Aufgaben:Aufgabe 5.7: McCullough-Parameter aus Gilbert-Elliott-Parameter: Unterschied zwischen den Versionen
(7 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt) | |||
Zeile 3: | Zeile 3: | ||
[[Datei:P_ID1844__Dig_A_5_7.png|right|frame|Gilbert-Elliott– und McCullough–Modell]] | [[Datei:P_ID1844__Dig_A_5_7.png|right|frame|Gilbert-Elliott– und McCullough–Modell]] | ||
− | In [[Aufgaben:5.6:_Fehlerkorrelationsdauer| Aufgabe 5.6]] und [[Aufgaben: | + | In [[Aufgaben:5.6:_Fehlerkorrelationsdauer| Aufgabe 5.6]] und [[Aufgaben:Aufgabe_5.6Z:_GE-Modelleigenschaften| Aufgabe 5.6Z]] wurden jeweils das GE–Modell mit den Parameterwerten |
:$$p_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.001, | :$$p_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.001, | ||
\hspace{0.2cm}p_{\rm B} = 0.1,\hspace{0.2cm} | \hspace{0.2cm}p_{\rm B} = 0.1,\hspace{0.2cm} | ||
Zeile 11: | Zeile 11: | ||
B\hspace{0.05cm}|\hspace{0.05cm} G) = 0.01\hspace{0.05cm}.$$ | B\hspace{0.05cm}|\hspace{0.05cm} G) = 0.01\hspace{0.05cm}.$$ | ||
− | genauer untersucht. Gegenüber diesen Aufgaben werden nun die Übergangswahrscheinlichkeiten umbenannt, beispielsweise wird $p(\rm B\hspace{0.05cm}|\hspace{0.05cm}G)$ anstelle von $\rm Pr(B\hspace{0.05cm}|\hspace{0.05cm}G)$ geschrieben. In der oberen Grafik ist diese Umbenennung bereits vorgenommen. | + | genauer untersucht. Gegenüber diesen Aufgaben werden nun die Übergangswahrscheinlichkeiten umbenannt, beispielsweise wird $p(\rm B\hspace{0.05cm}|\hspace{0.05cm}G)$ anstelle von $\rm Pr(B\hspace{0.05cm}|\hspace{0.05cm}G)$ geschrieben. In der oberen Grafik ist diese Umbenennung bereits vorgenommen. |
− | Die untere Grafik zeigt das MC–Modell von McCullough. Dieses besitzt die genau gleiche Struktur wie das GE–Modell, doch werden nun alle Wahrscheinlichkeiten mit $q$ anstelle von $p$ bezeichnet. | + | Die untere Grafik zeigt das MC–Modell von McCullough. Dieses besitzt die genau gleiche Struktur wie das GE–Modell, doch werden nun alle Wahrscheinlichkeiten mit $q$ anstelle von $p$ bezeichnet. |
− | Beispielsweise bezeichnet beim MC–Modell $q\rm (B\hspace{0.05cm}|\hspace{0.05cm}G)$ die Übergangswahrscheinlichkeit von Zustand $\rm G$ in den Zustand$\rm B$ unter der Voraussetzung, dass im Zustand $\rm G$ gerade ein Fehler aufgetreten ist. Der GE–Parameter $p \rm (B\hspace{0.05cm}|\hspace{0.05cm}G)$ kennzeichnet dagegen diese Übergangswahrscheinlichkeit ohne Zusatzbedingung. | + | Beispielsweise bezeichnet beim MC–Modell $q\rm (B\hspace{0.05cm}|\hspace{0.05cm}G)$ die Übergangswahrscheinlichkeit von Zustand $\rm G$ in den Zustand $\rm B$ unter der Voraussetzung, dass im Zustand $\rm G$ gerade ein Fehler aufgetreten ist. Der GE–Parameter $p \rm (B\hspace{0.05cm}|\hspace{0.05cm}G)$ kennzeichnet dagegen diese Übergangswahrscheinlichkeit ohne Zusatzbedingung. |
