Aufgaben:Aufgabe 4.17Z: Rayleigh- und Riceverteilung: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 63: Zeile 63:
 
|type="()"}
 
|type="()"}
 
- Die Rayleighverteilung,
 
- Die Rayleighverteilung,
+ die Riceverteilung?.
+
+ die Riceverteilung?
  
 
{Berechnen Sie die Überschreitungswahrscheinlichkeiten der Rayleighverteilung.
 
{Berechnen Sie die Überschreitungswahrscheinlichkeiten der Rayleighverteilung.
Zeile 74: Zeile 74:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist der <u>zweite Lösungsvorschlag</u>..:
+
'''(1)'''&nbsp; Richtig ist der <u>zweite Lösungsvorschlag</u>:
 
*Die obere Grafik zeigt näherungsweise eine Gaußverteilung und gehört dementsprechend zur Riceverteilung.  
 
*Die obere Grafik zeigt näherungsweise eine Gaußverteilung und gehört dementsprechend zur Riceverteilung.  
  
  
'''(2)'''&nbsp; Man erkennt aus der Grafik: Der Mittelwert der Gaußverteilung ist $\underline {C = 4}$ und die Streuung ist $\underline {\sigma_n = 1}$. <br>Vorgegeben war ja, dass $C$ und $\sigma_n$ ganzzahlig seien. Damit lauten die beiden Dichtefunktionen:
+
 
 +
'''(2)'''&nbsp; Man erkennt aus der Grafik: Der Mittelwert der Gaußverteilung ist $\underline {C = 4}$ und die Streuung ist $\underline {\sigma_n = 1}$.  
 +
*Vorgegeben war ja, dass $C$ und $\sigma_n$ ganzzahlig seien.  
 +
*Damit lauten die beiden Dichtefunktionen:
 
:$$p_{\rm I} (\eta) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\eta}
 
:$$p_{\rm I} (\eta) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\eta}
 
  \cdot {\rm exp } \left [ - \frac{\eta^2 + 16}{2 }\right ] \cdot {\rm I }_0 (4\eta ) \approx
 
  \cdot {\rm exp } \left [ - \frac{\eta^2 + 16}{2 }\right ] \cdot {\rm I }_0 (4\eta ) \approx
Zeile 84: Zeile 87:
 
:$$ p_{\rm II} (\eta) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\eta}
 
:$$ p_{\rm II} (\eta) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\eta}
 
  \cdot {\rm exp } \left [ - \frac{\eta^2 }{2 }\right ] \hspace{0.05cm}.$$
 
  \cdot {\rm exp } \left [ - \frac{\eta^2 }{2 }\right ] \hspace{0.05cm}.$$
 +
  
 
'''(3)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>, wie bereits aus der Grafik ersichtlich ist. Eine Rechnung bestätigt dieses Ergebnis:
 
'''(3)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>, wie bereits aus der Grafik ersichtlich ist. Eine Rechnung bestätigt dieses Ergebnis:
Zeile 96: Zeile 100:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Mit der Substitution $x^2 = \eta^2/(2\sigma_n^2)$ kann hierfür geschrieben werden:
+
*Mit der Substitution $x^2 = \eta^2/(2\sigma_n^2)$ kann hierfür geschrieben werden:
 
:$${\rm Pr}(y > y_0) = 2 \cdot \hspace{-0.05cm}\int_{y_0/(\sqrt{2}\hspace{0.03cm} \cdot \hspace{0.03cm} \sigma_n)}^{\infty} \hspace{-0.5cm}x
 
:$${\rm Pr}(y > y_0) = 2 \cdot \hspace{-0.05cm}\int_{y_0/(\sqrt{2}\hspace{0.03cm} \cdot \hspace{0.03cm} \sigma_n)}^{\infty} \hspace{-0.5cm}x
 
  \cdot {\rm e }^{ - x^2} \,{\rm d} x = \left [{\rm e }^{ - x^2} \right ]_{\sqrt{2}\hspace{0.03cm} \cdot \hspace{0.03cm} \sigma_n}^{\infty}
 
  \cdot {\rm e }^{ - x^2} \,{\rm d} x = \left [{\rm e }^{ - x^2} \right ]_{\sqrt{2}\hspace{0.03cm} \cdot \hspace{0.03cm} \sigma_n}^{\infty}
 
  = {\rm exp } \left [ -\frac{ y_0^2 }{2 \sigma_n^2 }\right ]\hspace{0.05cm}.$$
 
  = {\rm exp } \left [ -\frac{ y_0^2 }{2 \sigma_n^2 }\right ]\hspace{0.05cm}.$$
  
Hierbei wurde das vorne angegebene unbestimmte Integral benutzt. Insbesondere gilt:
+
*Hierbei wurde das vorne angegebene unbestimmte Integral benutzt. Insbesondere gilt:
 
