Aufgaben:Aufgabe 2.08: Generatorpolynome für Reed-Solomon: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 47: Zeile 47:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2 und 3</u> &nbsp;&#8658;&nbsp; Matrizen $\mathbf{G}_{\rm B}$ und $\mathbf{G}_{\rm C}$. *In der Matrix $\mathbf{G}_{\rm C}$ wurden bereits die erlaubten Umformungen $\alpha^8 = \alpha, \ \alpha^{10} = \alpha^3$ und $\alpha^{12} = \alpha^5$ berücksichtigt.  
+
'''(1)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2 und 3</u> &nbsp;&#8658;&nbsp; Matrizen $\mathbf{G}_{\rm B}$ und $\mathbf{G}_{\rm C}$.  
 +
*In der Matrix $\mathbf{G}_{\rm C}$ wurden bereits die erlaubten Umformungen&nbsp; $\alpha^8 = \alpha, \ \alpha^{10} = \alpha^3$&nbsp; und&nbsp; $\alpha^{12} = \alpha^5$&nbsp; berücksichtigt.  
 
*Die Matrix $\mathbf{G}_{\rm A}$ gilt für den $(7, \, 5, \, 3)$&ndash;Hamming&ndash;Code und $\mathbf{G}_{\rm D}$ gehört zum $\rm RSC \, (7, \, 5, \, 3)_8$. Siehe hierzu Teilaufgabe (3).
 
*Die Matrix $\mathbf{G}_{\rm A}$ gilt für den $(7, \, 5, \, 3)$&ndash;Hamming&ndash;Code und $\mathbf{G}_{\rm D}$ gehört zum $\rm RSC \, (7, \, 5, \, 3)_8$. Siehe hierzu Teilaufgabe (3).
  
  
'''(2)'''&nbsp; Beim $\rm RSC \, (7, \, 3, \, 5)_8$ werden in jedem Codierschritt $k = 3$ Informationssymbole verarbeitet, im Codierschritt 1 entsprechend der Angabe die Symbole $\alpha^4, \ 1$ und $\alpha^3$.
 
  
[[Datei:P_ID2584__KC_T_2_5_Darstellung.png|right|frame|$\rm GF(2^3)$ in Exponenten–, Polynom- und Koeffizientendarstellung]]  
+
'''(2)'''&nbsp; Beim $\rm RSC \, (7, \, 3, \, 5)_8$ werden in jedem Codierschritt $k = 3$ Informationssymbole verarbeitet, im Codierschritt 1 gemäß der Angabe die Symbole $\alpha^4, \ 1$ und $\alpha^3$.
Mit der Generatormatrix $\mathbf{G}_{\rm C}$ gilt somit:
+
 
 +
[[Datei:P_ID2584__KC_T_2_5_Darstellung.png|right|frame|$\rm GF(2^3)$ als Potenzen, Polynome und Vektoren]]  
 +
*Mit der Generatormatrix $\mathbf{G}_{\rm C}$ gilt somit:
 
:$$\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}}_{\rm C} =
 
:$$\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}}_{\rm C} =
 
\begin{pmatrix}
 
\begin{pmatrix}
Zeile 65: Zeile 67:
 
\end{pmatrix}\hspace{0.05cm}. $$
 
\end{pmatrix}\hspace{0.05cm}. $$
  
 
+
*Damit ergibt sich entsprechend der nebenstehenden Hilfstabelle:
Damit ergibt sich entsprechend der nebenstehenden Hilfstabelle:
 
 
:$$c_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \alpha^{4}\cdot 1  + 1 \cdot 1 +  \alpha^{3}\cdot 1 =
 
:$$c_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \alpha^{4}\cdot 1  + 1 \cdot 1 +  \alpha^{3}\cdot 1 =
 
(110) + (001) + (011)= (100) = \alpha^{2} \hspace{0.05cm},$$
 
(110) + (001) + (011)= (100) = \alpha^{2} \hspace{0.05cm},$$
Zeile 82: Zeile 83:
 
