Kanalcodierung/Reed–Solomon–Decodierung beim Auslöschungskanal: Unterschied zwischen den Versionen
Zeile 51: | Zeile 51: | ||
== Vorgehensweise am Beispiel des RSC (7, 3, 5)<sub>8</sub> == | == Vorgehensweise am Beispiel des RSC (7, 3, 5)<sub>8</sub> == | ||
<br> | <br> | ||
− | Um die Reed–Solomon–Decodierung beim Auslöschungskanal so einfach wie möglich darstellen zu können, gehen wir von einer konkreten Aufgabenstellung aus: | + | Um die Reed–Solomon–Decodierung beim Auslöschungskanal so einfach wie möglich darstellen zu können, gehen wir von einer konkreten Aufgabenstellung aus: |
− | Somit gilt für das Informationswort $\underline{u}$ und das Codewort $\underline{c}$: | + | Verwendet wird ein Reed–Solomon–Code mit den Parametern $n= 7$, $k= 3$ und $q= 2^3 = 8$. |
+ | |||
+ | Somit gilt für das Informationswort $\underline{u}$ und das Codewort $\underline{c}$: | ||
::<math>\underline {u} = (u_0, u_1, u_2) \hspace{0.05cm},\hspace{0.15cm} | ::<math>\underline {u} = (u_0, u_1, u_2) \hspace{0.05cm},\hspace{0.15cm} | ||
Zeile 60: | Zeile 62: | ||
\hspace{0.05cm},</math> | \hspace{0.05cm},</math> | ||
− | und die Prüfmatrix $\boldsymbol{\rm H}$ lautet: | + | und die Prüfmatrix $\boldsymbol{\rm H}$ lautet: |
::<math>{ \boldsymbol{\rm H}} = | ::<math>{ \boldsymbol{\rm H}} = | ||
Zeile 70: | Zeile 72: | ||
\end{pmatrix}\hspace{0.05cm}. </math> | \end{pmatrix}\hspace{0.05cm}. </math> | ||
− | Beispielhaft wird vom Empfangsvektor $\underline {y} = (\alpha, \hspace{0.03cm} 1, \hspace{0.03cm}{\rm E}, \hspace{0.03cm}{\rm E}, \hspace{0.03cm}\alpha^2,{\rm E}, \hspace{0.03cm}\alpha^5)$ ausgegangen. Dann gilt: | + | Beispielhaft wird hier vom Empfangsvektor $\underline {y} = (\alpha, \hspace{0.03cm} 1, \hspace{0.03cm}{\rm E}, \hspace{0.03cm}{\rm E}, \hspace{0.03cm}\alpha^2,{\rm E}, \hspace{0.03cm}\alpha^5)$ ausgegangen. Dann gilt: |
*Da der Auslöschungskanal keine Fehler produziert, sind dem Decoder vier der Codesymbole bekannt: | *Da der Auslöschungskanal keine Fehler produziert, sind dem Decoder vier der Codesymbole bekannt: | ||
Zeile 79: | Zeile 81: | ||
\hspace{0.05cm}.</math> | \hspace{0.05cm}.</math> | ||
− | *Es ist offensichtlich, dass der Block „Codewortfinder” – im Blockschaltbild mit '''CWF''' bezeichnet – einen Vektor der Form $\underline {z} = (c_0, \hspace{0.03cm}c_1, \hspace{0.03cm}z_2, \hspace{0.03cm}z_3,\hspace{0.03cm}c_4,\hspace{0.03cm}z_5,\hspace{0.03cm}c_6)$ liefern soll mit $z_2,\hspace{0.03cm}z_3,\hspace{0.03cm}z_5 \in \rm GF(2^3)$.<br> | + | *Es ist offensichtlich, dass der Block „Codewortfinder” – im Blockschaltbild mit '''CWF''' bezeichnet – einen Vektor der Form $\underline {z} = (c_0, \hspace{0.03cm}c_1, \hspace{0.03cm}z_2, \hspace{0.03cm}z_3,\hspace{0.03cm}c_4,\hspace{0.03cm}z_5,\hspace{0.03cm}c_6)$ liefern soll mit $z_2,\hspace{0.03cm}z_3,\hspace{0.03cm}z_5 \in \rm GF(2^3)$.<br> |
