Applets:Komplementäre Gaußsche Fehlerfunktionen: Unterschied zwischen den Versionen
Zeile 1: | Zeile 1: | ||
{{LntAppletLink|qfunction}} | {{LntAppletLink|qfunction}} | ||
− | + | ''Hinweis:'' Das Applet ist für '''CHROME''' optimiert. Bei anderen Browsern kommt es teilweise zu Darstellungsproblemen. | |
− | '''Das | ||
+ | '''Das neue Applet ist noch in Bearbeitung –Hier auch die Vorgängerversion (ungeeignet für Smartphones)''' | ||
{{OldFlash|Z_ID157/QFunction}} | {{OldFlash|Z_ID157/QFunction}} | ||
Zeile 9: | Zeile 9: | ||
==Programmbeschreibung== | ==Programmbeschreibung== | ||
<br> | <br> | ||
− | Dieses Applet ermöglicht die Berechnung und graphische Darstellung der Gaußschen Fehlerfunktionen ${\rm Q}(x)$ und $1/2\cdot {\rm erfc}(x)$, die für die Fehlerwahrscheinlichkeitsberechnung von großer Bedeutung sind. | + | Dieses Applet ermöglicht die Berechnung und graphische Darstellung der Gaußschen Fehlerfunktionen ${\rm Q}(x)$ und $1/2\cdot {\rm erfc}(x)$, die für die Fehlerwahrscheinlichkeitsberechnung von großer Bedeutung sind. |
− | *Sowohl die Abszisse als auch der Funktionswert | + | *Sowohl die Abszisse als auch der Funktionswert können entweder linear oder logarithmisch dargestellt werden. |
− | *Für beide Funktionen wird jeweils eine obere Schranke (englisch: ''Upper Bound '') und eine untere Schranke (englisch: ''Lower Bound'') angegeben. | + | *Für beide Funktionen wird jeweils eine obere Schranke (englisch: ''Upper Bound '') und eine untere Schranke (englisch: ''Lower Bound'') angegeben. |
==Theoretischer Hintergrund== | ==Theoretischer Hintergrund== | ||
<br> | <br> | ||
− | Bei der Untersuchung digitaler Übertragungssysteme muss oft die Wahrscheinlichkeit bestimmt werden, dass eine (mittelwertfreie) gaußverteilte Zufallsgröße $x$ mit der Varianz $σ^2$ einen vorgegebenen Wert $x_0$ überschreitet. Für diese Wahrscheinlichkeit gilt: | + | Bei der Untersuchung digitaler Übertragungssysteme muss oft die Wahrscheinlichkeit bestimmt werden, dass eine (mittelwertfreie) gaußverteilte Zufallsgröße $x$ mit der Varianz $σ^2$ einen vorgegebenen Wert $x_0$ überschreitet. Für diese Wahrscheinlichkeit gilt: |
:$${\rm Pr}(x > x_0)={\rm Q}(\frac{x_0}{\sigma}) = 1/2 \cdot {\rm erfc}(\frac{x_0}{\sqrt{2} \cdot \sigma}).$$ | :$${\rm Pr}(x > x_0)={\rm Q}(\frac{x_0}{\sigma}) = 1/2 \cdot {\rm erfc}(\frac{x_0}{\sqrt{2} \cdot \sigma}).$$ | ||
<br> | <br> | ||
Zeile 22: | Zeile 22: | ||
===Die Funktion ${\rm Q}(x )$=== | ===Die Funktion ${\rm Q}(x )$=== | ||
<br> | <br> | ||
− | Die Funktion ${\rm Q}(x)$ bezeichnet man als das ''Komplementäre Gaußsche Fehlerintegral''. Es gilt folgende Berechnungsvorschrift: | + | Die Funktion ${\rm Q}(x)$ bezeichnet man als das ''Komplementäre Gaußsche Fehlerintegral''. Es gilt folgende Berechnungsvorschrift: |