  (\alpha^{2} + \alpha) + (\alpha^2 +1) + \alpha = 1 \hspace{0.05cm}.$$
 
  (\alpha^{2} + \alpha) + (\alpha^2 +1) + \alpha = 1 \hspace{0.05cm}.$$
  
Man erhält das genau gleiche Ergebnis wie in der Teilaufgabe (4) von [[Aufgaben:Aufgabe_2.07:_Reed–Solomon–Code_(7,_3,_5)_zur_Basis_8|Aufgabe 2.7]]. Richtig sind die <u>Lösungsvorschläge 1 und 2</u>. Es gilt also nicht $c_6 = 0$, sondern $c_6 = 1$.
+
*Man erhält das genau gleiche Ergebnis wie in der Teilaufgabe (4) von [[Aufgaben:Aufgabe_2.07:_Reed–Solomon–Code_(7,_3,_5)_zur_Basis_8|Aufgabe 2.7]]. Richtig sind die <u>Lösungsvorschläge 1 und 2</u>.  
 +
*Es gilt also nicht $c_6 = 0$, sondern $c_6 = 1$.
 +
 
  
  
'''(3)'''&nbsp; Beim $\rm RSC \, (7, \, 5, \, 3)_8$ ist das Informationswort $\underline{u} = (u_0, \, u_1, \, u_2, \, u_3, \, u_4)$ zu berücksichtigen. Mit der Generatormatrix $\mathbf{G}_{\rm D}$ erhält man:
+
'''(3)'''&nbsp; Beim $\rm RSC \, (7, \, 5, \, 3)_8$ ist das Informationswort $\underline{u} = (u_0, \, u_1, \, u_2, \, u_3, \, u_4)$ zu berücksichtigen.  
 +
*Mit der Generatormatrix $\mathbf{G}_{\rm D}$ erhält man:
 
:$$\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}}_{\rm D} =
 
:$$\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}}_{\rm D} =
 
\begin{pmatrix}
 
\begin{pmatrix}
Zeile 98: Zeile 102:
 
\end{pmatrix}\hspace{0.05cm}. $$
 
\end{pmatrix}\hspace{0.05cm}. $$
  
Daraus folgt:
+
*Daraus folgt:
 
:$$c_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \alpha^{4}\cdot 1  + 1 \cdot 1 +  \alpha^{3}\cdot 1  + 0 \cdot 1 +  \alpha^{6}\cdot 1= (110) + (001) + (011) + (000) +  (101) = (001) = 1 \hspace{0.05cm},$$
 
:$$c_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \alpha^{4}\cdot 1  + 1 \cdot 1 +  \alpha^{3}\cdot 1  + 0 \cdot 1 +  \alpha^{6}\cdot 1= (110) + (001) + (011) + (000) +  (101) = (001) = 1 \hspace{0.05cm},$$
 
:$$c_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \left [ \alpha^{4}\cdot 1 + 1 \cdot \alpha + \alpha^{3}\cdot \alpha^{2} \right ] + 0 \cdot \alpha^{3} +  \alpha^{6}\cdot \alpha^{4}=  \left [ \alpha^{3} \right ] + \alpha^{3} = 0 \hspace{0.05cm}.$$
 
:$$c_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \left [ \alpha^{4}\cdot 1 + 1 \cdot \alpha + \alpha^{3}\cdot \alpha^{2} \right ] + 0 \cdot \alpha^{3} +  \alpha^{6}\cdot \alpha^{4}=  \left [ \alpha^{3} \right ] + \alpha^{3} = 0 \hspace{0.05cm}.$$
  
Hierbei ist berücksichtigt, dass der Klammerausdruck $[ \ \text{...} \ ]$ genau dem Ergebnis $c_1$ der Teilaufgabe (2) entspricht. Entsprechendes wird auch bei den folgenden Berechnungen berücksichtigt:
+
*Hierbei ist berücksichtigt, dass der Klammerausdruck $[ \ \text{...} \ ]$ genau dem Ergebnis $c_1$ der Teilaufgabe (2) entspricht.
 +
 
 +
*Entsprechendes wird auch bei den folgenden Berechnungen berücksichtigt:
 
:$$c_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}    \left [ \alpha^{3} \right ] + \alpha^{6}\cdot \alpha^{1}=
 
:$$c_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}    \left [ \alpha^{3} \right ] + \alpha^{6}\cdot \alpha^{1}=
 
\left [ \alpha^{3} \right ] + \alpha^{7} =
 
\left [ \alpha^{3} \right ] + \alpha^{7} =
Zeile 118: Zeile 124:
 