− | Die Parameter des GE–Modells ⇒ $p_{\rm G}, p_{\rm B}, p({\rm B\hspace{0.05cm}|\hspace{0.05cm}G}), p({\rm G\hspace{0.05cm}|\hspace{0.05cm}B})$ können so in die entsprechenden MC–Parameter $q_{\rm G}, q_{\rm B}, q({\rm B\hspace{0.05cm}|\hspace{0.05cm}G})$ und $q({\rm G\hspace{0.05cm}|\hspace{0.05cm}B})$ umgerechnet werden, dass eine in ihren statistischen Eigenschaften gleiche Fehlerfolge wie beim GE–Modell erzeugt wird, allerdings nicht die identische Folge. | + | Die Parameter des GE–Modells ⇒ $p_{\rm G}, \hspace{0.1cm} p_{\rm B}, \hspace{0.1cm} p({\rm B\hspace{0.05cm}|\hspace{0.05cm}G}), \hspace{0.1cm} p({\rm G\hspace{0.05cm}|\hspace{0.05cm}B})$ können so in die entsprechenden MC–Parameter $q_{\rm G}, \hspace{0.1cm} q_{\rm B},\hspace{0.1cm} q({\rm B\hspace{0.05cm}|\hspace{0.05cm}G})$ und $q({\rm G\hspace{0.05cm}|\hspace{0.05cm}B})$ umgerechnet werden, dass eine in ihren statistischen Eigenschaften gleiche Fehlerfolge wie beim GE–Modell erzeugt wird, allerdings nicht die identische Folge. |
Die Umrechnungsgleichungen lauten: | Die Umrechnungsgleichungen lauten: | ||
:$$q_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1-\beta_{\rm | :$$q_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1-\beta_{\rm | ||
G}\hspace{0.05cm}, \hspace{0.2cm}q_{\rm | G}\hspace{0.05cm}, \hspace{0.2cm}q_{\rm | ||
− | B} = 1-\beta_{\rm B}\hspace{0.05cm}, | + | B} = 1-\beta_{\rm B}\hspace{0.05cm},\hspace{0.5cm} |
− | + | q(\rm B\hspace{0.05cm}|\hspace{0.05cm} G ) \hspace{-0.1cm} \ = \ | |
− | \hspace{-0.1cm}\frac{\alpha_{\rm B} \cdot[{\rm Pr}(\rm | + | \hspace{-0.1cm}\frac{\alpha_{\rm B} \cdot \big [{\rm Pr}(\rm |
− | B\hspace{0.05cm}|\hspace{0.05cm} G ) + {\rm Pr}( | + | B\hspace{0.05cm}|\hspace{0.05cm} G ) + {\rm Pr}( |
− | G\hspace{0.05cm}|\hspace{0.05cm} B )]}{\alpha_{\rm G} \cdot | + | G\hspace{0.05cm}|\hspace{0.05cm} B )\big ]}{\alpha_{\rm G} \cdot {\it q}_{\rm |
− | B} + \alpha_{\rm B} \cdot | + | B} + \alpha_{\rm B} \cdot {\it q}_{\rm G}} \hspace{0.05cm},\hspace{0.5cm} |
− | + | \hspace{0.2cm}{\it q}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B )\hspace{-0.1cm} \ = \ | |
\hspace{-0.1cm} | \hspace{-0.1cm} | ||
− | \frac{\alpha_{\rm G}}{\alpha_{\rm B}} \cdot q(\rm | + | \frac{\alpha_{\rm G}}{\alpha_{\rm B}} \cdot {\it q}(\rm |
B\hspace{0.05cm}|\hspace{0.05cm} G )\hspace{0.05cm}.$$ | B\hspace{0.05cm}|\hspace{0.05cm} G )\hspace{0.05cm}.$$ | ||
