Aufgaben:Aufgabe 5.7: McCullough-Parameter aus Gilbert-Elliott-Parameter: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
K (Textersetzung - „* Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
 
(2 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 3: Zeile 3:
  
 
[[Datei:P_ID1844__Dig_A_5_7.png|right|frame|Gilbert-Elliott– und McCullough–Modell]]
 
[[Datei:P_ID1844__Dig_A_5_7.png|right|frame|Gilbert-Elliott– und McCullough–Modell]]
In [[Aufgaben:5.6:_Fehlerkorrelationsdauer| Aufgabe 5.6]] und [[Aufgaben:5.6Z_GE-Modelleigenschaften| Aufgabe 5.6Z]] wurden jeweils das GE–Modell mit den Parameterwerten
+
In  [[Aufgaben:5.6:_Fehlerkorrelationsdauer| Aufgabe 5.6]]  und  [[Aufgaben:Aufgabe_5.6Z:_GE-Modelleigenschaften| Aufgabe 5.6Z]]  wurden jeweils das GE–Modell mit den Parameterwerten
 
:$$p_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.001,
 
:$$p_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.001,
 
\hspace{0.2cm}p_{\rm B} = 0.1,\hspace{0.2cm}
 
\hspace{0.2cm}p_{\rm B} = 0.1,\hspace{0.2cm}
Zeile 11: Zeile 11:
 
B\hspace{0.05cm}|\hspace{0.05cm} G) = 0.01\hspace{0.05cm}.$$
 
B\hspace{0.05cm}|\hspace{0.05cm} G) = 0.01\hspace{0.05cm}.$$
  
genauer untersucht. Gegenüber diesen Aufgaben werden nun die Übergangswahrscheinlichkeiten umbenannt, beispielsweise wird $p(\rm B\hspace{0.05cm}|\hspace{0.05cm}G)$ anstelle von $\rm Pr(B\hspace{0.05cm}|\hspace{0.05cm}G)$ geschrieben. In der oberen Grafik ist diese Umbenennung bereits vorgenommen.
+
genauer untersucht. Gegenüber diesen Aufgaben werden nun die Übergangswahrscheinlichkeiten umbenannt, beispielsweise wird  $p(\rm B\hspace{0.05cm}|\hspace{0.05cm}G)$  anstelle von  $\rm Pr(B\hspace{0.05cm}|\hspace{0.05cm}G)$  geschrieben. In der oberen Grafik ist diese Umbenennung bereits vorgenommen.
  
Die untere Grafik zeigt das MC–Modell von McCullough. Dieses besitzt die genau gleiche Struktur wie das GE–Modell, doch werden nun alle Wahrscheinlichkeiten mit $q$ anstelle von $p$ bezeichnet.  
+
Die untere Grafik zeigt das MC–Modell von McCullough. Dieses besitzt die genau gleiche Struktur wie das GE–Modell, doch werden nun alle Wahrscheinlichkeiten mit  $q$  anstelle von  $p$  bezeichnet.  
  
Beispielsweise bezeichnet beim MC–Modell $q\rm (B\hspace{0.05cm}|\hspace{0.05cm}G)$ die Übergangswahrscheinlichkeit von Zustand $\rm G$ in den Zustand$\rm B$ unter der Voraussetzung, dass im Zustand $\rm G$ gerade ein Fehler aufgetreten ist. Der GE–Parameter $p \rm (B\hspace{0.05cm}|\hspace{0.05cm}G)$ kennzeichnet dagegen diese Übergangswahrscheinlichkeit ohne Zusatzbedingung.
+
Beispielsweise bezeichnet beim MC–Modell  $q\rm (B\hspace{0.05cm}|\hspace{0.05cm}G)$  die Übergangswahrscheinlichkeit von Zustand  $\rm G$  in den Zustand  $\rm B$  unter der Voraussetzung, dass im Zustand  $\rm G$  gerade ein Fehler aufgetreten ist. Der GE–Parameter  $p \rm (B\hspace{0.05cm}|\hspace{0.05cm}G)$  kennzeichnet dagegen diese Übergangswahrscheinlichkeit ohne Zusatzbedingung.
  