− | *Da das vom Decoder gefundene Codewort $\underline {z}$ aber auch ein gültiges Reed–Solomon–Codewort sein soll ⇒ $\underline {z} ∈ \mathcal{C}_{\rm RS}$, muss ebenso gelten: | + | *Da das vom Decoder gefundene Codewort $\underline {z}$ aber auch ein gültiges Reed–Solomon–Codewort sein soll ⇒ $\underline {z} ∈ \mathcal{C}_{\rm RS}$, muss ebenso gelten: |
::<math>{ \boldsymbol{\rm H}} \cdot \underline {z}^{\rm T} = \underline {0}^{\rm T} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} | ::<math>{ \boldsymbol{\rm H}} \cdot \underline {z}^{\rm T} = \underline {0}^{\rm T} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} | ||
Zeile 106: | Zeile 108: | ||
\hspace{0.05cm}. </math> | \hspace{0.05cm}. </math> | ||
− | *Daraus ergeben sich vier Gleichungen für die Unbekannten $z_2$, $z_3$ | + | *Daraus ergeben sich vier Gleichungen für die Unbekannten $z_2$, $z_3$ und $z_5$. Bei eindeutiger Lösung – und nur bei einer solchen – ist die Decodierung erfolgreich und man kann dann mit Sicherheit sagen, dass tatsächlich $\underline {c} = \underline {z} $ gesendet wurde.<br><br> |
Zeile 112: | Zeile 114: | ||
== Lösung der Matrixgleichungen am Beispiel des RSC (7, 3, 5)<sub>8</sub> == | == Lösung der Matrixgleichungen am Beispiel des RSC (7, 3, 5)<sub>8</sub> == | ||
<br> | <br> | ||
− | Gefunden werden muss also das zulässige Codewort $\underline {z}$, das die Bestimmungsgleichung $\boldsymbol{\rm H} \cdot \underline {z}^{\rm T} $ erfüllt. Zweckmäßigerweise spalten wir dazu den Vektor $\underline {z}$ in zwei Teilvektoren auf, nämlich in | + | Gefunden werden muss also das zulässige Codewort $\underline {z}$, das die Bestimmungsgleichung $\boldsymbol{\rm H} \cdot \underline {z}^{\rm T} $ erfüllt. Zweckmäßigerweise spalten wir dazu den Vektor $\underline {z}$ in zwei Teilvektoren auf, nämlich in |
− | *den Vektor $\underline {z}_{\rm E} = (z_2, z_3, z_5)$ der ausgelöschten Symbole (Index „E” für <i>Erasures</i> ),<br> | + | *den Vektor $\underline {z}_{\rm E} = (z_2, z_3, z_5)$ der ausgelöschten Symbole (Index „$\rm E$” für <i>Erasures</i> ),<br> |