:$${\rm Pr}(y > \sigma_n) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm e }^{ - 0.5}  \hspace{0.15cm} \underline{\approx 60.7 \%} \hspace{0.05cm},$$
 
:$${\rm Pr}(y > \sigma_n) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm e }^{ - 0.5}  \hspace{0.15cm} \underline{\approx 60.7 \%} \hspace{0.05cm},$$
 
:$$ {\rm Pr}(y > 2\sigma_n) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm e }^{ - 2.0}  \hspace{0.15cm} \underline{\approx 13.5 \%} \hspace{0.05cm},$$
 
:$$ {\rm Pr}(y > 2\sigma_n) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm e }^{ - 2.0}  \hspace{0.15cm} \underline{\approx 13.5 \%} \hspace{0.05cm},$$

Version vom 19. März 2019, 14:49 Uhr

Rice- (oben) und Rayleigh (unten)

Für die Untersuchung von Nachrichtensystemen haben die Rayleigh– und die Rice–Verteilung eine große Bedeutung. Im Folgenden sei  $y$  eine rayleigh– oder eine riceverteilte Zufallsgröße und  $\eta$  jeweils eine Realisierung hiervon.

  • Die Rayleighverteilung  ergibt sich dabei für die Wahrscheinlichkeitsdichtefunktion (kurz: WDF) einer Zufallsgröße  $y$, die sich aus den beiden gaußverteilten und statistisch unabhängigen Komponenten  $u$  und  $v$  $($beide mit der Streuung  $\sigma_n)$  wie folgt ergibt:
$$y = \sqrt{u^2 + v^2} \hspace{0.1cm} \Rightarrow \hspace{0.1cm} p_y (\eta) = \frac{\eta}{\sigma_n^2} \cdot {\rm exp } \left [ - \frac{\eta^2}{2 \sigma_n^2}\right ] \hspace{0.01cm}.$$
  • Die Riceverteilung  erhält man unter sonst gleichen Randbedingungen für den Anwendungsfall, dass bei einer der beiden Komponenten noch eine Konstante  $C$  addiert wird, zum Beispiel:
$$y = \sqrt{(u+C)^2 + v^2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_y (\eta) = \frac{\eta}{\sigma_n^2} \cdot {\rm exp } \left [ - \frac{\eta^2 + C^2}{2 \sigma_n^2}\right ] \cdot {\rm I }_0 \left [ \frac{\eta \cdot C}{ \sigma_n^2}\right ] \hspace{0.05cm}.$$

In dieser Gleichung bezeichnet  ${\rm I}_0(x)$  die  modifizierte Besselfunktion nullter Ordnung.

In der Grafik sind die beiden Dichtefunktionen dargestellt, wobei allerdings nicht angegeben wird, ob  $p_{\hspace{0.03cm}\rm I}(\eta)$  bzw.  $p_{\hspace{0.03cm}\rm II}(\eta)$  zu einer Rayleigh– oder zu einer Riceverteilung gehören.

  • Bekannt ist nur, dass je eine Rayleigh– und eine Riceverteilung dargestellt ist.
  • Der Parameter  $\sigma_n$  ist bei beiden Verteilungen gleich.


Für Ihre Entscheidung, ob Sie  $p_{\hspace{0.03cm}\rm I}(\eta)$  oder  $p_{\rm II}(\hspace{0.03cm}\eta)$  der Riceverteilung zuordnen, und für die Ermittlung der WDF–Parameter können Sie folgende Aussagen berücksichtigen:

  • Für große Werte des Quotienten  $C/\sigma_n$  lässt sich die Riceverteilung durch eine Gaußverteilung mit Mittelwert  $C$  und Streuung  $\sigma_n$  annähern.
  • Die der Grafik zugrunde liegenden Werte von  $C$  und  $\sigma_n$  sind ganzzahlig.


Hinsichtlich der Rayleighverteilung ist zu beachten:

  • Für beide Verteilungen ist das gleiche  $\sigma_n$  zugrunde gelegt.
  • Für die Streuung (Wurzel aus der Varianz) der Rayleighverteilung gilt:
$$\sigma_y = \sigma_n \cdot \sqrt{2 - {\pi}/{2 }} \hspace{0.2cm} \approx \hspace{0.2cm} 0.655 \cdot \sigma_n \hspace{0.05cm}.$$
  • Für die Streuung bzw. für die Varianz der Riceverteilung kann allgemein nur ein komplizierter Ausdruck mit hypergeometrischen Funktionen angegeben werden, ansonsten nur eine Näherung für  $C \gg \sigma_n$  entsprechend der Gaußverteilung.