  
Die Parameter des GE–Modells   ⇒   $p_{\rm G}, p_{\rm B}, p({\rm B\hspace{0.05cm}|\hspace{0.05cm}G}), p({\rm G\hspace{0.05cm}|\hspace{0.05cm}B})$ können so in die entsprechenden MC–Parameter $q_{\rm G}, q_{\rm B}, q({\rm B\hspace{0.05cm}|\hspace{0.05cm}G})$ und $q({\rm G\hspace{0.05cm}|\hspace{0.05cm}B})$ umgerechnet werden, dass eine in ihren statistischen Eigenschaften gleiche Fehlerfolge wie beim GE–Modell erzeugt wird, allerdings nicht die identische Folge.
+
Die Parameter des GE–Modells   ⇒   $p_{\rm G}, \hspace{0.1cm} p_{\rm B}, \hspace{0.1cm} p({\rm B\hspace{0.05cm}|\hspace{0.05cm}G}), \hspace{0.1cm} p({\rm G\hspace{0.05cm}|\hspace{0.05cm}B})$   können so in die entsprechenden MC–Parameter  $q_{\rm G}, \hspace{0.1cm} q_{\rm B},\hspace{0.1cm} q({\rm B\hspace{0.05cm}|\hspace{0.05cm}G})$  und  $q({\rm G\hspace{0.05cm}|\hspace{0.05cm}B})$  umgerechnet werden, dass eine in ihren statistischen Eigenschaften gleiche Fehlerfolge wie beim GE–Modell erzeugt wird, allerdings nicht die identische Folge.
  
 
Die Umrechnungsgleichungen lauten:
 
Die Umrechnungsgleichungen lauten:
Zeile 25: Zeile 25:
 
B} = 1-\beta_{\rm B}\hspace{0.05cm},\hspace{0.5cm}
 
B} = 1-\beta_{\rm B}\hspace{0.05cm},\hspace{0.5cm}
 
q(\rm B\hspace{0.05cm}|\hspace{0.05cm} G ) \hspace{-0.1cm} \ = \
 
q(\rm B\hspace{0.05cm}|\hspace{0.05cm} G ) \hspace{-0.1cm} \ = \
\hspace{-0.1cm}\frac{\alpha_{\rm B} \cdot[{\rm Pr}(\rm
+
\hspace{-0.1cm}\frac{\alpha_{\rm B} \cdot \big [{\rm Pr}(\rm
B\hspace{0.05cm}|\hspace{0.05cm} G ) + {\rm Pr}(\rm
+
B\hspace{0.05cm}|\hspace{0.05cm} G ) + {\rm Pr}(
G\hspace{0.05cm}|\hspace{0.05cm} B )]}{\alpha_{\rm G} \cdot q_{\rm
+
G\hspace{0.05cm}|\hspace{0.05cm} B )\big ]}{\alpha_{\rm G} \cdot {\it q}_{\rm
B} + \alpha_{\rm B} \cdot q_{\rm G}} \hspace{0.05cm},\hspace{0.5cm}
+
B} + \alpha_{\rm B} \cdot {\it q}_{\rm G}} \hspace{0.05cm},\hspace{0.5cm}
\hspace{0.2cm}q(\rm G\hspace{0.05cm}|\hspace{0.05cm} B )\hspace{-0.1cm} \ = \
+
\hspace{0.2cm}{\it q}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B )\hspace{-0.1cm} \ = \
 
\hspace{-0.1cm}
 
\hspace{-0.1cm}
\frac{\alpha_{\rm G}}{\alpha_{\rm B}} \cdot q(\rm
+
\frac{\alpha_{\rm G}}{\alpha_{\rm B}} \cdot {\it q}(\rm
 
B\hspace{0.05cm}|\hspace{0.05cm} G )\hspace{0.05cm}.$$
 
B\hspace{0.05cm}|\hspace{0.05cm} G )\hspace{0.05cm}.$$
  
Zeile 62: Zeile 62:
 
\hspace{0.2cm}\alpha_{\rm B} = 1-\alpha_{\rm G}\hspace{0.05cm}.$$
 
\hspace{0.2cm}\alpha_{\rm B} = 1-\alpha_{\rm G}\hspace{0.05cm}.$$
  
$w_{\rm G}$ und $w_{\rm B}$ sind die Zustandswahrscheinlichkeiten für „GOOD” und „BAD” des GE–Modells. In der  [[Aufgaben:5.6Z_GE-Modelleigenschaften| Aufgabe 5.6Z]] wurden diese wie folgt berechnet:
+
$w_{\rm G}$  und  $w_{\rm B}$  sind die Zustandswahrscheinlichkeiten für „GOOD” und „BAD” des GE–Modells. In der  [[Aufgaben:5.6Z_GE-Modelleigenschaften| Aufgabe 5.6Z]]  wurden diese wie folgt berechnet:
 