Zeile 62: | Zeile 62: | ||
\hspace{0.2cm}\alpha_{\rm B} = 1-\alpha_{\rm G}\hspace{0.05cm}.$$ | \hspace{0.2cm}\alpha_{\rm B} = 1-\alpha_{\rm G}\hspace{0.05cm}.$$ | ||
− | $w_{\rm G}$ und $w_{\rm B}$ sind die Zustandswahrscheinlichkeiten für „GOOD” und „BAD” des GE–Modells. In der | + | $w_{\rm G}$ und $w_{\rm B}$ sind die Zustandswahrscheinlichkeiten für „GOOD” und „BAD” des GE–Modells. In der [[Aufgaben:5.6Z_GE-Modelleigenschaften| Aufgabe 5.6Z]] wurden diese wie folgt berechnet: |
:$$w_{\rm G} = {10}/{11}\hspace{0.05cm}, \hspace{0.2cm}w_{\rm B} | :$$w_{\rm G} = {10}/{11}\hspace{0.05cm}, \hspace{0.2cm}w_{\rm B} | ||
= {1}/{11}\hspace{0.05cm}.$$ | = {1}/{11}\hspace{0.05cm}.$$ | ||
− | Die entsprechenden Zustandswahrscheinlichkeiten des MC–Modells sind $\alpha_{\rm G}$ und $\alpha_{\rm B}$. | + | Die entsprechenden Zustandswahrscheinlichkeiten des MC–Modells sind $\alpha_{\rm G}$ und $\alpha_{\rm B}$. |
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
''Hinweise:'' | ''Hinweise:'' | ||
− | * Die Aufgabe gehört zum Kapitel [[Digitalsignal%C3%BCbertragung/B%C3%BCndelfehlerkan%C3%A4le| Bündelfehlerkanäle]]. | + | * Die Aufgabe gehört zum Kapitel [[Digitalsignal%C3%BCbertragung/B%C3%BCndelfehlerkan%C3%A4le| Bündelfehlerkanäle]]. |
− | * In der nachfolgenden [[ | + | * In der nachfolgenden [[Aufgaben:Aufgabe_5.7Z:_Nochmals_McCullough-Modell|Aufgabe 5.7Z]] werden die wichtigsten Beschreibungsgrößen direkt aus den MC–Parametern berechnet: |
** Fehlerkorrelationsfunktion, | ** Fehlerkorrelationsfunktion, | ||
** Korrelationsdauer, | ** Korrelationsdauer, | ||
Zeile 76: | Zeile 81: | ||
** Fehlerabstandsverteilung | ** Fehlerabstandsverteilung | ||
− | + | ||
− | + | ||
Zeile 84: | Zeile 89: | ||
{Berechnen Sie die folgenden Hilfsgrößen: | {Berechnen Sie die folgenden Hilfsgrößen: | ||
|type="{}"} | |type="{}"} | ||
− | $u_{\rm GG}\ = \ $ { 0.98901 3% } | + | $u_{\rm GG}\hspace{0.05cm} = \ $ { 0.98901 3% } |
$u_{\rm BG}\ = \ $ { 0.09 3% } | $u_{\rm BG}\ = \ $ { 0.09 3% } | ||
$u_{\rm GB}\ = \ $ { 0.00999 3% } | $u_{\rm GB}\ = \ $ { 0.00999 3% } | ||
$u_{\rm BB}\ = \ $ { 0.81 3% } | $u_{\rm BB}\ = \ $ { 0.81 3% } | ||
− | $\beta_{\rm G}\ = \ $ { 0.9939 3% } | + | $\beta_{\rm G}\hspace{0.3cm} = \ $ { 0.9939 3% } |
− | $\beta_{\rm B}\ = \ $ { 0.8051 3% } | + | $\beta_{\rm B}\hspace{0.32cm} = \ $ { 0.8051 3% } |
{Wie lauten die beiden Fehlerwahrscheinlichkeiten des MC–Modells? | {Wie lauten die beiden Fehlerwahrscheinlichkeiten des MC–Modells? | ||
|type="{}"} | |type="{}"} | ||
