Aufgaben:Aufgabe 4.4Z: Ergänzung zur Aufgabe 4.4: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
(Die Seite wurde neu angelegt: „{{quiz-Header|Buchseite=Kanalcodierung/Soft–in Soft–out Decoder }} [[Datei:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choice Fr…“)
 
 
(37 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
{{quiz-Header|Buchseite=Kanalcodierung/Soft–in Soft–out Decoder
+
{{quiz-Header|Buchseite=Kanalcodierung/Soft–in Soft–out Decoder}}
  
 +
[[Datei:P_ID2994__KC_Z_4_4_v3.png |right|frame|Hamming–Gewichte und Sequenzwahrscheinlichkeiten ]]
 +
Der Informationstheoretiker&nbsp; [https://de.wikipedia.org/wiki/Robert_Gray_Gallager Robert G. Gallager]&nbsp; hat sich bereits 1963 mit folgender Fragestellung beschäftigt:
 +
* Gegeben ist ein Zufallsvektor&nbsp; $\underline{x} = (x_1, \, x_2, \hspace{-0.04cm} \text{ ...} \hspace{0.08cm} , x_n)$&nbsp; mit&nbsp; $n$&nbsp; binären Elementen&nbsp; $x_i &#8712; \{0, \, 1\}$.
 +
* Bekannt sind alle Wahrscheinlichkeiten&nbsp; $p_i = {\rm Pr}(x_i = 1)$&nbsp; und&nbsp; $q_i = {\rm Pr}(x_i = 0) = 1 - p_i$&nbsp; mit Index&nbsp; $i = 1, \hspace{-0.04cm}\text{ ...} \hspace{0.08cm} ,\ n$.
 +
* Gesucht ist die Wahrscheinlichkeit, dass die Anzahl der Einsen in diesem Vektor geradzahlig ist.
 +
* Oder ausgedrückt mit dem&nbsp; [[Kanalcodierung/Zielsetzung_der_Kanalcodierung#Einige_wichtige_Definitionen_zur_Blockcodierung|Hamming&ndash;Gewicht]]: &nbsp; Wie groß ist die Wahrscheinlichkeit&nbsp; ${\rm Pr}[w_{\rm H}(\underline{x}) {\rm \ ist \ gerade}]$?
  
  
 +
Die Grafik verdeutlicht die Aufgabenstellung für das Beispiel&nbsp; $n = 4$&nbsp; sowie&nbsp; $p_1 = 0.2$,&nbsp; $p_2 = 0.9$,&nbsp; $p_3 = 0.3$&nbsp; und&nbsp; $p_4 = 0.6$.
 +
* Für die grün hinterlegte Zeile &nbsp; &#8658; &nbsp; $\underline{x} = (1, \, 0, \, 0, \, 1)$&nbsp; gilt&nbsp; $w_{\rm H}(\underline{x}) = 2$&nbsp; und
 +
:$${\rm Pr}(\underline{x}) = p_1 \cdot q_2 \cdot q_3 \cdot p_4 = 0.0084.$$
 +
* Blaue Schrift bedeutet &bdquo;$w_{\rm H}(\underline{x})$ ist gerade&rdquo;. Rote Schrift steht für &bdquo;$w_{\rm H}(\underline{x})$ ist ungerade&rdquo;.
 +
* Die Wahrscheinlichkeit&nbsp; ${\rm Pr}[w_{\rm H}(\underline{x}) {\rm \ ist \ gerade}]$&nbsp; ist die Summe der blauen Zahlen in der letzten Spalte.
 +
*Die Summe der roten Zahlen ergibt&nbsp; ${\rm Pr}[w_{\rm H}(\underline{x}) {\rm \ ist \ ungerade}] = 1 - {\rm Pr}[w_{\rm H}(\underline{x}) {\rm \ ist \ gerade}]$.
  
