 = 4 \ \rm kHz$. Die Grafik zeigt das Prinzip des zyklischen Präfixes.
+
Wir gehen in dieser Aufgabe von einem OFDM–System mit &nbsp;$N = 8$&nbsp; Trägern und zyklischem Präfix aus. Der Subträgerabstand sei &nbsp;$f_0 = 4 \ \rm kHz$. Die Grafik zeigt das Prinzip des zyklischen Präfixes.
*Die Übertragung erfolgt über einen Zweiwegekanal, wobei beide Pfade verzögert sind. Die Kanalimpulsantwort lautet somit mit $τ_1 = \ \rm 50 μs$ und $τ_2 = 125\ \rm  μs$:
+
*Die Übertragung erfolgt über einen Zweiwegekanal, wobei beide Pfade verzögert sind. Die Kanalimpulsantwort lautet somit mit &nbsp;$τ_1 = \ \rm 50 &micro;s$&nbsp; und &nbsp;$τ_2 = 125\ \rm  &micro;s$:
 
:$$ h(t) = h_1 \cdot \delta (t- \tau_1) + h_2 \cdot \delta (t- \tau_2).$$
 
:$$ h(t) = h_1 \cdot \delta (t- \tau_1) + h_2 \cdot \delta (t- \tau_2).$$
 
*Der Einsatz eines solchen zyklischen Präfixes vermindert allerdings die Bandbreiteneffizienz (Verhältnis von Symbolrate zu Bandbreite) um den Faktor
 
*Der Einsatz eines solchen zyklischen Präfixes vermindert allerdings die Bandbreiteneffizienz (Verhältnis von Symbolrate zu Bandbreite) um den Faktor
 
:$$ \beta = \frac{1}{{1 + T_{\rm{G}} /T}} $$
 
:$$ \beta = \frac{1}{{1 + T_{\rm{G}} /T}} $$
 
:und führt auch zu einer Verringerung des Signal&ndash;Rausch&ndash;Verhältnisses um ebenfalls diesen Wert <i>&beta;</i>.  
 
:und führt auch zu einer Verringerung des Signal&ndash;Rausch&ndash;Verhältnisses um ebenfalls diesen Wert <i>&beta;</i>.  
*Voraussetzung für die Gültigkeit des hier angegebenen SNR&ndash;Verlustes ist allerdings, dass die Impulsantworten $g_{\rm S}(t)$ und $g_{\rm E}(t)$ von Sende&ndash; und Empfangsfilter an die Symboldauer $T$ angepasst sind (Matched&ndash;Filter&ndash;Ansatz).
+
*Voraussetzung für die Gültigkeit des hier angegebenen SNR&ndash;Verlustes ist allerdings, dass die Impulsantworten &nbsp;$g_{\rm S}(t)$&nbsp; und &nbsp;$g_{\rm E}(t)$&nbsp; von Sende&ndash; und Empfangsfilter an die Symboldauer &nbsp;$T$&nbsp; angepasst sind (Matched&ndash;Filter&ndash;Ansatz).
 +
 
 +
 
 +
 
 +
 
  
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Realisierung_von_OFDM-Systemen|Realisierung von OFDM-Systemen]].
+
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Modulationsverfahren/Realisierung_von_OFDM-Systemen|Realisierung von OFDM-Systemen]].
*Bezug genommen wird insbesondere auf die Seiten  [[Modulationsverfahren/Realisierung_von_OFDM-Systemen#Zyklisches_Pr.C3.A4fix|Zyklisches Präfix]] sowie [[Modulationsverfahren/Realisierung_von_OFDM-Systemen#OFDM.E2.80.93System_mit_zyklischem_Pr.C3.A4fix|OFDM-System mit zyklischem Präfix]].
+
*Bezug genommen wird insbesondere auf die Seiten&nbsp; [[Modulationsverfahren/Realisierung_von_OFDM-Systemen#Zyklisches_Pr.C3.A4fix|Zyklisches Präfix]]&nbsp; sowie &nbsp;[[Modulationsverfahren/Realisierung_von_OFDM-Systemen#OFDM.E2.80.93System_mit_zyklischem_Pr.C3.A4fix|OFDM-System mit zyklischem Präfix]].
 