− | $q_{\rm G} \ = \ $ { 0. | + | $q_{\rm G} \hspace{0.08cm} = \ $ { 0.0061 3% } |
$q_{\rm B} \ = \ $ { 0.1949 3% } | $q_{\rm B} \ = \ $ { 0.1949 3% } | ||
Zeile 100: | Zeile 105: | ||
$x_{\rm G} \ = \ $ { 0.5432 3% } | $x_{\rm G} \ = \ $ { 0.5432 3% } | ||
$x_{\rm B} \ = \ $ { -20.99964--19.77636 } | $x_{\rm B} \ = \ $ { -20.99964--19.77636 } | ||
− | $\alpha_{\rm G} \ = \ $ { 0.5975 3% } | + | $\alpha_{\rm G} \hspace{0.05cm} = \ $ { 0.5975 3% } |
$\alpha_{\rm B} \ = \ $ { 0.4025 3% } | $\alpha_{\rm B} \ = \ $ { 0.4025 3% } | ||
{Berechnen Sie die Übergangswahrscheinlichkeiten des MC–Modells: | {Berechnen Sie die Übergangswahrscheinlichkeiten des MC–Modells: | ||
|type="{}"} | |type="{}"} | ||
− | $q(\rm B|G)\ = \ $ { 0.3724 3% } | + | $q(\rm B\hspace{0.05cm}|\hspace{0.05cm} G)\ = \ $ { 0.3724 3% } |
− | $q(\rm G|B)\ = \ $ { 0.5528 3% } | + | $q(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)\ = \ $ { 0.5528 3% } |
</quiz> | </quiz> | ||
Zeile 126: | Zeile 131: | ||
\cdot (1 -0.1) \hspace{0.15cm}\underline {\approx 0.81}\hspace{0.05cm}.$$ | \cdot (1 -0.1) \hspace{0.15cm}\underline {\approx 0.81}\hspace{0.05cm}.$$ | ||
− | Daraus folgt für die $\beta$–Hilfsgrößen: | + | *Daraus folgt für die $\beta$–Hilfsgrößen: |
− | :$$\beta_{\rm G} | + | :$$\beta_{\rm G} =\frac{u_{\rm GG} + u_{\rm BB} + \sqrt{(u_{\rm GG} - |
− | |||
u_{\rm BB})^2 + 4 \cdot u_{\rm GB}\cdot u_{\rm BG}}}{2} | u_{\rm BB})^2 + 4 \cdot u_{\rm GB}\cdot u_{\rm BG}}}{2} | ||
− | + | =\frac{0.98901 + 0.81 + | |
− | |||
\sqrt{(0.98901 - 0.81)^2 + 4 \cdot 0.00999\cdot 0.09}}{2} | \sqrt{(0.98901 - 0.81)^2 + 4 \cdot 0.00999\cdot 0.09}}{2} | ||
− | + | $$ | |
− | :$$\hspace{ | + | :$$\Rightarrow \hspace{0.3cm}\beta_{\rm G}= \frac{1.79901 + \sqrt{0.03204 |
+ 0.003596}}{2} = \frac{1.79901 + 0.18877}{2} \hspace{0.15cm}\underline {= 0.9939} | + 0.003596}}{2} = \frac{1.79901 + 0.18877}{2} \hspace{0.15cm}\underline {= 0.9939} | ||
\hspace{0.05cm},$$ | \hspace{0.05cm},$$ | ||
:$$\beta_{\rm B} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}\frac{u_{\rm | :$$\beta_{\rm B} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}\frac{u_{\rm | ||
GG} + u_{\rm BB} - \sqrt{(u_{\rm GG} - u_{\rm BB})^2 + 4 \cdot | GG} + u_{\rm BB} - \sqrt{(u_{\rm GG} - u_{\rm BB})^2 + 4 \cdot | ||
− | u_{\rm GB}\cdot u_{\rm BG}}}{2}\hspace{0.05cm}, | + | u_{\rm GB}\cdot u_{\rm BG}}}{2}\hspace{0.05cm}, = \ \hspace{-0.1cm}\text{...} = \frac{1.79901 - 0.18877}{2} |
− | |||
\hspace{0.15cm}\underline {= 0.8051} \hspace{0.05cm}.$$ | \hspace{0.15cm}\underline {= 0.8051} \hspace{0.05cm}.$$ | ||