− | *den Vektor $\underline {z}_{\rm K} = (c_0, c_1,c_4, c_6)$ der bekannten Symbole (Index „K” für <i>Korrekt</i> ).<br><br> | + | *den Vektor $\underline {z}_{\rm K} = (c_0, c_1,c_4, c_6)$ der bekannten Symbole (Index „$\rm K$” für <i>Korrekt</i> ).<br><br> |
− | Mit den zugehörigen Teilmatrizen (jeweils mit $n-k = 4$ Zeilen) | + | Mit den zugehörigen Teilmatrizen (jeweils mit $n-k = 4$ Zeilen) |
::<math>{ \boldsymbol{\rm H}}_{\rm E} = | ::<math>{ \boldsymbol{\rm H}}_{\rm E} = | ||
Zeile 142: | Zeile 144: | ||
{ \boldsymbol{\rm H}}_{\rm K} \cdot \underline {z}_{\rm K}^{\rm T}\hspace{0.05cm}. </math> | { \boldsymbol{\rm H}}_{\rm K} \cdot \underline {z}_{\rm K}^{\rm T}\hspace{0.05cm}. </math> | ||
− | Da für alle Elemente $z_i ∈ {\rm GF}(2^m)$ die [[Kanalcodierung/Einige_Grundlagen_der_Algebra#Definition_eines_Galoisfeldes |additive Inverse]] ${\rm Inv_A}(z_i)= (- z_i) = z_i$ ist, gilt in gleicher Weise | + | *Da für alle Elemente $z_i ∈ {\rm GF}(2^m)$ die [[Kanalcodierung/Einige_Grundlagen_der_Algebra#Definition_eines_Galoisfeldes |additive Inverse]] ${\rm Inv_A}(z_i)= (- z_i) = z_i$ ist, gilt in gleicher Weise |
::<math>{ \boldsymbol{\rm H}}_{\rm E} \cdot \underline {z}_{\rm E}^{\rm T} = | ::<math>{ \boldsymbol{\rm H}}_{\rm E} \cdot \underline {z}_{\rm E}^{\rm T} = | ||
Zeile 166: | Zeile 168: | ||
\hspace{0.05cm}.</math> | \hspace{0.05cm}.</math> | ||
− | Die rechte Gleichungsseite ergibt sich für das betrachtete Beispiel ⇒ $\underline {z}_{\rm K} = (c_0, c_1,c_4, c_6)$ und basiert auf dem Polynom $p(x) = x^3 + x +1$, das zu folgenden Potenzen (in $\alpha$ | + | *Die rechte Gleichungsseite ergibt sich für das betrachtete Beispiel ⇒ $\underline {z}_{\rm K} = (c_0, c_1,c_4, c_6)$ und basiert auf dem Polynom $p(x) = x^3 + x +1$, das zu folgenden Potenzen $($in $\alpha)$ führt: |
::<math>\alpha^3 =\alpha + 1\hspace{0.05cm}, | ::<math>\alpha^3 =\alpha + 1\hspace{0.05cm}, | ||
Zeile 177: | Zeile 179: | ||
\hspace{0.3cm} \alpha^{10} = \alpha^3 = \alpha + 1\hspace{0.05cm},\hspace{0.1cm} \text{...}</math> | \hspace{0.3cm} \alpha^{10} = \alpha^3 = \alpha + 1\hspace{0.05cm},\hspace{0.1cm} \text{...}</math> | ||
− | Damit lautet die Matrizengleichung zur Bestimmung des gesuchten Vektors $\underline {z}_{\rm E}$: | + | *Damit lautet die Matrizengleichung zur Bestimmung des gesuchten Vektors $\underline {z}_{\rm E}$: |
::<math>\begin{pmatrix} | ::<math>\begin{pmatrix} | ||
Zeile 198: | Zeile 200: | ||
\hspace{0.05cm}. </math> | \hspace{0.05cm}. </math> | ||
− | Löst man diese Matrizengleichung (am einfachsten per Programm), so erhält man | + | *Löst man diese Matrizengleichung (am einfachsten per Programm), so erhält man |