   
 
   
  
Zeile 23: Zeile 27:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Geben Sie die Kernsymboldauer $T$ an.
+
{Geben Sie die Kernsymboldauer &nbsp;$T$&nbsp; an.
 
|type="{}"}
 
|type="{}"}
$T \ = \ $ { 250 3% } $\ \rm μs$
+
$T \ = \ $ { 250 3% } $\ \rm &micro; s$
  
{Wie lang sollte das Guard–Intervall $T_{\rm G}$ mindestens sein?
+
{Wie lang sollte das Guard–Intervall &nbsp;$T_{\rm G}$&nbsp; mindestens sein?
 
|type="{}"}
 
|type="{}"}
$T_{\rm G}\ = \ $ { 125 3% } $\ \rm μs$
+
$T_{\rm G}\ = \ $ { 125 3% } $\ \rm &micro; s$
  
{Bestimmen Sie die resultierende Rahmendauer  $T_{\rm R}$.
+
{Bestimmen Sie die resultierende Rahmendauer  &nbsp;$T_{\rm R}$.
 
|type="{}"}
 
|type="{}"}
$T_{\rm R}\ = \ $ { 375 3% } $\ \rm μs$
+
$T_{\rm R}\ = \ $ { 375 3% } $\ \rm &micro; s$
  
 
{Welche Aussagen sind richtig? Durch eine Guardlücke, also das Nullsetzen des OFDM–Signals im Guard–Intervall, können
 
{Welche Aussagen sind richtig? Durch eine Guardlücke, also das Nullsetzen des OFDM–Signals im Guard–Intervall, können
Zeile 45: Zeile 49:
 
+ Impulsinterferenzen (ISI) unterdrückt werden.
 
+ Impulsinterferenzen (ISI) unterdrückt werden.
  
{Nennen Sie die jeweilige Anzahl der Abtastwerte für das Kernsymbol $(N)$, das Guard–Intervall $(N_{\rm G})$ und den gesamten Rahmen $(N_{\rm R})$.
+
{Nennen Sie die jeweilige Anzahl der Abtastwerte für das Kernsymbol &nbsp;$(N)$, das Guard–Intervall &nbsp;$(N_{\rm G})$&nbsp; und den gesamten Rahmen &nbsp;$(N_{\rm R})$.
 
|type="{}"}
 
|type="{}"}
 
$N \hspace{0.35cm} = \ $ { 8 }  
 
$N \hspace{0.35cm} = \ $ { 8 }  
Zeile 51: Zeile 55:
 
$N_{\rm R} \ = \ $ { 12 }
 
$N_{\rm R} \ = \ $ { 12 }
  
{Geben Sie unter der Vorraussetzung, dass lediglich der erste Träger mit dem Trägerkoeffizienten $-1$ verwendet wird, die Abtastwerte des Guard&ndash;Intervalls vor der Übertragung über den Kanal an.
+
{Geben Sie unter der Vorraussetzung, dass lediglich der erste Träger mit dem Trägerkoeffizienten &nbsp;$-1$&nbsp; verwendet wird, die Abtastwerte des Guard&ndash;Intervalls vor der Übertragung über den Kanal an.
 
|type="{}"}
 
|type="{}"}
$\text{Re}[d_{-1}] \ = \ $ { -714--0.700 }
+
$\text{Re}\big[d_{-1}\big] \ = \ $ { -714--0.700 }
$\text{Im}[d_{-1}] \ = \ $ { 0.707 1% }
+
$\text{Im}\big[d_{-1}\big] \ = \ $ { 0.707 1% }
$\text{Re}[d_{-2}] \ = \ $ { 0. }
+
$\text{Re}\big[d_{-2}\big] \ = \ $ { 0. }
$\text{Im}[d_{-2}] \ = \ $ { 1 1% }
+
$\text{Im}\big[d_{-2}\big] \ = \ $ { 1 1% }
$\text{Re}[d_{-3}] \ = \ $ { 0.707 1% }
+
$\text{Re}\big[d_{-3}\big] \ = \ $ { 0.707 1% }
$\text{Im}[d_{-3}] \ = \ $ { 0.707 1% }
+
$\text{Im}\big[d_{-3}\big] \ = \ $ { 0.707 1% }
$\text{Re}[d_{-4}] \ = \ $ { 1 1% }
+
$\text{Re}\big[d_{-4}\big] \ = \ $ { 1 1% }
$\text{Im}[d_{-4}] \ = \ $ { 0. }
+
$\text{Im}\big[d_{-4}\big] \ = \ $ { 0. }
  
{Welche Bandbreiteneffizienz $\beta$ ergibt sich inklusive des Guard–Intervalls?
+
{Welche Bandbreiteneffizienz &nbsp;$\beta$&nbsp; ergibt sich inklusive des Guard–Intervalls?
 
