Aufgaben:Aufgabe 3.4: Verschiedene Sprach–Codecs: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 4: Zeile 4:
 
}}
 
}}
  
[[Datei:P_ID2221__Mob_A_3_4.png|right|frame|Narrow–Band und Wide–Band Audiosignale]]
+
[[Datei:P_ID2221__Mob_A_3_4.png|right|frame|Audiosignale von &bdquo;Narrow–Band&rdquo; <br>und &bdquo;Wide–Band&rdquo;]]
 
Mit der Entwicklung des GSM–Standards nach 1990 ging die Standardisierung verschiedener Sprach–Codecs einher:
 
Mit der Entwicklung des GSM–Standards nach 1990 ging die Standardisierung verschiedener Sprach–Codecs einher:
*Mit dem ersten Full–Rate–Codec ('''FR''') aus dem Jahr 1991 erreichte man eine Reduktion auf die Datenrate $13 \ \rm kbit/s$, ausreichend gering, um ein Sprachsignal über einen einzigen Verkehrskanal übertragen zu können.
+
*Mit dem ersten Full–Rate–Codec&nbsp; ('''FR''')&nbsp; aus dem Jahr 1991 erreichte man eine Reduktion auf die Datenrate&nbsp; $13 \ \rm kbit/s$, ausreichend gering, um ein Sprachsignal über einen einzigen Verkehrskanal übertragen zu können.
*1994 wurde der ''Half–Rate–Codec'' ('''HR''') mit der Bitrate $5.6 \ \rm kbit/s$ entwickelt mit dem Ziel, bei Bedarf in einem Verkehrskanal zwei Gespräche gleichzeitig übertragen zu können. Die Qualität erreicht allerdings nicht ganz diejenige des Full–Rate–Codecs.
+
*1994 wurde der ''Half–Rate–Codec''&nbsp; ('''HR''')&nbsp; mit der Bitrate&nbsp; $5.6 \ \rm kbit/s$&nbsp; entwickelt mit dem Ziel, bei Bedarf in einem Verkehrskanal zwei Gespräche gleichzeitig übertragen zu können. Die Qualität erreicht allerdings nicht ganz diejenige des Full–Rate–Codecs.
*Der ''Enhanced Full–Rate Codec'' ('''EFR''') von 1995 stellte eine erhebliche Weiterentwicklung dar, die auf dem Datenreduktionsverfahren ACELP (''Algebraic Code Excited Linear Prediction'') basiert. Der EFR–Codec liefert eine Datenrate von $12.2 \ \rm kbit/s$ und steht für den mittlerweile üblichen Qualitätsstandard im Mobilfunk.
+
*Der ''Enhanced Full–Rate Codec''&nbsp; ('''EFR''')&nbsp; von 1995 stellte eine erhebliche Weiterentwicklung dar, die auf dem Datenreduktionsverfahren ACELP (''Algebraic Code Excited Linear Prediction'') basiert. Der EFR–Codec liefert eine Datenrate von&nbsp; $12.2 \ \rm kbit/s$&nbsp; und steht für den mittlerweile üblichen Qualitätsstandard im Mobilfunk.
*1999 wurde von der ETSI der ''Adaptive Multi–Rate Codec'' ('''AMR''') für GSM standardisiert. Dieser stellt acht verschiedene Modi mit Datenraten zwischen $4.75 \ \rm kbit/s$ und $12.2 \ \rm kbit/s$ bereit. Der AMR–Codec verwendet wie der EFR–Codec das ACELP–Verfahren.
+
*1999 wurde von der ETSI der ''Adaptive Multi–Rate Codec''&nbsp; ('''AMR''')&nbsp; für GSM standardisiert. Dieser stellt acht verschiedene Modi mit Datenraten zwischen&nbsp; $4.75 \ \rm kbit/s$&nbsp; und&nbsp; $12.2 \ \rm kbit/s$&nbsp; bereit. Der AMR–Codec verwendet wie der EFR–Codec das ACELP–Verfahren.
*Der ''Wideband–AMR'' ('''WB–AMR''') ist eine Weiterentwicklung des ursprünglichen AMR. Er wurde 2001 vom 3GPP–Konsortium und 2002 von der ITU–T standardisiert und nutzt den Frequenzbereich von $50 \ \rm Hz$ bis $7 \ \rm kHz$. Hier liegt also ein „WideBand–Signal” zugrunde.
+
*Der ''Wideband–AMR''&nbsp; ('''WB–AMR''')&nbsp; ist eine Weiterentwicklung des ursprünglichen AMR. Er wurde 2001 vom 3GPP–Konsortium und 2002 von der ITU–T standardisiert und nutzt den Frequenzbereich von&nbsp; $50 \ \rm Hz$&nbsp; bis&nbsp; $7 \ \rm kHz$. Hier liegt also ein „WideBand–Signal” zugrunde.
 +
 
 +
 
 +
 
 +
 
  
  
Zeile 17: Zeile 21:
 
''Hinweise:''  
 
''Hinweise:''  
  
*Die Aufgabe bezieht sich auf [[Mobile_Kommunikation/Gemeinsamkeiten_von_GSM_und_UMTS|Gemeinsamkeiten von GSM und
+
*Die Aufgabe bezieht sich auf die&nbsp; [[Mobile_Kommunikation/Gemeinsamkeiten_von_GSM_und_UMTS|Gemeinsamkeiten von GSM und
 
  UMTS]].  
 