  
 +
Gallager hat das Problem in analytischer Weise gelöst:
 +
:$$ {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade} \right ]
 +
\hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1/2 \cdot [1 + \pi]\hspace{0.05cm},$$
 +
:$${\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade}
 +
\right ] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1/2 \cdot [1 - \pi]\hspace{0.05cm}.$$
  
 +
Hierbei ist die folgende Hilfsgröße verwendet:
 +
:$$\pi = \prod\limits_{i =1}^{n} \hspace{0.25cm}(1-2p_i)
 +
\hspace{0.05cm}.$$
  
 +
Die Gleichung wendet man zum Beispiel an, um die extrinsischen&nbsp; $L$&ndash;Werte eines&nbsp; <i>Single Parity&ndash;check Codes</i>&nbsp; zu berechnen.
  
}}
+
Wie bereits in der&nbsp; [[Aufgaben:4.4_Extrinsische_L%E2%80%93Werte_beim_SPC| Aufgabe A4.4]]&nbsp; dargelegt, lautet nämlich der extrinsische $L$&ndash;Wert mit dem Hamming&ndash;Gewicht&nbsp; $w_{\rm H}$&nbsp; der verkürzten Folge&nbsp; $\underline{x}^{(-i)}$:
 +
:$$L_{\rm E}(i) = {\rm ln} \hspace{0.15cm}\frac{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]}{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]}
 +
\hspace{0.05cm}.$$
 +
 
 +
Hierbei ist berücksichtigt, dass man für&nbsp; $L_{\rm E}(i)$&nbsp; nur die anderen Symbole&nbsp; $(j &ne; i)$&nbsp; heranziehen darf:
 +
:$$\underline{x}^{(-i)} = \big ( \hspace{0.03cm}x_1, \hspace{-0.04cm} \text{ ...} \hspace{0.08cm}  , \hspace{0.03cm} x_{i-1}, \hspace{0.43cm} x_{i+1},  \hspace{-0.04cm} \text{ ...} \hspace{0.08cm}  , x_{n} \hspace{0.03cm} \big )\hspace{0.03cm}. $$
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hinweise:''
 +
* Die Aufgabe gehört zum Kapitel&nbsp; [[Kanalcodierung/Soft%E2%80%93in_Soft%E2%80%93out_Decoder| Soft&ndash;in Soft&ndash;out Decoder]].
 +
*Bezug genommen wird insbesondere auf die Seite&nbsp; [[Kanalcodierung/Soft–in_Soft–out_Decoder#Zur_Berechnung_der_extrinsischen_L.E2.80.93Werte|Zur Berechnung der extrinsischen&nbsp; $L$&ndash;Werte]].
 +
*Die Aufgabe ist als Ergänzung zur&nbsp; [[Aufgaben:Aufgabe_4.4:_Extrinsische_L–Werte_beim_SPC| Aufgabe 4.4]]&nbsp; gedacht.
 +
  
[[Datei:|right|]]
 
  
  
 
===Fragebogen===
 
===Fragebogen===
 
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{Wir betrachten den Vektor&nbsp; $\underline{x} = (x_1, \, x_2) \ \Rightarrow \ n = 2$&nbsp; mit&nbsp; $x_i &#8712; \{0, \, 1\}$&nbsp; und&nbsp; $p_1 = 0.2, \ p_2 = 0.9$.  <br>Wie groß ist die Wahrscheinlichkeit, dass&nbsp; $\underline{x}$&nbsp; eine gerade Anzahl an Einsen beinhaltet?
|type="[]"}
+
|type="{}"}
- Falsch
+
${\rm Pr}\big [w_{\rm H}(\underline{x}) \ {\rm ist \ gerade}\big ] \ = \ ${ 0.26 3% }
+ Richtig
 
  
 +
{Berechnen Sie die gleiche Wahrscheinlichkeit für&nbsp; $\underline{x} = (x_1, \, x_2, \, x_3) \ \Rightarrow \ n = 3$&nbsp;  und&nbsp; $p_1 = 0.2, \ p_2 = 0.9, \ p_3 = 0.3$.
 +
|type="{}"}
 +
${\rm Pr}\big [w_{\rm H}(\underline{x}) \ {\rm ist \ gerade}\big ] \ = \ ${ 0.404 3% }
  
{Input-Box Frage
+
{Nun gelte&nbsp; $n = 4$&nbsp; und&nbsp; $p_1 = 0.2, \ p_2 = 0.9, \ p_3 = 0.3, \ p_4 = 0.6$. Berechnen Sie nach der Gallager&ndash;Gleichung folgende Größen:
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
${\rm Pr(blau) = Pr}\big [w_{\rm H}(\underline{x}) \ {\rm ist \ gerade}\big ] \hspace{0.33cm} = \ ${ 0.5192 3% }
 