|type="{}"}
 
|type="{}"}
 
$\beta\ = \ $ { 0.667 3% }  
 
$\beta\ = \ $ { 0.667 3% }  
  
{Wie groß ist der damit verbundene SNR–Verlust $10 · \lg \ Δ_ρ$ (in dB) unter der Voraussetzung des Matched–Filter–Ansatzes?
+
{Wie groß ist der damit verbundene SNR–Verlust &nbsp;$10 · \lg \ Δ_ρ$&nbsp; (in dB) unter der Voraussetzung des Matched–Filter–Ansatzes?
 
|type="{}"}
 
|type="{}"}
 
$10 · \lg \ Δ_ρ \ = \ $ { 1.76 3% } $\ \rm dB$  
 
$10 · \lg \ Δ_ρ \ = \ $ { 1.76 3% } $\ \rm dB$  

Version vom 22. Januar 2019, 16:44 Uhr

OFDM–Schema mit zyklischem Präfix

Wir gehen in dieser Aufgabe von einem OFDM–System mit  $N = 8$  Trägern und zyklischem Präfix aus. Der Subträgerabstand sei  $f_0 = 4 \ \rm kHz$. Die Grafik zeigt das Prinzip des zyklischen Präfixes.

  • Die Übertragung erfolgt über einen Zweiwegekanal, wobei beide Pfade verzögert sind. Die Kanalimpulsantwort lautet somit mit  $τ_1 = \ \rm 50 µs$  und  $τ_2 = 125\ \rm µs$:
$$ h(t) = h_1 \cdot \delta (t- \tau_1) + h_2 \cdot \delta (t- \tau_2).$$
  • Der Einsatz eines solchen zyklischen Präfixes vermindert allerdings die Bandbreiteneffizienz (Verhältnis von Symbolrate zu Bandbreite) um den Faktor
$$ \beta = \frac{1}{{1 + T_{\rm{G}} /T}} $$
und führt auch zu einer Verringerung des Signal–Rausch–Verhältnisses um ebenfalls diesen Wert β.
  • Voraussetzung für die Gültigkeit des hier angegebenen SNR–Verlustes ist allerdings, dass die Impulsantworten  $g_{\rm S}(t)$  und  $g_{\rm E}(t)$  von Sende– und Empfangsfilter an die Symboldauer  $T$  angepasst sind (Matched–Filter–Ansatz).




Hinweise:



Fragebogen

1

Geben Sie die Kernsymboldauer  $T$  an.

$T \ = \ $

$\ \rm µ s$

2

Wie lang sollte das Guard–Intervall  $T_{\rm G}$  mindestens sein?

$T_{\rm G}\ = \ $

$\ \rm µ s$

3

Bestimmen Sie die resultierende Rahmendauer  $T_{\rm R}$.

$T_{\rm R}\ = \ $

$\ \rm µ s$

4

Welche Aussagen sind richtig? Durch eine Guardlücke, also das Nullsetzen des OFDM–Signals im Guard–Intervall, können

Intercarrier–Interferenzen (ICI) unterdrückt werden,
Impulsinterferenzen (ISI) unterdrückt werden.

5

Welche Aussagen sind richtig? Durch ein zyklisches Präfix, also durch eine zyklische Erweiterung des OFDM–Signals im Guard–Intervall, können

Intercarrier–Interferenzen (ICI) unterdrückt werden,
Impulsinterferenzen (ISI) unterdrückt werden.

6

Nennen Sie die jeweilige Anzahl der Abtastwerte für das Kernsymbol  $(N)$, das Guard–Intervall  $(N_{\rm G})$  und den gesamten Rahmen  $(N_{\rm R})$.

$N \hspace{0.35cm} = \ $

$N_{\rm G} \ = \ $

$N_{\rm R} \ = \ $

7

Geben Sie unter der Vorraussetzung, dass lediglich der erste Träger mit dem Trägerkoeffizienten  $-1$  verwendet wird, die Abtastwerte des Guard–Intervalls vor der Übertragung über den Kanal an.

$\text{Re}\big[d_{-1}\big] \ = \ $

$\text{Im}\big[d_{-1}\big] \ = \ $

$\text{Re}\big[d_{-2}\big] \ = \ $

$\text{Im}\big[d_{-2}\big] \ = \ $

$\text{Re}\big[d_{-3}\big] \ = \ $

$\text{Im}\big[d_{-3}\big] \ = \ $

$\text{Re}\big[d_{-4}\big] \ = \ $

$\text{Im}\big[d_{-4}\big] \ = \ $

8

Welche Bandbreiteneffizienz  $\beta$  ergibt sich inklusive des Guard–Intervalls?

$\beta\ = \ $

9

Wie groß ist der damit verbundene SNR–Verlust  $10 · \lg \ Δ_ρ$  (in dB) unter der Voraussetzung des Matched–Filter–Ansatzes?