::<math>z_2 = \alpha^2\hspace{0.05cm},\hspace{0.25cm}z_3 = \alpha^1\hspace{0.05cm},\hspace{0.25cm}z_5 = \alpha^5 | ::<math>z_2 = \alpha^2\hspace{0.05cm},\hspace{0.25cm}z_3 = \alpha^1\hspace{0.05cm},\hspace{0.25cm}z_5 = \alpha^5 | ||
Zeile 204: | Zeile 206: | ||
\hspace{0.05cm}.</math> | \hspace{0.05cm}.</math> | ||
− | Das Ergebnis ist richtig, wie die folgenden Kontrollrechnungen zeigen: | + | *Das Ergebnis ist richtig, wie die folgenden Kontrollrechnungen zeigen: |
::<math>\alpha^2 \cdot \alpha^2 + \alpha^3 \cdot \alpha^1 + \alpha^5 \cdot \alpha^5 = | ::<math>\alpha^2 \cdot \alpha^2 + \alpha^3 \cdot \alpha^1 + \alpha^5 \cdot \alpha^5 = | ||
Zeile 215: | Zeile 217: | ||
(\alpha + 1) + (\alpha^2 + 1) + (\alpha^2 + \alpha) = 0\hspace{0.05cm}.</math> | (\alpha + 1) + (\alpha^2 + 1) + (\alpha^2 + \alpha) = 0\hspace{0.05cm}.</math> | ||
− | Das zugehörige Informationswort erhält man mit der [[Kanalcodierung/Allgemeine_Beschreibung_linearer_Blockcodes#Codefestlegung_durch_die_Generatormatrix| Generatormatrix]] $\boldsymbol{\rm G}$ zu $\underline {v} = \underline {z} \cdot \boldsymbol{\rm G}^{\rm T} = (\alpha^1,\hspace{0.05cm}1,\hspace{0.05cm}\alpha^3)$.<br> | + | *Das zugehörige Informationswort erhält man mit der [[Kanalcodierung/Allgemeine_Beschreibung_linearer_Blockcodes#Codefestlegung_durch_die_Generatormatrix| Generatormatrix]] $\boldsymbol{\rm G}$ zu $\underline {v} = \underline {z} \cdot \boldsymbol{\rm G}^{\rm T} = (\alpha^1,\hspace{0.05cm}1,\hspace{0.05cm}\alpha^3)$.<br> |
== Aufgaben zum Kapitel == | == Aufgaben zum Kapitel == |
Version vom 24. Mai 2019, 09:31 Uhr
Inhaltsverzeichnis
Blockschaltbild und Voraussetzungen zur RS–Fehlererkennung
Im Kapitel Decodierung beim Binary Erasure Channel wurde für die binären Blockcodes gezeigt, welche Berechnungen der Decoder ausführen muss, um aus einem unvollständigen Empfangswort $\underline{y}$ das gesendete Codewort $\underline{x}$ bestmöglich decodieren zu können. Im Reed–Solomon–Kapitel haben wir $\underline{x}$ in $\underline{c}$ umbenannt.
Zugrunde gelegt wird auch hier das BEC–Kanalmodell (Binary Erasure Channel ), das ein unsicheres Bit als Erasure $\rm E$ („Auslöschung”) markiert. Im Gegensatz zu BSC (Binary Symmetric Channel ) und AWGN (Additive White Gaussian Noise ) sind hier Bitfehler $(y_i ≠ c_i)$ ausgeschlossen. Jedes Bit eines Empfangswortes
- stimmt also mit dem entsprechenden Bit des Codewortes überein $(y_i = c_i)$, oder
- ist bereits als Auslöschung markiert $(y_i = \rm E)$.