− | '''(2)''' Mit dem Ergebnis der Teilaufgabe (1) erhält man: | + | '''(2)''' Mit dem Ergebnis der Teilaufgabe '''(1)''' erhält man: |
:$$q_{\rm G} = 1-\beta_{\rm G} = | :$$q_{\rm G} = 1-\beta_{\rm G} = | ||
1 - 0.9939 \hspace{0.15cm}\underline {= 0.0061}\hspace{0.05cm}, \hspace{0.3cm}q_{\rm B} = 1-\beta_{\rm B}= 1 - 0.8051 \hspace{0.15cm}\underline {= | 1 - 0.9939 \hspace{0.15cm}\underline {= 0.0061}\hspace{0.05cm}, \hspace{0.3cm}q_{\rm B} = 1-\beta_{\rm B}= 1 - 0.8051 \hspace{0.15cm}\underline {= | ||
0.1949}\hspace{0.05cm}.$$ | 0.1949}\hspace{0.05cm}.$$ | ||
+ | |||
Zeile 159: | Zeile 162: | ||
:$$\alpha_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{(w_{\rm | :$$\alpha_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{(w_{\rm | ||
G} \cdot p_{\rm G} + w_{\rm B} \cdot p_{\rm B}\cdot x_{\rm G})( | G} \cdot p_{\rm G} + w_{\rm B} \cdot p_{\rm B}\cdot x_{\rm G})( | ||
− | x_{\rm B}-1)}{p_{\rm M} \cdot( x_{\rm B}-x_{\rm G})} = | + | x_{\rm B}-1)}{p_{\rm M} \cdot( x_{\rm B}-x_{\rm G})} = \frac{(0.9091 \cdot 0.001 + |
− | |||
0.0909 \cdot 0.1\cdot 0.5432)( -20.388-1)}{0.01 \cdot( -20.388 | 0.0909 \cdot 0.1\cdot 0.5432)( -20.388-1)}{0.01 \cdot( -20.388 | ||
-0.5432)} \hspace{0.15cm}\underline {= 0.5975} \hspace{0.05cm},$$ | -0.5432)} \hspace{0.15cm}\underline {= 0.5975} \hspace{0.05cm},$$ | ||
Zeile 173: | Zeile 175: | ||
B\hspace{0.05cm}|\hspace{0.05cm} G ) + {\rm Pr}(\rm | B\hspace{0.05cm}|\hspace{0.05cm} G ) + {\rm Pr}(\rm | ||
G\hspace{0.05cm}|\hspace{0.05cm} B )]}{\alpha_{\rm G} \cdot q_{\rm | G\hspace{0.05cm}|\hspace{0.05cm} B )]}{\alpha_{\rm G} \cdot q_{\rm | ||
− | B} + \alpha_{\rm B} \cdot q_{\rm G}} | + | B} + \alpha_{\rm B} \cdot q_{\rm G}} =\frac{0.4025 \cdot[0.1 + |
− | |||
0.01]}{0.5975 \cdot 0.1949 + 0.4025 \cdot 0.0061}\hspace{0.15cm}\underline {= 0.3724} | 0.01]}{0.5975 \cdot 0.1949 + 0.4025 \cdot 0.0061}\hspace{0.15cm}\underline {= 0.3724} | ||
\hspace{0.05cm},$$ | \hspace{0.05cm},$$ |
Aktuelle Version vom 26. März 2019, 15:32 Uhr
In Aufgabe 5.6 und Aufgabe 5.6Z wurden jeweils das GE–Modell mit den Parameterwerten
- $$p_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.001, \hspace{0.2cm}p_{\rm B} = 0.1,\hspace{0.2cm} {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.1, \hspace{0.2cm} {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G) = 0.01\hspace{0.05cm}.$$
genauer untersucht. Gegenüber diesen Aufgaben werden nun die Übergangswahrscheinlichkeiten umbenannt, beispielsweise wird $p(\rm B\hspace{0.05cm}|\hspace{0.05cm}G)$ anstelle von $\rm Pr(B\hspace{0.05cm}|\hspace{0.05cm}G)$ geschrieben. In der oberen Grafik ist diese Umbenennung bereits vorgenommen.