+
${\rm Pr(rot) = Pr}\big [w_{\rm H}(\underline{x}) \ {\rm ist \ ungerade}\big ] \hspace{0.1cm} = \ ${ 0.4808 3% }
 +
$\text{Quotient }Q = {\rm Pr(blau)/Pr(rot)} \hspace{0.4cm} = \ ${ 1.0799 3% }
  
 +
{Wie groß ist der extrinsische&nbsp; $L$&ndash;Wert für das Symbol&nbsp; $i = 5$&nbsp; beim&nbsp; $\text{SPC (5, 4, 2)}$&nbsp; mit&nbsp; $p_1 = 0.2, \ p_2 = 0.9, \ p_3 = 0.3, \ p_4 = 0.6, \ p_5 = 0.9$?
 +
|type="{}"}
 +
$L_{\rm E}(i = 5) \ = \ ${ 0.077 3% }
  
 +
{Wie ändert sich&nbsp; $L_{\rm E}(i = 5)$, wenn man stattdessen von&nbsp; $p_5 = 0.1$&nbsp; ausgeht?
 +
|type="()"}
 +
- $L_{\rm E}(i = 5)$&nbsp; wird größer.
 +
- $L_{\rm E}(i = 5)$&nbsp; wird kleiner.
 +
+ $L_{\rm E}(i = 5)$&nbsp; wird gegenüber Teilaufgabe '''(4)''' nicht verändert.
 
</quiz>
 
</quiz>
  
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
[[Datei:P_ID2996__KC_Z_4_4a_v1.png|frame|right|Herleitung „$w_{\rm H}$ ist gerade” für die Codelänge $n = 2$]]
'''2.'''
+
'''(1)'''&nbsp;  Entsprechend der nebenstehenden Tabelle gilt:
'''3.'''
+
:$${\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.10cm}{\rm ist \hspace{0.10cm} gerade}\right ] =
'''4.'''
+
{\rm Pr} \left [w_{\rm H} = 0 \right] + {\rm Pr} \left [w_{\rm H} = 2 \right]
'''5.'''
+
\hspace{0.05cm}. $$
'''6.'''
+
 
'''7.'''
+
Mit den Wahrscheinlichkeiten
{{ML-Fuß}}
+
:$$p_1 = {\rm Pr} (x_1 = 1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.2\hspace{0.05cm},\hspace{0.3cm}q_1 = {\rm Pr} (x_1 = 0) = 0.8\hspace{0.05cm},$$
 +
:$$p_2 = {\rm Pr} (x_2 = 1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.9\hspace{0.05cm},\hspace{0.3cm}q_2 = {\rm Pr} (x_2 = 0) = 0.1$$
 +
 
 +
erhält man:
 +
:$${\rm Pr} \left [w_{\rm H}(\underline{x}) = 0\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm}
 +
{\rm Pr} \left [(x_1 = 0)\cap (x_2 = 0) \right] = q_1 \cdot q_2 = 0.8 \cdot 0.1
 +
= 0.08 \hspace{0.05cm},$$
 +
:$${\rm Pr} \left [w_{\rm H}(\underline{x}) = 2\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm}
 +
{\rm Pr} \left [(x_1 = 1)\cap (x_2 = 1) \right] = p_1 \cdot p_2 = 0.2 \cdot 0.9 = 0.18$$
 +
:$$\Rightarrow \hspace{0.3cm} {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade}\right] = 0.8 + 0.18 \hspace{0.15cm} \underline{= 0.26}
 +
\hspace{0.05cm}.$$
 +
 
 +
Die Gallager&ndash;Gleichung liefert für den gleichen Parametersatz:
 +
:$${\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade}\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  0.5 + 0.5 \cdot \prod\limits_{i =1}^{2} \hspace{0.25cm}(1-2\cdot p_i) = 0.5 + 0.5 \cdot  (1 - 2 \cdot 0.2)\cdot  (1 - 2 \cdot 0.9) = 0.26
 +
\hspace{0.05cm}.$$
 +
 