Die Grafik zeigt das Blockschaltbild, das sich von dem Modell im Kapitel Decodierung linearer Blockcodes geringfügig unterscheidet:
- Da Reed–Solomon–Codes lineare Blockcodes sind, stehen auch hier Informationswort $\underline{u}$ und Codewort $\underline{c}$ über die Generatormatrix $\boldsymbol{\rm G}$ und die folgende Gleichung in Zusammenhang:
- \[\underline {c} = {\rm enc}(\underline {u}) = \underline {u} \cdot { \boldsymbol{\rm G}} \hspace{0.3cm} {\rm mit} \hspace{0.3cm}\underline {u} = (u_0, u_1,\hspace{0.05cm}\text{ ... }\hspace{0.1cm}, u_i, \hspace{0.05cm}\text{ ... }\hspace{0.1cm}, u_{k-1})\hspace{0.05cm}, \hspace{0.2cm} \underline {c} = (c_0, c_1, \hspace{0.05cm}\text{ ... }\hspace{0.1cm}, c_i, \hspace{0.05cm}\text{ ... }\hspace{0.1cm}, c_{n-1}) \hspace{0.05cm}.\]
- Für die einzelnen Symbole von Informationsblock und Codewort gilt bei Reed–Solomon–Codierung:
- \[u_i \in {\rm GF}(q)\hspace{0.05cm},\hspace{0.2cm}c_i \in {\rm GF}(q)\hspace{0.3cm}{\rm mit}\hspace{0.3cm} q = n+1 = 2^m \hspace{0.3cm} \Rightarrow \hspace{0.3cm} n = 2^m - 1\hspace{0.05cm}. \]
- Jedes Codesymbol $c_i$ wird somit mit $m ≥ 2$ Binärsymbolen (Bit) dargestellt. Zum Vergleich: Für die binären Blockcodes gilt $q=2$, $m=1$ und die Codewortlänge $n$ ist frei wählbar.
- Bei Codierung auf Symbolebene muss das BEC–Modell zum $m$–BEC–Modell erweitert werden. Mit der Wahrscheinlichkeit $\lambda_m ≈ m \cdot\lambda$ wird ein Codesymbol $c_i$ ausgelöscht $(y_i = \rm E)$ und es gilt ${\rm Pr}(y_i = c_i) = 1 - \lambda_m$. Näheres zur Umrechnung der beiden Modelle finden Sie in der Aufgabe 2.11Z.
Im Folgenden beschäftigen wir uns nur mit dem Block Codewortfinder (CWF), der aus dem Empfangsvektor $\underline{y}$ den Vektor $\underline{z} ∈ \mathcal{C}_{\rm RS}$ gewinnt:
- Falls die Anzahl $e$ der Auslöschungen im Vektor $\underline{y}$ hinreichend klein ist, lässt sich das gesamte Codewort mit Sicherheit $(\underline{z}=\underline{c})$ finden.
- Sind zuviele Symbole des Empfangswortes $\underline{y}$ ausgelöscht, meldet der Decoder, dass dieses Wort nicht decodierbar ist und sendet eventuell die Sequenz noch einmal.
Beim Auslöschungskanal ($m$–BEC) ist im Gegensatz zum $m$–BSC, der im Kapitel Fehlerkorrektur nach Reed–Solomon–Codierung Anwendung findet, eine Fehlentscheidung $(\underline{z} \ne \underline{c})$ ausgeschlossen ⇒ Blockfehlerwahrscheinlichkeit ${\rm Pr}(\underline{z}\ne\underline{c}) = 0$ ⇒ ${\rm Pr}(\underline{v}\ne\underline{u}) = 0$.
- Das rekonstruierte Informationswort ergibt sich gemäß dem Blockschaltbild (gelbe Hinterlegung) zu $\underline{v} = {\rm enc}^{-1}(\underline{z})$.
- Mit der Generatormatrix $\boldsymbol{\rm G}$ kann hierfür auch geschrieben werden:
- \[\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\underline {z} = \underline {\upsilon} \cdot { \boldsymbol{\rm G}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\underline {\upsilon} = \underline {z} \cdot { \boldsymbol{\rm G}}^{\rm T} \hspace{0.05cm}. \]
Vorgehensweise am Beispiel des RSC (7, 3, 5)8
Um die Reed–Solomon–Decodierung beim Auslöschungskanal so einfach wie möglich darstellen zu können, gehen wir von einer konkreten Aufgabenstellung aus:
Verwendet wird ein Reed–Solomon–Code mit den Parametern $n= 7$, $k= 3$ und $q= 2^3 = 8$.