Die untere Grafik zeigt das MC–Modell von McCullough. Dieses besitzt die genau gleiche Struktur wie das GE–Modell, doch werden nun alle Wahrscheinlichkeiten mit $q$ anstelle von $p$ bezeichnet.
Beispielsweise bezeichnet beim MC–Modell $q\rm (B\hspace{0.05cm}|\hspace{0.05cm}G)$ die Übergangswahrscheinlichkeit von Zustand $\rm G$ in den Zustand $\rm B$ unter der Voraussetzung, dass im Zustand $\rm G$ gerade ein Fehler aufgetreten ist. Der GE–Parameter $p \rm (B\hspace{0.05cm}|\hspace{0.05cm}G)$ kennzeichnet dagegen diese Übergangswahrscheinlichkeit ohne Zusatzbedingung.
Die Parameter des GE–Modells ⇒ $p_{\rm G}, \hspace{0.1cm} p_{\rm B}, \hspace{0.1cm} p({\rm B\hspace{0.05cm}|\hspace{0.05cm}G}), \hspace{0.1cm} p({\rm G\hspace{0.05cm}|\hspace{0.05cm}B})$ können so in die entsprechenden MC–Parameter $q_{\rm G}, \hspace{0.1cm} q_{\rm B},\hspace{0.1cm} q({\rm B\hspace{0.05cm}|\hspace{0.05cm}G})$ und $q({\rm G\hspace{0.05cm}|\hspace{0.05cm}B})$ umgerechnet werden, dass eine in ihren statistischen Eigenschaften gleiche Fehlerfolge wie beim GE–Modell erzeugt wird, allerdings nicht die identische Folge.
Die Umrechnungsgleichungen lauten:
- $$q_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1-\beta_{\rm G}\hspace{0.05cm}, \hspace{0.2cm}q_{\rm B} = 1-\beta_{\rm B}\hspace{0.05cm},\hspace{0.5cm} q(\rm B\hspace{0.05cm}|\hspace{0.05cm} G ) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}\frac{\alpha_{\rm B} \cdot \big [{\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G ) + {\rm Pr}( G\hspace{0.05cm}|\hspace{0.05cm} B )\big ]}{\alpha_{\rm G} \cdot {\it q}_{\rm B} + \alpha_{\rm B} \cdot {\it q}_{\rm G}} \hspace{0.05cm},\hspace{0.5cm} \hspace{0.2cm}{\it q}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B )\hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{\alpha_{\rm G}}{\alpha_{\rm B}} \cdot {\it q}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G )\hspace{0.05cm}.$$
Hierbei sind die folgenden Hilfsgrößen verwendet:
- $$u_{\rm GG} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} G ) \cdot (1-{\it p}_{\rm G}) \hspace{0.05cm},\hspace{0.2cm} {\it u}_{\rm GB} ={\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G ) \cdot (1-{\it p}_{\hspace{0.03cm} \rm G}) \hspace{0.05cm},$$
- $$u_{\rm BB} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} B ) \cdot (1-{\it p}_{\hspace{0.03cm}\rm B}) \hspace{0.05cm},\hspace{0.29cm} {\it u}_{\rm BG} ={\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B ) \cdot (1-{\it p}_{\hspace{0.03cm}\rm B})\hspace{0.05cm}$$