:$$w_{\rm G} = {10}/{11}\hspace{0.05cm}, \hspace{0.2cm}w_{\rm B}
 
:$$w_{\rm G} = {10}/{11}\hspace{0.05cm}, \hspace{0.2cm}w_{\rm B}
 
= {1}/{11}\hspace{0.05cm}.$$
 
= {1}/{11}\hspace{0.05cm}.$$
  
Die entsprechenden Zustandswahrscheinlichkeiten des MC–Modells sind $\alpha_{\rm G}$ und $\alpha_{\rm B}$.
+
Die entsprechenden Zustandswahrscheinlichkeiten des MC–Modells sind  $\alpha_{\rm G}$  und  $\alpha_{\rm B}$.
 +
 
 +
 
 +
 
  
  
  
 
''Hinweise:''
 
''Hinweise:''
* Die Aufgabe gehört zum Kapitel [[Digitalsignal%C3%BCbertragung/B%C3%BCndelfehlerkan%C3%A4le| Bündelfehlerkanäle]].
+
* Die Aufgabe gehört zum Kapitel  [[Digitalsignal%C3%BCbertragung/B%C3%BCndelfehlerkan%C3%A4le| Bündelfehlerkanäle]].
* In der nachfolgenden [[5.7Z_Nochmals_MC-Modell|Aufgabe 5.7Z]] werden die wichtigsten Beschreibungsgrößen wie
+
* In der nachfolgenden  [[Aufgaben:Aufgabe_5.7Z:_Nochmals_McCullough-Modell|Aufgabe 5.7Z]]  werden die wichtigsten Beschreibungsgrößen direkt aus den MC–Parametern berechnet:
 
** Fehlerkorrelationsfunktion,
 
** Fehlerkorrelationsfunktion,
 
** Korrelationsdauer,
 
** Korrelationsdauer,
Zeile 78: Zeile 81:
 
** Fehlerabstandsverteilung
 
** Fehlerabstandsverteilung
  
: direkt aus den MC–Parametern berechnet.
+
 
 
   
 
   
  
Zeile 128: Zeile 131:
 
\cdot (1 -0.1) \hspace{0.15cm}\underline {\approx 0.81}\hspace{0.05cm}.$$
 
\cdot (1 -0.1) \hspace{0.15cm}\underline {\approx 0.81}\hspace{0.05cm}.$$
  
Daraus folgt für die $\beta$–Hilfsgrößen:
+
*Daraus folgt für die $\beta$–Hilfsgrößen:
 
:$$\beta_{\rm G} =\frac{u_{\rm GG} + u_{\rm BB} + \sqrt{(u_{\rm GG} -
 
:$$\beta_{\rm G} =\frac{u_{\rm GG} + u_{\rm BB} + \sqrt{(u_{\rm GG} -
 
u_{\rm BB})^2 + 4 \cdot u_{\rm GB}\cdot u_{\rm BG}}}{2}
 
u_{\rm BB})^2 + 4 \cdot u_{\rm GB}\cdot u_{\rm BG}}}{2}
Zeile 142: Zeile 145:
 
\hspace{0.15cm}\underline {= 0.8051} \hspace{0.05cm}.$$
 
\hspace{0.15cm}\underline {= 0.8051} \hspace{0.05cm}.$$
  
'''(2)'''  Mit dem Ergebnis der Teilaufgabe (1) erhält man:
+
 
 +
'''(2)'''  Mit dem Ergebnis der Teilaufgabe '''(1)''' erhält man:
 
:$$q_{\rm G} = 1-\beta_{\rm G} =
 
:$$q_{\rm G} = 1-\beta_{\rm G} =
 
1 - 0.9939 \hspace{0.15cm}\underline {= 0.0061}\hspace{0.05cm}, \hspace{0.3cm}q_{\rm B} = 1-\beta_{\rm B}= 1 - 0.8051 \hspace{0.15cm}\underline {=
 