Somit gilt für das Informationswort $\underline{u}$ und das Codewort $\underline{c}$:
- \[\underline {u} = (u_0, u_1, u_2) \hspace{0.05cm},\hspace{0.15cm} \underline {c} = (c_0, c_1, c_2,c_3,c_4,c_5,c_6)\hspace{0.05cm},\hspace{0.15cm} u_i, c_i \in {\rm GF}(2^3) = \{0, 1, \alpha, \alpha^2, \text{...}\hspace{0.05cm} , \alpha^6\} \hspace{0.05cm},\]
und die Prüfmatrix $\boldsymbol{\rm H}$ lautet:
- \[{ \boldsymbol{\rm H}} = \begin{pmatrix} 1 & \alpha^1 & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5}\\ 1 & \alpha^3 & \alpha^6 & \alpha^2 & \alpha^{5} & \alpha^{1} & \alpha^{4}\\ 1 & \alpha^4 & \alpha^1 & \alpha^{5} & \alpha^{2} & \alpha^{6} & \alpha^{3} \end{pmatrix}\hspace{0.05cm}. \]
Beispielhaft wird hier vom Empfangsvektor $\underline {y} = (\alpha, \hspace{0.03cm} 1, \hspace{0.03cm}{\rm E}, \hspace{0.03cm}{\rm E}, \hspace{0.03cm}\alpha^2,{\rm E}, \hspace{0.03cm}\alpha^5)$ ausgegangen. Dann gilt:
- Da der Auslöschungskanal keine Fehler produziert, sind dem Decoder vier der Codesymbole bekannt:
- \[c_0 = \alpha^1 \hspace{0.05cm},\hspace{0.2cm} c_1 = 1 \hspace{0.05cm},\hspace{0.2cm} c_4 = \alpha^2 \hspace{0.05cm},\hspace{0.2cm} c_6 = \alpha^5 \hspace{0.05cm}.\]
- Es ist offensichtlich, dass der Block „Codewortfinder” – im Blockschaltbild mit CWF bezeichnet – einen Vektor der Form $\underline {z} = (c_0, \hspace{0.03cm}c_1, \hspace{0.03cm}z_2, \hspace{0.03cm}z_3,\hspace{0.03cm}c_4,\hspace{0.03cm}z_5,\hspace{0.03cm}c_6)$ liefern soll mit $z_2,\hspace{0.03cm}z_3,\hspace{0.03cm}z_5 \in \rm GF(2^3)$.
- Da das vom Decoder gefundene Codewort $\underline {z}$ aber auch ein gültiges Reed–Solomon–Codewort sein soll ⇒ $\underline {z} ∈ \mathcal{C}_{\rm RS}$, muss ebenso gelten:
- \[{ \boldsymbol{\rm H}} \cdot \underline {z}^{\rm T} = \underline {0}^{\rm T} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \begin{pmatrix} 1 & \alpha^1 & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5}\\ 1 & \alpha^3 & \alpha^6 & \alpha^2 & \alpha^{5} & \alpha^{1} & \alpha^{4}\\ 1 & \alpha^4 & \alpha^1 & \alpha^{5} & \alpha^{2} & \alpha^{6} & \alpha^{3} \end{pmatrix} \cdot \begin{pmatrix} c_0\\ c_1\\ z_2\\ z_3\\ c_4\\ z_5\\ c_6 \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ 0\\ 0 \end{pmatrix} \hspace{0.05cm}. \]
- Daraus ergeben sich vier Gleichungen für die Unbekannten $z_2$, $z_3$ und $z_5$. Bei eindeutiger Lösung – und nur bei einer solchen – ist die Decodierung erfolgreich und man kann dann mit Sicherheit sagen, dass tatsächlich $\underline {c} = \underline {z} $ gesendet wurde.
