Aufgaben:Aufgabe 1.7: WDF des Rice–Fadings: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 3: Zeile 3:
  
 
[[Datei:P_ID2133__Mob_A_1_7.png|right|frame| Rice-Fading für verschiedene Werte von  $|z_0|^2$]]
 
[[Datei:P_ID2133__Mob_A_1_7.png|right|frame| Rice-Fading für verschiedene Werte von  $|z_0|^2$]]
Wie aus der Grafik zu ersehen, betrachten wir das gleiche Szenario wie in  [[Aufgaben:1.6_Rice%E2%80%93Fading_%E2%80%93_AKF/LDS| Aufgabe 1.6]]:
+
Wie aus der Grafik zu ersehen, betrachten wir das gleiche Szenario wie in  [[Aufgaben:Aufgabe_1.6:_AKF_und_LDS_bei_Rice–Fading| Aufgabe 1.6]]:
 
* <i>Rice&ndash;Fading</i>&nbsp; mit der Varianz&nbsp; $\sigma^2 = 1$&nbsp; der Gaußprozesse und dem Parameter&nbsp; $|z_0|$&nbsp; für den Direktpfad.
 
* <i>Rice&ndash;Fading</i>&nbsp; mit der Varianz&nbsp; $\sigma^2 = 1$&nbsp; der Gaußprozesse und dem Parameter&nbsp; $|z_0|$&nbsp; für den Direktpfad.
 
* Hinsichtlich Direktpfad interessieren wir uns für die Parameterwerte&nbsp; $|z_0|^2 = 0, \ 2, \  4, \ 10, \ 20$&nbsp; (siehe Grafik).
 
* Hinsichtlich Direktpfad interessieren wir uns für die Parameterwerte&nbsp; $|z_0|^2 = 0, \ 2, \  4, \ 10, \ 20$&nbsp; (siehe Grafik).

Version vom 7. April 2019, 10:25 Uhr

Rice-Fading für verschiedene Werte von  $|z_0|^2$

Wie aus der Grafik zu ersehen, betrachten wir das gleiche Szenario wie in  Aufgabe 1.6:

  • Rice–Fading  mit der Varianz  $\sigma^2 = 1$  der Gaußprozesse und dem Parameter  $|z_0|$  für den Direktpfad.
  • Hinsichtlich Direktpfad interessieren wir uns für die Parameterwerte  $|z_0|^2 = 0, \ 2, \ 4, \ 10, \ 20$  (siehe Grafik).
  • Die WDF des Betrags  $a(t) = |z(t)|$  lautet:
$$f_a(a) = \frac{a}{\sigma^2} \cdot {\rm exp} [ -\frac{a^2 + |z_0|^2}{2\sigma^2}] \cdot {\rm I}_0 \left [ \frac{a \cdot |z_0|}{\sigma^2} \right ]\hspace{0.05cm}.$$
  • Die modifizierte Besselfunktion nullter Ordnung liefert beispielsweise folgende Werte:
$${\rm I }_0 (2) = 2.28\hspace{0.05cm},\hspace{0.2cm}{\rm I }_0 (4) = 11.30\hspace{0.05cm},\hspace{0.2cm}{\rm I }_0 (3) = 67.23 \hspace{0.05cm}.$$
  • Der quadratische Erwartungswert   ⇒   Leistung des multiplikativen Faktors  $|z(t)|$, ist gleich
$${\rm E}\left [ a^2 \right ] = {\rm E}\left [ |z(t)|^2 \right ] = 2 \cdot \sigma^2 + |z_0|^2 \hspace{0.05cm}.$$
  • Mit  $z_0 = 0$  wird aus dem Rice–Fading  das kritischere Rayleigh–Fading. In diesem Fall gilt für die Wahrscheinlichkeit, dass  $a$  im gelb hintergelegten Bereich zwischen  $0$  und  $1$  liegt:
$$ {\rm Pr}(a \le 1) = 1 - {\rm e}^{-0.5/\sigma^2} \approx 0.4 \hspace{0.05cm}.$$

In dieser Aufgabe soll die Wahrscheinlichkeit  ${\rm Pr}(a ≤ 1)$  für  $|z_0| ≠ 0$  angenähert werden. Dazu gibt es zwei Möglichkeiten, nämlich:

  • die Dreiecksnäherung:
$${\rm Pr}(a \le 1) = {1}/{2} \cdot f_a(a=1) \hspace{0.05cm}.$$
  • die Gaußnäherung:   Ist  $|z_0| \gg \sigma$, so kann die Riceverteilung durch eine Gaußverteilung mit Mittelwert  $|z_0|$  und Streuung  $\sigma$  angenähert werden.




Hinweise:



Fragebogen

1

Berechnen Sie einige WDF–Werte für  $|z_0| = 0$  und  $\sigma = 2$:

$f_a(a = 1) \ = \ $

$f_a(a = 2) \ = \ $

$f_a(a = 3) \ = \ $

2

Es sei  $|z_0| = 2$   ⇒   $|z_0|^2 = 4$  (blaue Kurve). Wie groß ist  ${\rm Pr}(a ≤ 1)$? Verwenden Sie die  Dreiecksnäherung.

${\rm Pr}(a ≤ 1)\ = \ $

$\ \%$

3

Es sei  $|z_0|^2 = 2$  (rote Kurve). Wie groß ist  ${\rm Pr}(a ≤ 1)$? Verwenden Sie die  Dreiecksnäherung.