:$${\rm Q}(x ) = \frac{1}{\sqrt{2\pi}}\int_{x}^{ +\infty}\hspace{-0.2cm}{\rm e}^{-u^{2}/\hspace{0.05cm} 2}\,{\rm d} u .$$ | :$${\rm Q}(x ) = \frac{1}{\sqrt{2\pi}}\int_{x}^{ +\infty}\hspace{-0.2cm}{\rm e}^{-u^{2}/\hspace{0.05cm} 2}\,{\rm d} u .$$ | ||
*Dieses Integral ist nicht analytisch lösbar und muss – wenn man dieses Applet nicht zur Verfügung hat – aus Tabellen entnommen werden. | *Dieses Integral ist nicht analytisch lösbar und muss – wenn man dieses Applet nicht zur Verfügung hat – aus Tabellen entnommen werden. | ||
− | *Speziell für größere $x$–Werte | + | *Speziell für größere $x$–Werte (also für kleine Fehlerwahrscheinlichkeiten) liefern die nachfolgend angegebenen Schranken eine brauchbare Abschätzung für das Komplementäre Gaußsche Fehlerintegral, die auch ohne Tabellen berechnet werden können. |
− | *Eine obere Schranke (englisch: ''Upper Bound '') des Komplementären Gaußschen Fehlerintegrals lautet: | + | *Eine obere Schranke (englisch: ''Upper Bound '') des Komplementären Gaußschen Fehlerintegrals lautet: |
:$${\rm Q}_{\rm UB}(x )=\text{Upper Bound }\big [{\rm Q}(x ) \big ] = \frac{ 1}{\sqrt{2\pi}\cdot x}\cdot {\rm e}^{- x^{2}/\hspace{0.05cm}2} > {\rm Q}(x).$$ | :$${\rm Q}_{\rm UB}(x )=\text{Upper Bound }\big [{\rm Q}(x ) \big ] = \frac{ 1}{\sqrt{2\pi}\cdot x}\cdot {\rm e}^{- x^{2}/\hspace{0.05cm}2} > {\rm Q}(x).$$ | ||
− | *Entsprechend gilt für die untere Schranke (englisch: ''Lower Bound ''): | + | *Entsprechend gilt für die untere Schranke (englisch: ''Lower Bound ''): |
:$${\rm Q}_{\rm LB}(x )=\text{Lower Bound }\big [{\rm Q}(x ) \big ] =\frac{1-1/x^2}{\sqrt{2\pi}\cdot x}\cdot {\rm e}^{-x^ 2/\hspace{0.05cm}2} ={\rm Q}_{\rm UB}(x ) \cdot (1-1/x^2)< {\rm Q}(x).$$ | :$${\rm Q}_{\rm LB}(x )=\text{Lower Bound }\big [{\rm Q}(x ) \big ] =\frac{1-1/x^2}{\sqrt{2\pi}\cdot x}\cdot {\rm e}^{-x^ 2/\hspace{0.05cm}2} ={\rm Q}_{\rm UB}(x ) \cdot (1-1/x^2)< {\rm Q}(x).$$ | ||
− | In vielen Programmbibliotheken findet man allerdings die Funktion ${\rm Q}(x )$ nicht. | + | In vielen Programmbibliotheken findet man allerdings die Funktion ${\rm Q}(x )$ nicht. |
<br> | <br> | ||
+ | |||
+ | |||
===Die Funktion $1/2 \cdot {\rm erfc}(x )$=== | ===Die Funktion $1/2 \cdot {\rm erfc}(x )$=== | ||
<br> | <br> | ||
− | In fast allen Programmbibliotheken findet man dagegen die ''Komplementäre Gaußsche | + | In fast allen Programmbibliotheken findet man dagegen die ''Komplementäre Gaußsche Fehlerfunktion'' (englisch: ''Complementary Gaussian Error Function'') |
:$${\rm erfc}(x) = \frac{2}{\sqrt{\pi}}\int_{x}^{ +\infty}\hspace{-0.2cm}{\rm e}^{-u^{2}}\,{\rm d} u .$$ | :$${\rm erfc}(x) = \frac{2}{\sqrt{\pi}}\int_{x}^{ +\infty}\hspace{-0.2cm}{\rm e}^{-u^{2}}\,{\rm d} u .$$ | ||