  =  (001) + (100) = (101) = \alpha^{6} \hspace{0.05cm}.$$
 
  =  (001) + (100) = (101) = \alpha^{6} \hspace{0.05cm}.$$
  
Das heißt: <u>Alle Lösungsvorschläge</u> sind richtig.
+
*Das heißt: <u>Alle Lösungsvorschläge</u> sind richtig.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Version vom 22. Mai 2019, 15:38 Uhr

Vier Generatormatrizen, drei davon beschreiben Reed–Solomon–Codes

In der  Aufgabe 2.7  sollten Sie die Codeworte des  $\rm RSC \, (7, \, 3, \, 5)_8$  über ein Polynom ermitteln. Man kann aber das Codewort  $\underline{c}$  auch aus dem Informationswort  $\underline{u}$  und der Generatormatrix  $\mathbf{G}$  gemäß der folgenden Gleichung bestimmen:

$$\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}} \hspace{0.05cm}.$$
  • Zwei dieser Generatormatrizen beschreiben den  $\rm RSC \, (7, \, 3, \, 5)_8$. In der Teilaufgabe (1) ist explizit gefragt, welche.
  • Eine weitere Generatormatrix gehört zum  $\rm RSC \, (7, \, 5, \, 3)_8$, der in der Teilaufgabe (3) betrachtet wird.




Hinweise:



Fragebogen

1

Welche der Generatorpolynome beschreiben den  $\rm RSC \, (7, \, 3, \, 5)_8$?

Die Matrix  $\mathbf{G}_{\rm A}$,
die Matrix  $\mathbf{G}_{\rm B}$,
die Matrix  $\mathbf{G}_{\rm C}$,
die Matrix  $\mathbf{G}_{\rm D}$.

2

Die Informationsfolge beginnt mit  $\alpha^4, \, 1, \, \alpha^3, \, 0, \, \alpha^6$. Bestimmen Sie das erste Codewort für den  $\rm RSC \, (7, \, 3, \, 5)_8$.

Es gilt  $c_0 = \alpha^2$,
Es gilt  $c_1 = \alpha^3$,
Es gilt  $c_6 = 0$.

3

Wie lautet bei gleicher Informationsfolge das Codewort für den  $\rm RSC \, (7, \, 5, \, 3)_8$?

Es gilt  $c_0 = 1$,
Es gilt  $c_1 = 0$,
Es gilt  $c_6 = \alpha^6$.


Musterlösung

(1)  Richtig sind die Lösungsvorschläge 2 und 3  ⇒  Matrizen $\mathbf{G}_{\rm B}$ und $\mathbf{G}_{\rm C}$.

  • In der Matrix $\mathbf{G}_{\rm C}$ wurden bereits die erlaubten Umformungen  $\alpha^8 = \alpha, \ \alpha^{10} = \alpha^3$  und  $\alpha^{12} = \alpha^5$  berücksichtigt.
  • Die Matrix $\mathbf{G}_{\rm A}$ gilt für den $(7, \, 5, \, 3)$–Hamming–Code und $\mathbf{G}_{\rm D}$ gehört zum $\rm RSC \, (7, \, 5, \, 3)_8$. Siehe hierzu Teilaufgabe (3).


(2)  Beim $\rm RSC \, (7, \, 3, \, 5)_8$ werden in jedem Codierschritt $k = 3$ Informationssymbole verarbeitet, im Codierschritt 1 gemäß der Angabe die Symbole $\alpha^4, \ 1$ und $\alpha^3$.