${\rm Pr}(a ≤ 1) \ = \ $

$\ \%$

4

Es sei  $|z_0|^2 = 10$  (grüne Kurve). Wie groß ist  ${\rm Pr}(a ≤ 1)$? Verwenden Sie die  Gaußnäherung.

${\rm Pr}(a ≤ 1) \ = \ $

$\ \%$

5

Es sei  $|z_0|^2 = 20$  (violette Kurve). Wie groß ist  ${\rm Pr}(a ≤ 1)$? Verwenden Sie die  Gaußnäherung.

${\rm Pr}(a ≤ 1) \ = \ $

$\ \%$


Musterlösung

(1)  Mit $|z_0| = 2$ und $\sigma = 2$ lässt sich die Rice–WDF wie folgt darstellen

$$f_a(a) = a \cdot {\rm exp} [ -\frac{a^2 + 4}{2}] \cdot {\rm I}_0 (2a)\hspace{0.05cm}.$$

Daraus ergeben sich die gesuchten Werte:

$$f_a(a = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1 \cdot {\rm e}^{-2.5} \cdot {\rm I}_0 (2) = 0.082 \cdot 2.28 \hspace{0.15cm} \underline{ = 0.187}\hspace{0.05cm},$$
$$f_a(a = 2) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 2 \cdot {\rm e}^{-4} \cdot {\rm I}_0 (4) = 2 \cdot 0.0183 \cdot 11.3 \hspace{0.15cm} \underline{ = 0.414}\hspace{0.05cm},$$
$$f_a(a = 3) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 3 \cdot {\rm e}^{-6.5} \cdot {\rm I}_0 (6) = 3 \cdot 0.0015 \cdot 67.23 \hspace{0.15cm} \underline{ = 0.303}\hspace{0.05cm}.$$

Die Ergebnisse passen gut zu der blauen Kurve auf der Angabenseite.


(2)  Mit dem Ergebnis der Teilaufgabe (1)   ⇒   $f_a(a = 1) = 0.187$erhält man mit der Dreiecksnäherung:

$${\rm Pr}(a \le 1) = {1}/{2} \cdot 0.187 \cdot 1\hspace{0.15cm} \underline{ \approx 9.4\,\%} \hspace{0.05cm}.$$

Dieses Ergebnis wird etwas zu groß sein, da die blaue Kurve unterhalb der Verbindungslinie von $(0, 0)$ nach $(1, 0.187)$ liegt ⇒ konvexer Kurvenverlauf.


(3)  Für die rote Kurve kann der WDF–Wert $f_a(a = 1) \approx 0.35$ aus der Grafik auf der Angabenseite abgelesen werden. Daraus folgt:

$${\rm Pr}(a \le 1) = \frac{1}{2} \cdot 0.35 \hspace{0.15cm} \underline{ \approx 17.5\,\%} \hspace{0.05cm}.$$

Dieser Wahrscheinlichkeitswert wird etwas zu klein sein, da die rote Kurve im Bereich zwischen $0$ und $1$ konkav verläuft.


(4)  Die Gaußnäherung besagt, dass man die Riceverteilung durch eine Gaußverteilung mit Mittelwert $|z_0| = 3.16$ und Streuung $\sigma = 1$ annähern kann, wenn der Quotient $|z_0|/\sigma$ hinreichend groß ist. Dann gilt:

$${\rm Pr}(a \le 1) \approx {\rm Pr}(g \le -2.16) = {\rm Q}(2.16) \hspace{0.15cm} \underline{ \approx 1.5\,\%} \hspace{0.05cm}.$$

Hierbei bezeichnet $g$ eine gaußverteilte Zufallsgröße mit dem Mittelwert $0$ und der Streuung $\sigma = 1$. Der Zahlenwert wurde mit dem angegebenen interaktiven Applet ermittelt.

Anmerkung: Die Gaußnäherung ist hier sicher mit einem gewissen Fehler verbunden:

  • Aus der Grafik erkennt man, dass der Mittelwert der grünen Kurve nicht bei $a = 3.16$ liegt, sondern eher bei $3.31$.
  • Dann ist die Leistung der Gaußnäherung $(3.31^2 + 1^2 = 12)$ genau so groß wie die der Riceverteilung:
$$|z_0|^2 + 2 \sigma^2= 10 + 2 =12\hspace{0.05cm}.$$

(5)  Nach gleichem Rechenweg ersetzt man hier die Rice–WDF durch eine Gauß–WDF mit Mittelwert $\sqrt{20} \approx 4.47$ und Streuung $\sigma = 1$ und man erhält

$${\rm Pr}(a \le 1) \approx {\rm Pr}(g \le -3.37) = {\rm Q}(3.37) { \approx 0.04\,\%} \hspace{0.05cm}.$$

Geht man von der leistungsgleichen Gaußverteilung aus (siehe Anmerkung zur letzten Teilaufgabe), so ergibt sich der Mittelwert zu $m_g = \sqrt{21}\approx 4.58$, und die Wahrscheinlichkeit wäre dann

$${\rm Pr}(a \le 1) \approx {\rm Q}(3.58) \hspace{0.15cm} \underline{ \approx 0.02\,\%} \hspace{0.05cm}.$$