− | die mit ${\rm Q}(x)$ wie folgt zusammenhängt: ${\rm Q}(x)=1/2\cdot {\rm erfc}(x/{\sqrt{2}}).$ Da bei fast allen Anwendungen diese Funktion mit dem Faktor $1/2$ verwendet wird, wurde in diesem Applet genau diese Funktion realisiert: | + | die mit ${\rm Q}(x)$ wie folgt zusammenhängt: ${\rm Q}(x)=1/2\cdot {\rm erfc}(x/{\sqrt{2}}).$ Da bei fast allen Anwendungen diese Funktion mit dem Faktor $1/2$ verwendet wird, wurde in diesem Applet genau diese Funktion realisiert: |
:$$1/2 \cdot{\rm erfc}(x) = \frac{1}{\sqrt{\pi}}\int_{x}^{ +\infty}\hspace{-0.2cm}{\rm e}^{-u^{2}}\,{\rm d} u .$$ | :$$1/2 \cdot{\rm erfc}(x) = \frac{1}{\sqrt{\pi}}\int_{x}^{ +\infty}\hspace{-0.2cm}{\rm e}^{-u^{2}}\,{\rm d} u .$$ | ||
Zeile 44: | Zeile 46: | ||
:$$\text{Lower Bound }\big [1/2 \cdot{\rm erfc}(x) \big ] = \frac{ {1-1/(2x^2)}}{\sqrt{\pi}\cdot 2x}\cdot {\rm e}^{- x^{2}} .$$ | :$$\text{Lower Bound }\big [1/2 \cdot{\rm erfc}(x) \big ] = \frac{ {1-1/(2x^2)}}{\sqrt{\pi}\cdot 2x}\cdot {\rm e}^{- x^{2}} .$$ | ||
<br> | <br> | ||
+ | |||
===Wann bietet welche Funktion Vorteile?=== | ===Wann bietet welche Funktion Vorteile?=== | ||
<br> | <br> | ||
{{GraueBox|TEXT= | {{GraueBox|TEXT= | ||
− | $\text{Beispiel 1:}$ Wir betrachten die binäre Basisbandübertragung. Hier lautet die Bitfehlerwahrscheinlichkeit $p_{\rm B} = {\rm Q}({s_0}/{\sigma_d})$, wobei das Nutzsignal die Werte $\pm s_0$ annehmen kann und der Rauscheffektivwert $\sigma_d$ ist. | + | $\text{Beispiel 1:}$ Wir betrachten die binäre Basisbandübertragung. Hier lautet die Bitfehlerwahrscheinlichkeit $p_{\rm B} = {\rm Q}({s_0}/{\sigma_d})$, wobei das Nutzsignal die Werte $\pm s_0$ annehmen kann und der Rauscheffektivwert $\sigma_d$ ist. |
− | Es wird vorausgesetzt, dass Tabellen zur Verfügung stehen, in denen das Argument der Gaußschen Fehlerfunktionen im Abstand $0.1$ aufgelistet sind. Mit $s_0/\sigma_d = 4$ erhält man für die Bitfehlerwahrscheinlichkeit gemäß der Q–Funktion: | + | Es wird vorausgesetzt, dass Tabellen zur Verfügung stehen, in denen das Argument der Gaußschen Fehlerfunktionen im Abstand $0.1$ aufgelistet sind. Mit $s_0/\sigma_d = 4$ erhält man für die Bitfehlerwahrscheinlichkeit gemäß der Q–Funktion: |
:$$p_{\rm B} = {\rm Q} (4) \approx 0.317 \cdot 10^{-4}\hspace{0.05cm}.$$ | :$$p_{\rm B} = {\rm Q} (4) \approx 0.317 \cdot 10^{-4}\hspace{0.05cm}.$$ | ||
Nach der zweiten Gleichung ergibt sich: | Nach der zweiten Gleichung ergibt sich: | ||
:$$p_{\rm B} = {1}/{2} \cdot {\rm erfc} ( {4}/{\sqrt{2} })= {1}/{2} \cdot {\rm erfc} ( 2.828)\approx {1}/{2} \cdot {\rm erfc} ( 2.8)= 0.375 \cdot 10^{-4}\hspace{0.05cm}.$$ | :$$p_{\rm B} = {1}/{2} \cdot {\rm erfc} ( {4}/{\sqrt{2} })= {1}/{2} \cdot {\rm erfc} ( 2.828)\approx {1}/{2} \cdot {\rm erfc} ( 2.8)= 0.375 \cdot 10^{-4}\hspace{0.05cm}.$$ | ||