1 - 0.9939 \hspace{0.15cm}\underline {= 0.0061}\hspace{0.05cm}, \hspace{0.3cm}q_{\rm B} = 1-\beta_{\rm B}= 1 - 0.8051 \hspace{0.15cm}\underline {=
 
0.1949}\hspace{0.05cm}.$$
 
0.1949}\hspace{0.05cm}.$$
 +
  
  

Aktuelle Version vom 26. März 2019, 15:32 Uhr

Gilbert-Elliott– und McCullough–Modell

In  Aufgabe 5.6  und  Aufgabe 5.6Z  wurden jeweils das GE–Modell mit den Parameterwerten

$$p_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.001, \hspace{0.2cm}p_{\rm B} = 0.1,\hspace{0.2cm} {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.1, \hspace{0.2cm} {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G) = 0.01\hspace{0.05cm}.$$

genauer untersucht. Gegenüber diesen Aufgaben werden nun die Übergangswahrscheinlichkeiten umbenannt, beispielsweise wird  $p(\rm B\hspace{0.05cm}|\hspace{0.05cm}G)$  anstelle von  $\rm Pr(B\hspace{0.05cm}|\hspace{0.05cm}G)$  geschrieben. In der oberen Grafik ist diese Umbenennung bereits vorgenommen.

Die untere Grafik zeigt das MC–Modell von McCullough. Dieses besitzt die genau gleiche Struktur wie das GE–Modell, doch werden nun alle Wahrscheinlichkeiten mit  $q$  anstelle von  $p$  bezeichnet.

Beispielsweise bezeichnet beim MC–Modell  $q\rm (B\hspace{0.05cm}|\hspace{0.05cm}G)$  die Übergangswahrscheinlichkeit von Zustand  $\rm G$  in den Zustand  $\rm B$  unter der Voraussetzung, dass im Zustand  $\rm G$  gerade ein Fehler aufgetreten ist. Der GE–Parameter  $p \rm (B\hspace{0.05cm}|\hspace{0.05cm}G)$  kennzeichnet dagegen diese Übergangswahrscheinlichkeit ohne Zusatzbedingung.


Die Parameter des GE–Modells   ⇒   $p_{\rm G}, \hspace{0.1cm} p_{\rm B}, \hspace{0.1cm} p({\rm B\hspace{0.05cm}|\hspace{0.05cm}G}), \hspace{0.1cm} p({\rm G\hspace{0.05cm}|\hspace{0.05cm}B})$   können so in die entsprechenden MC–Parameter  $q_{\rm G}, \hspace{0.1cm} q_{\rm B},\hspace{0.1cm} q({\rm B\hspace{0.05cm}|\hspace{0.05cm}G})$  und  $q({\rm G\hspace{0.05cm}|\hspace{0.05cm}B})$  umgerechnet werden, dass eine in ihren statistischen Eigenschaften gleiche Fehlerfolge wie beim GE–Modell erzeugt wird, allerdings nicht die identische Folge.

Die Umrechnungsgleichungen lauten:

$$q_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1-\beta_{\rm G}\hspace{0.05cm}, \hspace{0.2cm}q_{\rm B} = 1-\beta_{\rm B}\hspace{0.05cm},\hspace{0.5cm} q(\rm B\hspace{0.05cm}|\hspace{0.05cm} G ) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}\frac{\alpha_{\rm B} \cdot \big [{\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G ) + {\rm Pr}( G\hspace{0.05cm}|\hspace{0.05cm} B )\big ]}{\alpha_{\rm G} \cdot {\it q}_{\rm B} + \alpha_{\rm B} \cdot {\it q}_{\rm G}} \hspace{0.05cm},\hspace{0.5cm} \hspace{0.2cm}{\it q}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B )\hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{\alpha_{\rm G}}{\alpha_{\rm B}} \cdot {\it q}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G )\hspace{0.05cm}.$$