  UMTS]].  
 
*Die Grafik zeigt das Betragsspektrum eines Audiosignals und definiert die Merkmale ''Narrowband'' und ''Wideband''.  
 
*Die Grafik zeigt das Betragsspektrum eines Audiosignals und definiert die Merkmale ''Narrowband'' und ''Wideband''.  
*Wir weisen Sie auf das interaktive Applet [[Applets:Sprachcodecs|Qualität verschiedener  Sprachcodecs]].  
+
*Wir weisen Sie auf das interaktive Applet&nbsp; [[Applets:Sprachcodecs|Qualität verschiedener  Sprachcodecs]] hin.  
  
  
Zeile 35: Zeile 39:
 
{Welche Vorteile bietet der EFR–Codec gegenüber dem FR–Codec?
 
{Welche Vorteile bietet der EFR–Codec gegenüber dem FR–Codec?
 
|type="[]"}
 
|type="[]"}
- Er ist für breitbandige Signale (Frequenzbereich: $200 \ \rm Hz$ bis $7 \ \rm kHz$) ausgelegt.
+
- Er ist für breitbandige Signale $($Frequenzbereich: &nbsp; $200 \ \rm Hz$&nbsp;  bis&nbsp;  $7 \ \rm kHz)$&nbsp;  ausgelegt.
 
+ Er bietet eine bessere Klangqualität.
 
+ Er bietet eine bessere Klangqualität.
 
+ Die Verbesserung geht auf das ACELP–Verfahren zurück.
 
+ Die Verbesserung geht auf das ACELP–Verfahren zurück.
Zeile 47: Zeile 51:
 
{Welche Eigenschaften weist der WB–AMR auf?
 
{Welche Eigenschaften weist der WB–AMR auf?
 
|type="[]"}
 
|type="[]"}
+ Der Audio–Frequenzbereich beträgt $50 \ \rm Hz$ bis $7 \ \rm kHz$.
+
+ Der Audio–Frequenzbereich beträgt&nbsp;  $50 \ \rm Hz$&nbsp;  bis&nbsp;  $7 \ \rm kHz$.
+ Er stellt Modi zwischen $6.60 \ \rm kHz$ und $23.85 \ \rm kHz$ bereit.
+
+ Er stellt Modi zwischen&nbsp;  $6.60 \ \rm kHz$&nbsp;  und&nbsp;  $23.85 \ \rm kHz$&nbsp;  bereit.
 
+ Für die höherratigen Modi ist GSM nicht ausreichend.
 
+ Für die höherratigen Modi ist GSM nicht ausreichend.
  

Version vom 16. April 2019, 15:54 Uhr

Audiosignale von „Narrow–Band”
und „Wide–Band”

Mit der Entwicklung des GSM–Standards nach 1990 ging die Standardisierung verschiedener Sprach–Codecs einher:

  • Mit dem ersten Full–Rate–Codec  (FR)  aus dem Jahr 1991 erreichte man eine Reduktion auf die Datenrate  $13 \ \rm kbit/s$, ausreichend gering, um ein Sprachsignal über einen einzigen Verkehrskanal übertragen zu können.
  • 1994 wurde der Half–Rate–Codec  (HR)  mit der Bitrate  $5.6 \ \rm kbit/s$  entwickelt mit dem Ziel, bei Bedarf in einem Verkehrskanal zwei Gespräche gleichzeitig übertragen zu können. Die Qualität erreicht allerdings nicht ganz diejenige des Full–Rate–Codecs.
  • Der Enhanced Full–Rate Codec  (EFR)  von 1995 stellte eine erhebliche Weiterentwicklung dar, die auf dem Datenreduktionsverfahren ACELP (Algebraic Code Excited Linear Prediction) basiert. Der EFR–Codec liefert eine Datenrate von  $12.2 \ \rm kbit/s$  und steht für den mittlerweile üblichen Qualitätsstandard im Mobilfunk.
  • 1999 wurde von der ETSI der Adaptive Multi–Rate Codec  (AMR)  für GSM standardisiert. Dieser stellt acht verschiedene Modi mit Datenraten zwischen  $4.75 \ \rm kbit/s$  und  $12.2 \ \rm kbit/s$  bereit. Der AMR–Codec verwendet wie der EFR–Codec das ACELP–Verfahren.
  • Der Wideband–AMR  (WB–AMR)  ist eine Weiterentwicklung des ursprünglichen AMR. Er wurde 2001 vom 3GPP–Konsortium und 2002 von der ITU–T standardisiert und nutzt den Frequenzbereich von  $50 \ \rm Hz$  bis  $7 \ \rm kHz$. Hier liegt also ein „WideBand–Signal” zugrunde.