*Richtiger ist der erste Wert. Bei der zweiten Berechnungsart muss man runden oder – noch besser – interpolieren, was aufgrund der starken Nichtlinearität dieser Funktion sehr schwierig ist.<br> | *Richtiger ist der erste Wert. Bei der zweiten Berechnungsart muss man runden oder – noch besser – interpolieren, was aufgrund der starken Nichtlinearität dieser Funktion sehr schwierig ist.<br> | ||
− | *Bei den gegebenen Zahlenwerten ist demnach Q–Funktion besser geeignet. Außerhalb von Übungsbeispielen wird $s_0/\sigma_d$ in der Regel einen „krummen” Wert besitzen. In diesem Fall bietet ${\rm Q}(x)$ natürlich keinen Vorteil gegenüber $1/2 \cdot{\rm erfc}(x)$. }} | + | *Bei den gegebenen Zahlenwerten ist demnach Q–Funktion besser geeignet. Außerhalb von Übungsbeispielen wird allerdings $s_0/\sigma_d$ in der Regel einen „krummen” Wert besitzen. In diesem Fall bietet ${\rm Q}(x)$ natürlich keinen Vorteil gegenüber $1/2 \cdot{\rm erfc}(x)$. }} |
{{GraueBox|TEXT= | {{GraueBox|TEXT= | ||
$\text{Beispiel 2:}$ | $\text{Beispiel 2:}$ | ||
− | Mit der Energie pro Bit $(E_{\rm B})$ und der Rauschleistungsdichte $(N_0)$ gilt für die Bitfehlerwahrscheinlichkeit von ''Binary Phase Shift Keying'' (BPSK): | + | Mit der Energie pro Bit $(E_{\rm B})$ und der Rauschleistungsdichte $(N_0)$ gilt für die Bitfehlerwahrscheinlichkeit von ''Binary Phase Shift Keying'' (BPSK): |
:$$p_{\rm B} = {\rm Q} \left ( \sqrt{ {2 E_{\rm B} }/{N_0} }\right ) = {1}/{2} \cdot {\rm erfc} \left ( \sqrt{ {E_{\rm B} }/{N_0} }\right ) \hspace{0.05cm}.$$ | :$$p_{\rm B} = {\rm Q} \left ( \sqrt{ {2 E_{\rm B} }/{N_0} }\right ) = {1}/{2} \cdot {\rm erfc} \left ( \sqrt{ {E_{\rm B} }/{N_0} }\right ) \hspace{0.05cm}.$$ | ||
− | Für die Zahlenwerte $E_{\rm B} = 16 \ \rm mWs$ und $N_0 = 16 \ \rm mW/Hz$ erhält man: | + | Für die Zahlenwerte $E_{\rm B} = 16 \ \rm mWs$ und $N_0 = 16 \ \rm mW/Hz$ erhält man: |
:$$p_{\rm B} = {\rm Q} \left (4 \cdot \sqrt{ 2} \right ) = {1}/{2} \cdot {\rm erfc} \left ( 4\right ) \hspace{0.05cm}.$$ | :$$p_{\rm B} = {\rm Q} \left (4 \cdot \sqrt{ 2} \right ) = {1}/{2} \cdot {\rm erfc} \left ( 4\right ) \hspace{0.05cm}.$$ | ||
− | *Der erste Weg führt zum Ergebnis $p_{\rm B} = {\rm Q} (5.657) \approx {\rm Q} (5.7) = 0.6 \cdot 10^{-8}\hspace{0.05cm}$, während $1/2 \cdot{\rm erfc}(x)$ hier den richtigeren Wert $p_{\rm B} \approx 0.771 \cdot 10^{-8}$ liefert. | + | *Der erste Weg führt zum Ergebnis $p_{\rm B} = {\rm Q} (5.657) \approx {\rm Q} (5.7) = 0.6 \cdot 10^{-8}\hspace{0.05cm}$, während $1/2 \cdot{\rm erfc}(x)$ hier den richtigeren Wert $p_{\rm B} \approx 0.771 \cdot 10^{-8}$ liefert. |
− | *Wie im ersten Beispiel erkennt man aber auch hier: Die Funktionen ${\rm Q}(x)$ und $1/2 \cdot{\rm erfc}(x)$ sind grundsätzlich gleich gut geeignet. Vor– oder Nachteile der einen oder anderen Funktion ergeben sich nur bei konkreten Zahlenwerten.}} | + | *Wie im ersten Beispiel erkennt man aber auch hier: Die Funktionen ${\rm Q}(x)$ und $1/2 \cdot{\rm erfc}(x)$ sind grundsätzlich gleich gut geeignet. Vor– oder Nachteile der einen oder anderen Funktion ergeben sich nur bei konkreten Zahlenwerten.}} |