Hinweise:

  • Gegeben ist zudem das folgende unbestimmteIntegral:
$$\int x \cdot {\rm e }^{-x^2} \,{\rm d} x = -{1}/{2} \cdot {\rm e }^{-x^2} + {\rm const. } $$



Fragebogen

1

Ordnen Sie die Grafiken der Rayleigh– bzw. Riceverteilung zu.

$p_{\hspace{0.03cm}\rm I}(\eta)$  entspricht der Rayleighverteilung,  $p_{\hspace{0.03cm}\rm II}(\eta)$  der Riceverteilung.
$p_{\hspace{0.03cm}\rm I}(\eta)$  entspricht der Riceverteilung,  $p_{\hspace{0.03cm}\rm II}(\eta)$  der Rayleighverteilung.

2

Geben Sie die Parameter der hier dargestellten Riceverteilung an.

$C \hspace{0.25cm} = \ $

$\sigma_n \ = \ $

3

Welche Verteilung besitzt eine größere Varianz?

Die Rayleighverteilung,
die Riceverteilung?

4

Berechnen Sie die Überschreitungswahrscheinlichkeiten der Rayleighverteilung.

${\rm Pr}(y > \sigma_n) \hspace{0.33cm} = \ $

$ \ \%$
${\rm Pr}(y > 2\sigma_n) \ = \ $

$ \ \%$
${\rm Pr}(y > 3\sigma_n) \ = \ $

$ \ \%$


Musterlösung

(1)  Richtig ist der zweite Lösungsvorschlag:

  • Die obere Grafik zeigt näherungsweise eine Gaußverteilung und gehört dementsprechend zur Riceverteilung.


(2)  Man erkennt aus der Grafik: Der Mittelwert der Gaußverteilung ist $\underline {C = 4}$ und die Streuung ist $\underline {\sigma_n = 1}$.

  • Vorgegeben war ja, dass $C$ und $\sigma_n$ ganzzahlig seien.
  • Damit lauten die beiden Dichtefunktionen:
$$p_{\rm I} (\eta) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\eta} \cdot {\rm exp } \left [ - \frac{\eta^2 + 16}{2 }\right ] \cdot {\rm I }_0 (4\eta ) \approx \frac{1}{\sqrt{2\pi }}\cdot {\rm exp } \left [ - \frac{(\eta-4)^2 }{2 }\right ]\hspace{0.05cm},$$
$$ p_{\rm II} (\eta) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\eta} \cdot {\rm exp } \left [ - \frac{\eta^2 }{2 }\right ] \hspace{0.05cm}.$$


(3)  Richtig ist der Lösungsvorschlag 2, wie bereits aus der Grafik ersichtlich ist. Eine Rechnung bestätigt dieses Ergebnis:

$$\sigma_{\rm Rice}^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sigma_n^2 = 1\hspace{0.05cm},$$
$$ \sigma_{\rm Rayl}^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sigma_n^2 \cdot ({2 - {\pi}/{2 }}) \approx 0.429 \hspace{0.05cm}.$$


(4)  Allgemein ist die Wahrscheinlichkeit, dass $y$ größer ist als ein Wert $y_0$, gleich

$${\rm Pr}(y > y_0) = \int_{y_0}^{\infty} \frac{\eta}{\sigma_n^2} \cdot {\rm exp } \left [ - \frac{\eta^2 }{2 \sigma_n^2}\right ] \,{\rm d} \eta \hspace{0.05cm}.$$
  • Mit der Substitution $x^2 = \eta^2/(2\sigma_n^2)$ kann hierfür geschrieben werden:
$${\rm Pr}(y > y_0) = 2 \cdot \hspace{-0.05cm}\int_{y_0/(\sqrt{2}\hspace{0.03cm} \cdot \hspace{0.03cm} \sigma_n)}^{\infty} \hspace{-0.5cm}x \cdot {\rm e }^{ - x^2} \,{\rm d} x = \left [{\rm e }^{ - x^2} \right ]_{\sqrt{2}\hspace{0.03cm} \cdot \hspace{0.03cm} \sigma_n}^{\infty} = {\rm exp } \left [ -\frac{ y_0^2 }{2 \sigma_n^2 }\right ]\hspace{0.05cm}.$$
  • Hierbei wurde das vorne angegebene unbestimmte Integral benutzt. Insbesondere gilt:
$${\rm Pr}(y > \sigma_n) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm e }^{ - 0.5} \hspace{0.15cm} \underline{\approx 60.7 \%} \hspace{0.05cm},$$
$$ {\rm Pr}(y > 2\sigma_n) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm e }^{ - 2.0} \hspace{0.15cm} \underline{\approx 13.5 \%} \hspace{0.05cm},$$
$$ {\rm Pr}(y > 3\sigma_n) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm e }^{ - 4.5} \hspace{0.15cm} \underline{\approx 1.1 \%} \hspace{0.05cm}.$$