$\rm GF(2^3)$ als Potenzen, Polynome und Vektoren
  • Mit der Generatormatrix $\mathbf{G}_{\rm C}$ gilt somit:
$$\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}}_{\rm C} = \begin{pmatrix} \alpha^4 & 1 & \alpha^3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1\\ 1 & \alpha^1 & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5} \end{pmatrix}\hspace{0.05cm}. $$
  • Damit ergibt sich entsprechend der nebenstehenden Hilfstabelle:
$$c_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot 1 + \alpha^{3}\cdot 1 = (110) + (001) + (011)= (100) = \alpha^{2} \hspace{0.05cm},$$
$$c_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha + \alpha^{3}\cdot \alpha^{2}= (110) + (010) + (110) = (011) = \alpha^{3} \hspace{0.05cm},$$
$$c_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha^{2} + \alpha^{3}\cdot \alpha^{4}= (110) + (100) + (001) = (011) = \alpha^{3} \hspace{0.05cm},$$
$$c_3 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha^{3} + \alpha^{3}\cdot \alpha^{6}=$ (110) + (011) + (100) = (001) = 1 \hspace{0.05cm},$$
$$c_4 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha^{4} + \alpha^{3}\cdot \alpha^{1} = \alpha^{4} \hspace{0.05cm},$$
$$c_5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha^{5} + \alpha^{3}\cdot \alpha^{3}= (110) + (111) + (101) = (100) = \alpha^{2} \hspace{0.05cm},$$
$$c_6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha^{6} + \alpha^{3}\cdot \alpha^{5}= (\alpha^{2} + \alpha) + (\alpha^2 +1) + \alpha = 1 \hspace{0.05cm}.$$
  • Man erhält das genau gleiche Ergebnis wie in der Teilaufgabe (4) von Aufgabe 2.7. Richtig sind die Lösungsvorschläge 1 und 2.
  • Es gilt also nicht $c_6 = 0$, sondern $c_6 = 1$.


(3)  Beim $\rm RSC \, (7, \, 5, \, 3)_8$ ist das Informationswort $\underline{u} = (u_0, \, u_1, \, u_2, \, u_3, \, u_4)$ zu berücksichtigen.

  • Mit der Generatormatrix $\mathbf{G}_{\rm D}$ erhält man:
$$\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}}_{\rm D} = \begin{pmatrix} \alpha^4 & 1 & \alpha^3 & 0 & \alpha^6 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1\\ 1 & \alpha^1 & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5}\\ 1 & \alpha^3 & \alpha^6 & \alpha^2 & \alpha^5 & \alpha^{1} & \alpha^{4}\\ 1 & \alpha^4 & \alpha^1 & \alpha^5 & \alpha^2 & \alpha^{6} & \alpha^{3} \end{pmatrix}\hspace{0.05cm}. $$
  • Daraus folgt:
$$c_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot 1 + \alpha^{3}\cdot 1 + 0 \cdot 1 + \alpha^{6}\cdot 1= (110) + (001) + (011) + (000) + (101) = (001) = 1 \hspace{0.05cm},$$
$$c_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ \alpha^{4}\cdot 1 + 1 \cdot \alpha + \alpha^{3}\cdot \alpha^{2} \right ] + 0 \cdot \alpha^{3} + \alpha^{6}\cdot \alpha^{4}= \left [ \alpha^{3} \right ] + \alpha^{3} = 0 \hspace{0.05cm}.$$
  • Hierbei ist berücksichtigt, dass der Klammerausdruck $[ \ \text{...} \ ]$ genau dem Ergebnis $c_1$ der Teilaufgabe (2) entspricht.
  • Entsprechendes wird auch bei den folgenden Berechnungen berücksichtigt:
$$c_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ \alpha^{3} \right ] + \alpha^{6}\cdot \alpha^{1}= \left [ \alpha^{3} \right ] + \alpha^{7} = (011) + (001) = (010) = \alpha^{1} \hspace{0.05cm},$$
$$c_3 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ 1 \right ] + \alpha^{6}\cdot \alpha^{5}= \left [ 1 \right ] + \alpha^{4}= (001) + (110) = (111) = \alpha^{5} \hspace{0.05cm},$$
$$c_4 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ \alpha^{4} \right ] + \alpha^{6}\cdot \alpha^{2}= \left [ \alpha^{4} \right ] + \alpha^{1} = (110) + (010) = (100) = \alpha^{2} \hspace{0.05cm},$$
$$c_5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ \alpha^{2} \right ] + \alpha^{6}\cdot \alpha^{6}= \left [ \alpha^{2} \right ] + \alpha^{5} = (100) + (111) = (011) = \alpha^{3} \hspace{0.05cm},$$
$$c_6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ 1 \right ] + \alpha^{6}\cdot \alpha^{3}= \left [ 1 \right ] + \alpha^{2} = (001) + (100) = (101) = \alpha^{6} \hspace{0.05cm}.$$
  • Das heißt: Alle Lösungsvorschläge sind richtig.