<br> | <br> | ||
Zeile 71: | Zeile 74: | ||
<br> | <br> | ||
− | [[Datei:Qfunction bedienung.png| | + | [[Datei:Qfunction bedienung.png|right|550px]] |
'''(A)''' Verwendete Gleichungen am Beispiel ${\rm Q}(x)$ | '''(A)''' Verwendete Gleichungen am Beispiel ${\rm Q}(x)$ | ||
− | '''(B)''' Auswahloption ${\rm Q}(x)$ oder ${\rm 0.5 \cdot erfc}(x)$ | + | '''(B)''' Auswahloption für ${\rm Q}(x)$ oder ${\rm 0.5 \cdot erfc}(x)$ |
'''(C)''' Schranken ${\rm LB}$ und ${\rm UB}$ werden gezeichnet | '''(C)''' Schranken ${\rm LB}$ und ${\rm UB}$ werden gezeichnet | ||
Zeile 86: | Zeile 89: | ||
'''(G)''' Slidereingabe des Abszissenwertes $x$ für lineare Abszisse | '''(G)''' Slidereingabe des Abszissenwertes $x$ für lineare Abszisse | ||
− | '''(H)''' Slidereingabe des Abszissenwertes $\rho \ \rm [dB]$ für | + | '''(H)''' Slidereingabe des Abszissenwertes $\rho \ \rm [dB]$ für logarithmische Abszisse |
− | '''(I)''' Grafikausgabe der Funktion ${\rm Q}(x)$ – hier: lineare Abszisse | + | '''(I)''' Grafikausgabe der Funktion ${\rm Q}(x)$ – hier: lineare Abszisse |
− | '''(J)''' Grafikausgabe der Funktion ${\rm 0.5 \cdot erfc}(x)$ – hier: lineare Abszisse | + | '''(J)''' Grafikausgabe der Funktion ${\rm 0.5 \cdot erfc}(x)$ – hier: lineare Abszisse |
'''(K)''' Variationsmöglichkeit für die graphischen Darstellungen | '''(K)''' Variationsmöglichkeit für die graphischen Darstellungen | ||
Zeile 103: | Zeile 106: | ||
<br clear=all> | <br clear=all> | ||
==Über die Autoren== | ==Über die Autoren== | ||
− | Dieses interaktive Berechnungstool wurde am [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] der [https://www.tum.de/ Technischen Universität München] konzipiert und realisiert. | + | Dieses interaktive Berechnungstool wurde am [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] der [https://www.tum.de/ Technischen Universität München] konzipiert und realisiert. |
− | *Die erste Version wurde 2007 von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Thomas_Gro.C3.9Fer_.28Diplomarbeit_LB_2006.2C_danach_freie_Mitarbeit_bis_2010.29|Thomas Großer]] im Rahmen seiner Diplomarbeit mit „FlashMX–Actionscript” erstellt (Betreuer: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]). | + | *Die erste Version wurde 2007 von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Thomas_Gro.C3.9Fer_.28Diplomarbeit_LB_2006.2C_danach_freie_Mitarbeit_bis_2010.29|Thomas Großer]] im Rahmen seiner Diplomarbeit mit „FlashMX–Actionscript” erstellt (Betreuer: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]). |