- $$\Rightarrow \hspace{0.3cm} \beta_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}\frac{u_{\rm GG} + u_{\rm BB} + \sqrt{(u_{\rm GG} - u_{\rm BB})^2 + 4 \cdot u_{\rm GB}\cdot u_{\rm BG}}}{2} \hspace{0.05cm},$$
- $$\beta_{\rm B} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}\frac{u_{\rm GG} + u_{\rm BB} - \sqrt{(u_{\rm GG} - u_{\rm BB})^2 + 4 \cdot u_{\rm GB}\cdot u_{\rm BG}}}{2}\hspace{0.05cm},$$
- $$x_{\rm G} =\frac{u_{\rm BG}}{\beta_{\rm G}-u_{\rm BB}} \hspace{0.05cm},\hspace{0.2cm} x_{\rm B} =\frac{u_{\rm BG}}{\beta_{\rm B}-u_{\rm BB}}$$
- $$\Rightarrow \hspace{0.3cm} \alpha_{\rm G} = \frac{(w_{\rm G} \cdot p_{\rm G} + w_{\rm B} \cdot p_{\rm B}\cdot x_{\rm G})( x_{\rm B}-1)}{p_{\rm M} \cdot( x_{\rm B}-x_{\rm G})} \hspace{0.05cm}, \hspace{0.2cm}\alpha_{\rm B} = 1-\alpha_{\rm G}\hspace{0.05cm}.$$
$w_{\rm G}$ und $w_{\rm B}$ sind die Zustandswahrscheinlichkeiten für „GOOD” und „BAD” des GE–Modells. In der Aufgabe 5.6Z wurden diese wie folgt berechnet:
- $$w_{\rm G} = {10}/{11}\hspace{0.05cm}, \hspace{0.2cm}w_{\rm B} = {1}/{11}\hspace{0.05cm}.$$
Die entsprechenden Zustandswahrscheinlichkeiten des MC–Modells sind $\alpha_{\rm G}$ und $\alpha_{\rm B}$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Bündelfehlerkanäle.
- In der nachfolgenden Aufgabe 5.7Z werden die wichtigsten Beschreibungsgrößen direkt aus den MC–Parametern berechnet:
- Fehlerkorrelationsfunktion,
- Korrelationsdauer,
- mittlere Fehlerwahrscheinlichkeit und
- Fehlerabstandsverteilung
Fragebogen
Musterlösung
- $$u_{\rm GG} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} G ) \cdot (1-{\it p}_{\rm G}) = 0.99 \cdot (1 -0.001) \hspace{0.15cm}\underline {\approx 0.98901} \hspace{0.05cm},$$
- $$u_{\rm BG} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B ) \cdot (1-{\it p}_{\rm B})= 0.1 \cdot (1 -0.1) \hspace{0.15cm}\underline {\approx 0.09} \hspace{0.05cm},$$
- $$u_{\rm GB} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G ) \cdot (1-{\it p}_{\rm G})= 0.01 \cdot (1 -0.001) \hspace{0.15cm}\underline {\approx 0.00999} \hspace{0.05cm},$$
- $$u_{\rm BB} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}{\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} B ) \cdot (1-{\it p}_{\rm B})= 0.9 \cdot (1 -0.1) \hspace{0.15cm}\underline {\approx 0.81}\hspace{0.05cm}.$$
- Daraus folgt für die $\beta$–Hilfsgrößen:
- $$\beta_{\rm G} =\frac{u_{\rm GG} + u_{\rm BB} + \sqrt{(u_{\rm GG} - u_{\rm BB})^2 + 4 \cdot u_{\rm GB}\cdot u_{\rm BG}}}{2} =\frac{0.98901 + 0.81 + \sqrt{(0.98901 - 0.81)^2 + 4 \cdot 0.00999\cdot 0.09}}{2} $$