Hierbei sind die folgenden Hilfsgrößen verwendet:

$$u_{\rm GG} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} G ) \cdot (1-{\it p}_{\rm G}) \hspace{0.05cm},\hspace{0.2cm} {\it u}_{\rm GB} ={\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G ) \cdot (1-{\it p}_{\hspace{0.03cm} \rm G}) \hspace{0.05cm},$$
$$u_{\rm BB} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} B ) \cdot (1-{\it p}_{\hspace{0.03cm}\rm B}) \hspace{0.05cm},\hspace{0.29cm} {\it u}_{\rm BG} ={\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B ) \cdot (1-{\it p}_{\hspace{0.03cm}\rm B})\hspace{0.05cm}$$
$$\Rightarrow \hspace{0.3cm} \beta_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}\frac{u_{\rm GG} + u_{\rm BB} + \sqrt{(u_{\rm GG} - u_{\rm BB})^2 + 4 \cdot u_{\rm GB}\cdot u_{\rm BG}}}{2} \hspace{0.05cm},$$
$$\beta_{\rm B} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}\frac{u_{\rm GG} + u_{\rm BB} - \sqrt{(u_{\rm GG} - u_{\rm BB})^2 + 4 \cdot u_{\rm GB}\cdot u_{\rm BG}}}{2}\hspace{0.05cm},$$
$$x_{\rm G} =\frac{u_{\rm BG}}{\beta_{\rm G}-u_{\rm BB}} \hspace{0.05cm},\hspace{0.2cm} x_{\rm B} =\frac{u_{\rm BG}}{\beta_{\rm B}-u_{\rm BB}}$$
$$\Rightarrow \hspace{0.3cm} \alpha_{\rm G} = \frac{(w_{\rm G} \cdot p_{\rm G} + w_{\rm B} \cdot p_{\rm B}\cdot x_{\rm G})( x_{\rm B}-1)}{p_{\rm M} \cdot( x_{\rm B}-x_{\rm G})} \hspace{0.05cm}, \hspace{0.2cm}\alpha_{\rm B} = 1-\alpha_{\rm G}\hspace{0.05cm}.$$

$w_{\rm G}$  und  $w_{\rm B}$  sind die Zustandswahrscheinlichkeiten für „GOOD” und „BAD” des GE–Modells. In der  Aufgabe 5.6Z  wurden diese wie folgt berechnet:

$$w_{\rm G} = {10}/{11}\hspace{0.05cm}, \hspace{0.2cm}w_{\rm B} = {1}/{11}\hspace{0.05cm}.$$

Die entsprechenden Zustandswahrscheinlichkeiten des MC–Modells sind  $\alpha_{\rm G}$  und  $\alpha_{\rm B}$.




Hinweise:

  • Die Aufgabe gehört zum Kapitel  Bündelfehlerkanäle.
  • In der nachfolgenden  Aufgabe 5.7Z  werden die wichtigsten Beschreibungsgrößen direkt aus den MC–Parametern berechnet:
    • Fehlerkorrelationsfunktion,
    • Korrelationsdauer,
    • mittlere Fehlerwahrscheinlichkeit und
    • Fehlerabstandsverteilung



Fragebogen

1

Berechnen Sie die folgenden Hilfsgrößen:

$u_{\rm GG}\hspace{0.05cm} = \ $

$u_{\rm BG}\ = \ $

$u_{\rm GB}\ = \ $

$u_{\rm BB}\ = \ $

$\beta_{\rm G}\hspace{0.3cm} = \ $

$\beta_{\rm B}\hspace{0.32cm} = \ $

2

Wie lauten die beiden Fehlerwahrscheinlichkeiten des MC–Modells?

$q_{\rm G} \hspace{0.08cm} = \ $

$q_{\rm B} \ = \ $

3

Berechnen Sie die weiteren Hilfsgrößen:

$x_{\rm G} \ = \ $

$x_{\rm B} \ = \ $

$\alpha_{\rm G} \hspace{0.05cm} = \ $

$\alpha_{\rm B} \ = \ $

4

Berechnen Sie die Übergangswahrscheinlichkeiten des MC–Modells:

$q(\rm B\hspace{0.05cm}|\hspace{0.05cm} G)\ = \ $

$q(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)\ = \ $


Musterlösung

(1)  Für die $u$–Hilfsgrößen gilt:

$$u_{\rm GG} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} G ) \cdot (1-{\it p}_{\rm G}) = 0.99 \cdot (1 -0.001) \hspace{0.15cm}\underline {\approx 0.98901} \hspace{0.05cm},$$
$$u_{\rm BG} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B ) \cdot (1-{\it p}_{\rm B})= 0.1 \cdot (1 -0.1) \hspace{0.15cm}\underline {\approx 0.09} \hspace{0.05cm},$$
$$u_{\rm GB} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G ) \cdot (1-{\it p}_{\rm G})= 0.01 \cdot (1 -0.001) \hspace{0.15cm}\underline {\approx 0.00999} \hspace{0.05cm},$$
$$u_{\rm BB} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}{\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} B ) \cdot (1-{\it p}_{\rm B})= 0.9 \cdot (1 -0.1) \hspace{0.15cm}\underline {\approx 0.81}\hspace{0.05cm}.$$
  • Daraus folgt für die $\beta$–Hilfsgrößen:
$$\beta_{\rm G} =\frac{u_{\rm GG} + u_{\rm BB} + \sqrt{(u_{\rm GG} - u_{\rm BB})^2 + 4 \cdot u_{\rm GB}\cdot u_{\rm BG}}}{2} =\frac{0.98901 + 0.81 + \sqrt{(0.98901 - 0.81)^2 + 4 \cdot 0.00999\cdot 0.09}}{2} $$
$$\Rightarrow \hspace{0.3cm}\beta_{\rm G}= \frac{1.79901 + \sqrt{0.03204 + 0.003596}}{2} = \frac{1.79901 + 0.18877}{2} \hspace{0.15cm}\underline {= 0.9939} \hspace{0.05cm},$$
$$\beta_{\rm B} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}\frac{u_{\rm GG} + u_{\rm BB} - \sqrt{(u_{\rm GG} - u_{\rm BB})^2 + 4 \cdot u_{\rm GB}\cdot u_{\rm BG}}}{2}\hspace{0.05cm}, = \ \hspace{-0.1cm}\text{...} = \frac{1.79901 - 0.18877}{2} \hspace{0.15cm}\underline {= 0.8051} \hspace{0.05cm}.$$


(2)  Mit dem Ergebnis der Teilaufgabe (1) erhält man:

$$q_{\rm G} = 1-\beta_{\rm G} = 1 - 0.9939 \hspace{0.15cm}\underline {= 0.0061}\hspace{0.05cm}, \hspace{0.3cm}q_{\rm B} = 1-\beta_{\rm B}= 1 - 0.8051 \hspace{0.15cm}\underline {= 0.1949}\hspace{0.05cm}.$$


(3)  Entsprechend dem Angabenblatt ist hier anzusetzen

$$x_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}\frac{u_{\rm BG}}{\beta_{\rm G}-u_{\rm BB}}= \frac{0.0999}{0.9939-0.81}\hspace{0.15cm}\underline {= 0.5432}\hspace{0.05cm},$$
$$ x_{\rm B} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}\frac{u_{\rm BG}}{\beta_{\rm B}-u_{\rm BB}}= \frac{0.0999}{0.8051-0.81}\hspace{0.15cm}\underline {= -20.388}\hspace{0.05cm},$$
$$\alpha_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{(w_{\rm G} \cdot p_{\rm G} + w_{\rm B} \cdot p_{\rm B}\cdot x_{\rm G})( x_{\rm B}-1)}{p_{\rm M} \cdot( x_{\rm B}-x_{\rm G})} = \frac{(0.9091 \cdot 0.001 + 0.0909 \cdot 0.1\cdot 0.5432)( -20.388-1)}{0.01 \cdot( -20.388 -0.5432)} \hspace{0.15cm}\underline {= 0.5975} \hspace{0.05cm},$$
$$\alpha_{\rm B} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1-\alpha_{\rm G} \hspace{0.15cm}\underline {= 0.4025}\hspace{0.05cm}.$$


(4)  Entsprechend den vorgegebenen Gleichungen gilt:

$$q(\rm B\hspace{0.05cm}|\hspace{0.05cm} G ) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}\frac{\alpha_{\rm B} \cdot[{\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G ) + {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B )]}{\alpha_{\rm G} \cdot q_{\rm B} + \alpha_{\rm B} \cdot q_{\rm G}} =\frac{0.4025 \cdot[0.1 + 0.01]}{0.5975 \cdot 0.1949 + 0.4025 \cdot 0.0061}\hspace{0.15cm}\underline {= 0.3724} \hspace{0.05cm},$$
$$q(\rm G\hspace{0.05cm}|\hspace{0.05cm} B ) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{\alpha_{\rm G}}{\alpha_{\rm B}} \cdot q(\rm B\hspace{0.05cm}|\hspace{0.05cm} G )= \frac{0.5975}{0.4025} \cdot 0.3724 \hspace{0.15cm}\underline {= 0.5528}\hspace{0.05cm}.$$