− | *2018 wurde das Programm von ''Marwen Ben Ammar'' und [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Xiaohan_Liu_.28Bachelorarbeit_2018.29|Xiaohan Liu]] (Bachelorarbeit, Betreuer: [[Biografien_und_Bibliografien/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]] ) auf „HTML5” umgesetzt und neu gestaltet. | + | *2018/2019 wurde das Programm von ''Marwen Ben Ammar'' und [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Xiaohan_Liu_.28Bachelorarbeit_2018.29|Xiaohan Liu]] (Bachelorarbeit, Betreuer: [[Biografien_und_Bibliografien/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]] ) auf „HTML5” umgesetzt und neu gestaltet. |
+ | |||
==Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster== | ==Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster== | ||
− | + | <br> | |
{{LntAppletLink|qfunction}} | {{LntAppletLink|qfunction}} | ||
+ | ''Hinweis:'' Das Applet ist für '''CHROME''' optimiert. Bei anderen Browsern kommt es teilweise zu Darstellungsproblemen. |
Version vom 25. März 2019, 12:11 Uhr
Applet in neuem Tab öffnen Hinweis: Das Applet ist für CHROME optimiert. Bei anderen Browsern kommt es teilweise zu Darstellungsproblemen.
Das neue Applet ist noch in Bearbeitung –Hier auch die Vorgängerversion (ungeeignet für Smartphones)
Flash Applet herunter laden
Inhaltsverzeichnis
Programmbeschreibung
Dieses Applet ermöglicht die Berechnung und graphische Darstellung der Gaußschen Fehlerfunktionen ${\rm Q}(x)$ und $1/2\cdot {\rm erfc}(x)$, die für die Fehlerwahrscheinlichkeitsberechnung von großer Bedeutung sind.
- Sowohl die Abszisse als auch der Funktionswert können entweder linear oder logarithmisch dargestellt werden.
- Für beide Funktionen wird jeweils eine obere Schranke (englisch: Upper Bound ) und eine untere Schranke (englisch: Lower Bound) angegeben.
Theoretischer Hintergrund
Bei der Untersuchung digitaler Übertragungssysteme muss oft die Wahrscheinlichkeit bestimmt werden, dass eine (mittelwertfreie) gaußverteilte Zufallsgröße $x$ mit der Varianz $σ^2$ einen vorgegebenen Wert $x_0$ überschreitet. Für diese Wahrscheinlichkeit gilt:
- $${\rm Pr}(x > x_0)={\rm Q}(\frac{x_0}{\sigma}) = 1/2 \cdot {\rm erfc}(\frac{x_0}{\sqrt{2} \cdot \sigma}).$$
Die Funktion ${\rm Q}(x )$
Die Funktion ${\rm Q}(x)$ bezeichnet man als das Komplementäre Gaußsche Fehlerintegral. Es gilt folgende Berechnungsvorschrift:
- $${\rm Q}(x ) = \frac{1}{\sqrt{2\pi}}\int_{x}^{ +\infty}\hspace{-0.2cm}{\rm e}^{-u^{2}/\hspace{0.05cm} 2}\,{\rm d} u .$$
- Dieses Integral ist nicht analytisch lösbar und muss – wenn man dieses Applet nicht zur Verfügung hat – aus Tabellen entnommen werden.
- Speziell für größere $x$–Werte (also für kleine Fehlerwahrscheinlichkeiten) liefern die nachfolgend angegebenen Schranken eine brauchbare Abschätzung für das Komplementäre Gaußsche Fehlerintegral, die auch ohne Tabellen berechnet werden können.