- $$\Rightarrow \hspace{0.3cm}\beta_{\rm G}= \frac{1.79901 + \sqrt{0.03204 + 0.003596}}{2} = \frac{1.79901 + 0.18877}{2} \hspace{0.15cm}\underline {= 0.9939} \hspace{0.05cm},$$
- $$\beta_{\rm B} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}\frac{u_{\rm GG} + u_{\rm BB} - \sqrt{(u_{\rm GG} - u_{\rm BB})^2 + 4 \cdot u_{\rm GB}\cdot u_{\rm BG}}}{2}\hspace{0.05cm}, = \ \hspace{-0.1cm}\text{...} = \frac{1.79901 - 0.18877}{2} \hspace{0.15cm}\underline {= 0.8051} \hspace{0.05cm}.$$
(2) Mit dem Ergebnis der Teilaufgabe (1) erhält man:
- $$q_{\rm G} = 1-\beta_{\rm G} = 1 - 0.9939 \hspace{0.15cm}\underline {= 0.0061}\hspace{0.05cm}, \hspace{0.3cm}q_{\rm B} = 1-\beta_{\rm B}= 1 - 0.8051 \hspace{0.15cm}\underline {= 0.1949}\hspace{0.05cm}.$$
(3) Entsprechend dem Angabenblatt ist hier anzusetzen
- $$x_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}\frac{u_{\rm BG}}{\beta_{\rm G}-u_{\rm BB}}= \frac{0.0999}{0.9939-0.81}\hspace{0.15cm}\underline {= 0.5432}\hspace{0.05cm},$$
- $$ x_{\rm B} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}\frac{u_{\rm BG}}{\beta_{\rm B}-u_{\rm BB}}= \frac{0.0999}{0.8051-0.81}\hspace{0.15cm}\underline {= -20.388}\hspace{0.05cm},$$
- $$\alpha_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{(w_{\rm G} \cdot p_{\rm G} + w_{\rm B} \cdot p_{\rm B}\cdot x_{\rm G})( x_{\rm B}-1)}{p_{\rm M} \cdot( x_{\rm B}-x_{\rm G})} = \frac{(0.9091 \cdot 0.001 + 0.0909 \cdot 0.1\cdot 0.5432)( -20.388-1)}{0.01 \cdot( -20.388 -0.5432)} \hspace{0.15cm}\underline {= 0.5975} \hspace{0.05cm},$$
- $$\alpha_{\rm B} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1-\alpha_{\rm G} \hspace{0.15cm}\underline {= 0.4025}\hspace{0.05cm}.$$
(4) Entsprechend den vorgegebenen Gleichungen gilt:
- $$q(\rm B\hspace{0.05cm}|\hspace{0.05cm} G ) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}\frac{\alpha_{\rm B} \cdot[{\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G ) + {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B )]}{\alpha_{\rm G} \cdot q_{\rm B} + \alpha_{\rm B} \cdot q_{\rm G}} =\frac{0.4025 \cdot[0.1 + 0.01]}{0.5975 \cdot 0.1949 + 0.4025 \cdot 0.0061}\hspace{0.15cm}\underline {= 0.3724} \hspace{0.05cm},$$
- $$q(\rm G\hspace{0.05cm}|\hspace{0.05cm} B ) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{\alpha_{\rm G}}{\alpha_{\rm B}} \cdot q(\rm B\hspace{0.05cm}|\hspace{0.05cm} G )= \frac{0.5975}{0.4025} \cdot 0.3724 \hspace{0.15cm}\underline {= 0.5528}\hspace{0.05cm}.$$