Lösung der Matrixgleichungen am Beispiel des RSC (7, 3, 5)8
Gefunden werden muss also das zulässige Codewort $\underline {z}$, das die Bestimmungsgleichung $\boldsymbol{\rm H} \cdot \underline {z}^{\rm T} $ erfüllt. Zweckmäßigerweise spalten wir dazu den Vektor $\underline {z}$ in zwei Teilvektoren auf, nämlich in
- den Vektor $\underline {z}_{\rm E} = (z_2, z_3, z_5)$ der ausgelöschten Symbole (Index „$\rm E$” für Erasures ),
- den Vektor $\underline {z}_{\rm K} = (c_0, c_1,c_4, c_6)$ der bekannten Symbole (Index „$\rm K$” für Korrekt ).
Mit den zugehörigen Teilmatrizen (jeweils mit $n-k = 4$ Zeilen)
- \[{ \boldsymbol{\rm H}}_{\rm E} = \begin{pmatrix} \alpha^2 & \alpha^3 & \alpha^5 \\ \alpha^4 & \alpha^6 & \alpha^{3} \\ \alpha^6 & \alpha^2 & \alpha^{1} \\ \alpha^1 & \alpha^{5} & \alpha^{6} \end{pmatrix} \hspace{0.05cm},\hspace{0.4cm} { \boldsymbol{\rm H}}_{\rm K} \begin{pmatrix} 1 & \alpha^1 & \alpha^4 & \alpha^6\\ 1 & \alpha^2 & \alpha^1 & \alpha^{5}\\ 1 & \alpha^3 & \alpha^{5} & \alpha^{4}\\ 1 & \alpha^4 & \alpha^{2} & \alpha^{3} \end{pmatrix}\]
lautet somit die Bestimmungsgleichung:
- \[{ \boldsymbol{\rm H}}_{\rm E} \cdot \underline {z}_{\rm E}^{\rm T} + { \boldsymbol{\rm H}}_{\rm K} \cdot \underline {z}_{\rm K}^{\rm T} = \underline {0}^{\rm T} \hspace{0.5cm} \Rightarrow \hspace{0.5cm} { \boldsymbol{\rm H}}_{\rm E} \cdot \underline {z}_{\rm E}^{\rm T} = - { \boldsymbol{\rm H}}_{\rm K} \cdot \underline {z}_{\rm K}^{\rm T}\hspace{0.05cm}. \]
- Da für alle Elemente $z_i ∈ {\rm GF}(2^m)$ die additive Inverse ${\rm Inv_A}(z_i)= (- z_i) = z_i$ ist, gilt in gleicher Weise
- \[{ \boldsymbol{\rm H}}_{\rm E} \cdot \underline {z}_{\rm E}^{\rm T} = { \boldsymbol{\rm H}}_{\rm K} \cdot \underline {z}_{\rm K}^{\rm T} = \begin{pmatrix} 1 & \alpha^1 & \alpha^4 & \alpha^6\\ 1 & \alpha^2 & \alpha^1 & \alpha^{5}\\ 1 & \alpha^3 & \alpha^{5} & \alpha^{4}\\ 1 & \alpha^4 & \alpha^{2} & \alpha^{3} \end{pmatrix} \cdot \begin{pmatrix} \alpha^1\\ 1\\ \alpha^{2}\\ \alpha^{6} \end{pmatrix} = \hspace{0.45cm}... \hspace{0.45cm}= \begin{pmatrix} \alpha^3\\ \alpha^{4}\\ \alpha^{2}\\ 0 \end{pmatrix} \hspace{0.05cm}.\]
- Die rechte Gleichungsseite ergibt sich für das betrachtete Beispiel ⇒ $\underline {z}_{\rm K} = (c_0, c_1,c_4, c_6)$ und basiert auf dem Polynom $p(x) = x^3 + x +1$, das zu folgenden Potenzen $($in $\alpha)$ führt:
- \[\alpha^3 =\alpha + 1\hspace{0.05cm}, \hspace{0.3cm} \alpha^4 = \alpha^2 + \alpha\hspace{0.05cm}, \hspace{0.3cm} \alpha^5 = \alpha^2 + \alpha + 1\hspace{0.05cm}, \hspace{0.3cm} \alpha^6 = \alpha^2 + 1\hspace{0.05cm}, \hspace{0.3cm} \alpha^7 \hspace{-0.15cm} = \hspace{-0.15cm} 1\hspace{0.05cm}, \hspace{0.3cm} \alpha^8 = \alpha^1 \hspace{0.05cm}, \hspace{0.3cm} \alpha^9 = \alpha^2 \hspace{0.05cm}, \hspace{0.3cm} \alpha^{10} = \alpha^3 = \alpha + 1\hspace{0.05cm},\hspace{0.1cm} \text{...}\]
- Damit lautet die Matrizengleichung zur Bestimmung des gesuchten Vektors $\underline {z}_{\rm E}$:
- \[\begin{pmatrix} \alpha^2 & \alpha^3 & \alpha^5 \\ \alpha^4 & \alpha^6 & \alpha^{3} \\ \alpha^6 & \alpha^2 & \alpha^{1} \\ \alpha^1 & \alpha^{5} & \alpha^{6} \end{pmatrix} \cdot \begin{pmatrix} z_2\\ z_3\\ z_5 \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} \alpha^3\\ \alpha^{4}\\ \alpha^{2}\\ 0 \end{pmatrix} \hspace{0.05cm}. \]
- Löst man diese Matrizengleichung (am einfachsten per Programm), so erhält man
- \[z_2 = \alpha^2\hspace{0.05cm},\hspace{0.25cm}z_3 = \alpha^1\hspace{0.05cm},\hspace{0.25cm}z_5 = \alpha^5 \hspace{0.5cm} \Rightarrow \hspace{0.5cm}\underline {z} = \left ( \hspace{0.05cm} \alpha^1, \hspace{0.05cm}1, \hspace{0.05cm}\alpha^2, \hspace{0.05cm}\alpha^1, \hspace{0.05cm}\alpha^2, \hspace{0.05cm}\alpha^5, \hspace{0.05cm}\alpha^5 \hspace{0.05cm}\right ) \hspace{0.05cm}.\]
- Das Ergebnis ist richtig, wie die folgenden Kontrollrechnungen zeigen:
- \[\alpha^2 \cdot \alpha^2 + \alpha^3 \cdot \alpha^1 + \alpha^5 \cdot \alpha^5 = \alpha^4 + \alpha^4 + \alpha^{10} = \alpha^{10} = \alpha^3\hspace{0.05cm},\]
- \[\alpha^4 \cdot \alpha^2 + \alpha^6 \cdot \alpha^1 + \alpha^3 \cdot \alpha^5 = (\alpha^2 + 1) + (1) + (\alpha) = \alpha^{2} + \alpha = \alpha^4\hspace{0.05cm},\]
- \[\alpha^6 \cdot \alpha^2 + \alpha^2 \cdot \alpha^1 + \alpha^1 \cdot \alpha^5 = (\alpha) + (\alpha + 1) + (\alpha^2 + 1) = \alpha^{2} \hspace{0.05cm},\]
- \[\alpha^1 \cdot \alpha^2 + \alpha^5 \cdot \alpha^1 + \alpha^6 \cdot \alpha^5 = (\alpha + 1) + (\alpha^2 + 1) + (\alpha^2 + \alpha) = 0\hspace{0.05cm}.\]
- Das zugehörige Informationswort erhält man mit der Generatormatrix $\boldsymbol{\rm G}$ zu $\underline {v} = \underline {z} \cdot \boldsymbol{\rm G}^{\rm T} = (\alpha^1,\hspace{0.05cm}1,\hspace{0.05cm}\alpha^3)$.
Aufgaben zum Kapitel
Aufgabe 2.11: RS–Decodierung nach „Erasures”
Aufgabe 2.11Z: Erasure–Kanal für Symbole