- Eine obere Schranke (englisch: Upper Bound ) des Komplementären Gaußschen Fehlerintegrals lautet:
- $${\rm Q}_{\rm UB}(x )=\text{Upper Bound }\big [{\rm Q}(x ) \big ] = \frac{ 1}{\sqrt{2\pi}\cdot x}\cdot {\rm e}^{- x^{2}/\hspace{0.05cm}2} > {\rm Q}(x).$$
- Entsprechend gilt für die untere Schranke (englisch: Lower Bound ):
- $${\rm Q}_{\rm LB}(x )=\text{Lower Bound }\big [{\rm Q}(x ) \big ] =\frac{1-1/x^2}{\sqrt{2\pi}\cdot x}\cdot {\rm e}^{-x^ 2/\hspace{0.05cm}2} ={\rm Q}_{\rm UB}(x ) \cdot (1-1/x^2)< {\rm Q}(x).$$
In vielen Programmbibliotheken findet man allerdings die Funktion ${\rm Q}(x )$ nicht.
Die Funktion $1/2 \cdot {\rm erfc}(x )$
In fast allen Programmbibliotheken findet man dagegen die Komplementäre Gaußsche Fehlerfunktion (englisch: Complementary Gaussian Error Function)
- $${\rm erfc}(x) = \frac{2}{\sqrt{\pi}}\int_{x}^{ +\infty}\hspace{-0.2cm}{\rm e}^{-u^{2}}\,{\rm d} u .$$
die mit ${\rm Q}(x)$ wie folgt zusammenhängt: ${\rm Q}(x)=1/2\cdot {\rm erfc}(x/{\sqrt{2}}).$ Da bei fast allen Anwendungen diese Funktion mit dem Faktor $1/2$ verwendet wird, wurde in diesem Applet genau diese Funktion realisiert:
- $$1/2 \cdot{\rm erfc}(x) = \frac{1}{\sqrt{\pi}}\int_{x}^{ +\infty}\hspace{-0.2cm}{\rm e}^{-u^{2}}\,{\rm d} u .$$
- Auch für diese Funktion kann wieder eine obere und eine untere Schranke angegeben werden:
- $$\text{Upper Bound }\big [1/2 \cdot{\rm erfc}(x) \big ] = \frac{ 1}{\sqrt{\pi}\cdot 2x}\cdot {\rm e}^{- x^{2}} ,$$
- $$\text{Lower Bound }\big [1/2 \cdot{\rm erfc}(x) \big ] = \frac{ {1-1/(2x^2)}}{\sqrt{\pi}\cdot 2x}\cdot {\rm e}^{- x^{2}} .$$
Wann bietet welche Funktion Vorteile?
$\text{Beispiel 1:}$ Wir betrachten die binäre Basisbandübertragung. Hier lautet die Bitfehlerwahrscheinlichkeit $p_{\rm B} = {\rm Q}({s_0}/{\sigma_d})$, wobei das Nutzsignal die Werte $\pm s_0$ annehmen kann und der Rauscheffektivwert $\sigma_d$ ist.
Es wird vorausgesetzt, dass Tabellen zur Verfügung stehen, in denen das Argument der Gaußschen Fehlerfunktionen im Abstand $0.1$ aufgelistet sind. Mit $s_0/\sigma_d = 4$ erhält man für die Bitfehlerwahrscheinlichkeit gemäß der Q–Funktion:
- $$p_{\rm B} = {\rm Q} (4) \approx 0.317 \cdot 10^{-4}\hspace{0.05cm}.$$
Nach der zweiten Gleichung ergibt sich:
- $$p_{\rm B} = {1}/{2} \cdot {\rm erfc} ( {4}/{\sqrt{2} })= {1}/{2} \cdot {\rm erfc} ( 2.828)\approx {1}/{2} \cdot {\rm erfc} ( 2.8)= 0.375 \cdot 10^{-4}\hspace{0.05cm}.$$
- Richtiger ist der erste Wert. Bei der zweiten Berechnungsart muss man runden oder – noch besser – interpolieren, was aufgrund der starken Nichtlinearität dieser Funktion sehr schwierig ist.