$10 · \lg \ Δ_ρ \ = \ $

$\ \rm dB$


Musterlösung

(1)  Die Kernsymboldauer ist gleich dem Kehrwert des Trägerabstands  ⇒   $ T = {1}/{f_0} \hspace{0.15cm}\underline {= 250\,\,{\rm \mu s}}.$


(2)  Um Interferenzen zu vermeiden, ist die Dauer des Guard–Intervalls $T_{\rm G}$ mindestens so groß zu wählen wie die maximale Verzögerung (hier: $τ_2 = 125\ \rm μs$) des Kanals   ⇒   $ T_{\rm G} \hspace{0.15cm}\underline {= 125\,\,{\rm \mu s}}.$


(3)  Für die Rahmendauer gilt somit:  $ T_{\rm{R}} = T + T_{\rm G}\hspace{0.15cm}\underline {= 375\,\,{\rm \mu s}}.$


(4)  Richtig ist der Lösungsvorschlag 2:

  • Durch eine Guardlücke geeigneter Länge können ausschließlich Impulsinterferenzen (ISI) vermieden werden.
  • Die Lückendauer $T_{\rm G}$ muss dabei so groß gewählt werden, dass das aktuelle Symbol durch das Vorgängersymbol nicht beeinträchtigt wird.
  • Im vorliegenden Beispiel muss $T_{\rm G}≥ 125\ \rm μs$ sein.


(5)  Beide Lösungsvorschläge sind zutreffend:

  • Durch ein zyklisches Präfix geeigneter Länge werden zusätzlich auch Intercarrier–Interferenzen (ICI) unterdrückt.
  • Es wird damit sichergestellt, dass für alle Träger innerhalb der Kernsymboldauer $T$ eine vollständige und unverfälschte Schwingung auftritt, auch wenn andere Träger aktiv sind.


(6)  Die Anzahl der Abtastwerte innerhalb des Kernsymbols ist gleich der Anzahl der Träger   ⇒   $\underline{N=8}$.
Wegen $T_{\rm G}= T/2$ gilt $N_{\rm G}\hspace{0.15cm}\underline {= 4}$ und damit $N_{\rm R} = N + N_{\rm G}\hspace{0.15cm}\underline {= 12}$.


(7)  Die Belegung des ersten Trägers (Frequenz $f_0$) mit dem Koeffizienten „–1” führt zu den Abtastwerten

$$d_0 = -1, \hspace{0.3cm}d_1 = -0.707 - {\rm j} \cdot 0.707, \hspace{0.3cm}d_2 = -{\rm j} ,\hspace{0.3cm} d_3 = +0.707 -{\rm j} \cdot 0.707, $$
$$d_4 = +1, \hspace{0.3cm}d_5 = +0.707 + {\rm j} \cdot 0.707, \hspace{0.3cm}d_6 = +{\rm j} ,\hspace{0.3cm} d_7 = -0.707 +{\rm j} \cdot 0.707. $$

Die zyklische Erweiterung liefert die zusätzlichen Abtastwerte $d_{-1} = d_7$,   $d_{-2} = d_6$,   $d_{-3} = d_5$ und   $d_{-4} = d_4$:

$$\underline{{\rm Re}[d_{-1}] = -0.707,\hspace{0.3cm}{\rm Im}[d_{-1}] = +0.707,\hspace{0.3cm}{\rm Re}[d_{-2}] = 0,\hspace{0.3cm} {\rm Im}[d_{-2}] = 1},$$
$$\underline{{\rm Re}[d_{-3}] = +0.707,\hspace{0.3cm}{\rm Im}[d_{-3}] = +0.707,\hspace{0.3cm}{\rm Re}[d_{-4}] = 1,\hspace{0.3cm} {\rm Im}\{d_{-4}] = 0}.$$

(8)  Entsprechend der angegebenen Gleichung ist die Bandbreiteneffizienz gleich

$$\beta = \frac{1}{1 + {T_{\rm{G}}}/{T}} = \frac{1}{1 + ({125\,\,{\rm \mu s}})/({250\,\,{\rm \mu s}})} \hspace{0.15cm}\underline {= 0.667}.$$

(9)  Die Bandbreiteneffizienz $β = 2/3$ führt zu einem SNR–Verlust von

$$10 \cdot {\rm{lg}}\hspace{0.04cm}\Delta \rho = 10 \cdot {\rm{lg}}\hspace{0.04cm}(\beta) \hspace{0.15cm}\underline {\approx1.76\,\,{\rm{dB}}}.$$