Hinweise:


Fragebogen

1

Welche Aufgaben erfüllt ein Sprachcodec?

Er dient zur Ratenreduzierung von digitalisierter Sprache.
Er ist aus Gründen der Fehlerkorrektur erforderlich.
Er wird zur Codierung und auch zur Decodierung verwendet.

2

Welche Vorteile bietet der EFR–Codec gegenüber dem FR–Codec?

Er ist für breitbandige Signale $($Frequenzbereich:   $200 \ \rm Hz$  bis  $7 \ \rm kHz)$  ausgelegt.
Er bietet eine bessere Klangqualität.
Die Verbesserung geht auf das ACELP–Verfahren zurück.

3

Welche Vorteile bietet der AMR–Codec gegenüber dem EFR–Codec?

Er liefert eine bessere Sprachqualität.
Er stellt verschiedene Modi bereit und ist damit flexibler.
Der niedrigste Modus ist identisch mit dem EFR–Standard.

4

Welche Eigenschaften weist der WB–AMR auf?

Der Audio–Frequenzbereich beträgt  $50 \ \rm Hz$  bis  $7 \ \rm kHz$.
Er stellt Modi zwischen  $6.60 \ \rm kHz$  und  $23.85 \ \rm kHz$  bereit.
Für die höherratigen Modi ist GSM nicht ausreichend.


Musterlösung

(1)  Richtig sind die Lösungsvorschläge 1 und 3:

  • Die erforderliche Datenrate wird reduziert, indem Redundanz und Irrelevanz aus dem Datensignal entfernt wird.
  • Das Kunstwort „Codec” weist darauf hin, dass die gleiche Funktionseinheit sowohl für die Codierung als auch für die Decodierung verwendet wird.


(2)  Richtig sind die Antworten 2 und 3:

  • Der EFR–Codec aus dem Jahre 1995 ist eine erhebliche Weiterentwicklung des Full–Rate Codecs aus dem Jahr 1991, wobei unter anderem die Sprachqualität durch Hintergrundgeräusch weniger beeinträchtigt wird.
  • Der EFR–Codec basiert ebenso wie der AMR auf dem Datenreduktionsverfahren ACELP (Algebraic Code Excited Linear Prediction).
  • Der erste Lösungsvorschlag ist dagegen falsch. Der EFR–Codec ist wie der FR– und der AMR–Codec nur für den Telefonkanal (300 Hz bis 3.4 kHz) ausgelegt.
  • Zur besseren Verständlichkeit und Vermeidung eines dumpfen Klangs erfolgt zusätzlich eine Mittenanhebung und eine Tiefenabsenkung.


(3)  Richtig ist nur der Lösungsvorschlag 2:

  • Der Vorteil des AMR–Codecs gegenüber dem EFR liegt in seiner größeren Flexibilität.
  • Wenn sich die Kanalqualität signifikant verschlechtert, kann fließend zu einem niederratigen Modus umgeschaltet werden, bei dem sich Übertragungsfehler weniger störend auswirken.
  • Man kann zudem wie beim Half–Rate Codec zwei Gespräche in einem Verkehrskanal führen.
  • Der höchste Modus mit 12.2 kbit/s – und nicht der niedrigste – ist identisch mit dem EFR–Codec. Damit ist offensichtlich, dass der AMR keine bessere Sprachqualität als der EFR liefern kann.


(4)  Hier sind alle Antworten richtig:

  • Im Wideband–AMR werden neun Modi bereitgestellt, von denen allerdings für den Mobilfunk nur fünf genutzt werden, nämlich diejenigen mit den Datenraten 6.60, 8.85, 12.65, 15.85 und 23.65 kbit/s.
  • Die Modi bis 12.65 kbit/s haben den Vorteil, dass ein so codiertes Sprachsignal in einem einzigen GSM–Verkehrskanal untergebracht werden kann. Für die höherratigen Modi benötigt man GSM/EDGE oder UMTS.
  • Die höherratigen Modi (15.85 und 23.65 kbit/s) liefern zwar bei Sprache nur noch eine geringe Verbesserung, allerdings aufgrund des größeren Frequenzbereichs eine merkliche Verbesserung bei der Übertragung von Musik.
  • Sowohl der WB–AMR 12.65 als auch die höheren Modi von (Narrowband–) AMR zeigen hier Schwächen. Eine noch niedrigere Datenrate liefert bei Musiksignalen äußerst dürftige Ergebnisse.
  • Der WB–AMR hat auch bei vergleichbarer Datenrate (12.65 kbit/s) eine bessere Sprachqualität als der NB–AMR mit 12.2 kbit/s. Durch die größere Bandbreite klingt die Sprache natürlicher und Zischlaute wie „s”, „f” und „sch” werden besser verständlich.