- Bei den gegebenen Zahlenwerten ist demnach Q–Funktion besser geeignet. Außerhalb von Übungsbeispielen wird allerdings $s_0/\sigma_d$ in der Regel einen „krummen” Wert besitzen. In diesem Fall bietet ${\rm Q}(x)$ natürlich keinen Vorteil gegenüber $1/2 \cdot{\rm erfc}(x)$.
$\text{Beispiel 2:}$ Mit der Energie pro Bit $(E_{\rm B})$ und der Rauschleistungsdichte $(N_0)$ gilt für die Bitfehlerwahrscheinlichkeit von Binary Phase Shift Keying (BPSK):
- $$p_{\rm B} = {\rm Q} \left ( \sqrt{ {2 E_{\rm B} }/{N_0} }\right ) = {1}/{2} \cdot {\rm erfc} \left ( \sqrt{ {E_{\rm B} }/{N_0} }\right ) \hspace{0.05cm}.$$
Für die Zahlenwerte $E_{\rm B} = 16 \ \rm mWs$ und $N_0 = 16 \ \rm mW/Hz$ erhält man:
- $$p_{\rm B} = {\rm Q} \left (4 \cdot \sqrt{ 2} \right ) = {1}/{2} \cdot {\rm erfc} \left ( 4\right ) \hspace{0.05cm}.$$
- Der erste Weg führt zum Ergebnis $p_{\rm B} = {\rm Q} (5.657) \approx {\rm Q} (5.7) = 0.6 \cdot 10^{-8}\hspace{0.05cm}$, während $1/2 \cdot{\rm erfc}(x)$ hier den richtigeren Wert $p_{\rm B} \approx 0.771 \cdot 10^{-8}$ liefert.
- Wie im ersten Beispiel erkennt man aber auch hier: Die Funktionen ${\rm Q}(x)$ und $1/2 \cdot{\rm erfc}(x)$ sind grundsätzlich gleich gut geeignet. Vor– oder Nachteile der einen oder anderen Funktion ergeben sich nur bei konkreten Zahlenwerten.
Zur Handhabung des Applets
(A) Verwendete Gleichungen am Beispiel ${\rm Q}(x)$
(B) Auswahloption für ${\rm Q}(x)$ oder ${\rm 0.5 \cdot erfc}(x)$
(C) Schranken ${\rm LB}$ und ${\rm UB}$ werden gezeichnet
(D) Auswahl, ob Abszisse linear $\rm (lin)$ oder logarithmisch $\rm (log)$
(E) Auswahl, ob Ordinate linear $\rm (lin)$ oder logarithmisch $\rm (log)$
(F) Numerikausgabe am Beispiel ${\rm Q}(x)$ bei linearer Abszisse
(G) Slidereingabe des Abszissenwertes $x$ für lineare Abszisse
(H) Slidereingabe des Abszissenwertes $\rho \ \rm [dB]$ für logarithmische Abszisse
(I) Grafikausgabe der Funktion ${\rm Q}(x)$ – hier: lineare Abszisse
(J) Grafikausgabe der Funktion ${\rm 0.5 \cdot erfc}(x)$ – hier: lineare Abszisse
(K) Variationsmöglichkeit für die graphischen Darstellungen
$\hspace{1.5cm}$„$+$” (Vergrößern),
$\hspace{1.5cm}$ „$-$” (Verkleinern)
$\hspace{1.5cm}$ „$\rm o$” (Zurücksetzen)
$\hspace{1.5cm}$ „$\leftarrow$” (Verschieben nach links), usw.
Über die Autoren
Dieses interaktive Berechnungstool wurde am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.
- Die erste Version wurde 2007 von Thomas Großer im Rahmen seiner Diplomarbeit mit „FlashMX–Actionscript” erstellt (Betreuer: Günter Söder).
- 2018/2019 wurde das Programm von Marwen Ben Ammar und Xiaohan Liu (Bachelorarbeit, Betreuer: Tasnád Kernetzky ) auf „HTML5” umgesetzt und neu gestaltet.
Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster
Applet in neuem Tab öffnen
Hinweis: Das Applet ist für CHROME optimiert. Bei anderen Browsern kommt es teilweise zu Darstellungsproblemen.