 +
Die von Gallager 1963 angegebene Gleichung wurde hiermit für $n = 2$ verifiziert.
 +
 
 +
 
 +
[[Datei:P_ID2997__KC_Z_4_4b_v1.png|right|frame|Herleitung „$w_{\rm H}$ ist gerade” für die Codelänge $n = 3$]]
 +
'''(2)'''&nbsp; In der zweiten Tabelle sind die vier Kombinationen mit einer geraden Anzahl an Einsen blau markiert. Die Auftrittswahrscheinlichkeiten der einzelnen Kombinationen sind in der letzten Spalte angegeben. Somit ergibt sich:
 +
:$$ {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade}\right] =  0.056 + 0.216 + 0.006 + 0.126 \hspace{0.15cm} \underline{= 0.404}
 +
\hspace{0.05cm}.$$
 +
 
 +
Die roten Zeilen liefern das Komplementärereignis:
 +
:$$ {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade}\right] =  0.024 + 0.504 + 0.014 + 0.054= 0.596
 +
\hspace{0.05cm}.$$
 +
 
 +
Die Gallager&ndash;Gleichung liefert auch hier wieder das exakt gleiche Ergebnis, wobei anzumerken ist, dass diese Gleichung für alle $n$ und alle beliebigen Wahrscheinlichkeiten gültig ist:
 +
:$${\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade}\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  0.5 + 0.5 \cdot \prod\limits_{i =1}^{3} \hspace{0.25cm}(1-2\cdot p_i) $$
 +
:$$\Rightarrow\hspace{0.3cm}{\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade}\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.5 + 0.5 \cdot  (+0.6) \cdot  (-0.8) \cdot  (+0.4) = 0.404
 +
\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(3)'''&nbsp; Entsprechend der Angabenseite gilt:
 +
:$$\pi = \prod\limits_{i =1}^{4} \hspace{0.25cm}(1-2\cdot p_i) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1 - 2 \cdot 0.2) \cdot  (1 - 2 \cdot 0.9) \cdot  (1 - 2 \cdot 0.3) \cdot  (1 - 2 \cdot 0.6) $$
 +
:$$\Rightarrow\hspace{0.3cm}\pi = \prod\limits_{i =1}^{4} \hspace{0.25cm}(1-2\cdot p_i) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}(+0.6) \cdot  (-0.8) \cdot  (+0.4) \cdot  (-0.2) = 0.0384
 +
\hspace{0.05cm}.$$
 +
 
 +
Daraus lassen sich berechnen:
 +
:$${\rm Pr}({\rm blau}) = {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade}\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  0.5 + 0.5 \cdot \pi  = 0.5 + 0.5 \cdot 0.0384\hspace{0.15cm} \underline{= 0.5192}\hspace{0.05cm},$$
 +
:$${\rm Pr}({\rm rot}) = {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade}\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.5 - 0.5 \cdot \pi  = 0.5 - 0.5 \cdot 0.0384\hspace{0.15cm} \underline{= 0.4808}\hspace{0.05cm}. $$
 +
 
 +
Addiert man die blauen bzw. die roten Wahrscheinlichkeiten auf der Angabenseite, so erhält man exakt die hier berechneten Werte.
  
 +
Für den Quotienten ergibt sich:
 +
:$$Q = \frac{{\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade}\right]} { {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade}\right]} = \frac{0.5192}{0.4808}\hspace{0.15cm} \underline{= 1.0799}
 +
\hspace{0.05cm}. $$
  
  
[[Category:Aufgaben zu Kanalcodierung|^4.1 Soft–in Soft–out Decoder
+
'''(4)'''&nbsp; Für den <i>Single Parity&ndash;check Code</i> wurde der extrinsische $L$&ndash;Wert bezüglich des $i$&ndash;ten Bits wie folgt angegeben:
 +
:$$L_{\rm E}(i) = {\rm ln} \hspace{0.15cm}\frac{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]}{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]}
 +
  \hspace{0.05cm},$$
  
 +
oder:
 +
:$$L_{\rm E}(i) = {\rm ln} \hspace{0.15cm}\frac{1+\prod_{j \ne i} \hspace{0.25cm}(1-2\cdot p_j)}{1-\prod_{j \ne i} \hspace{0.25cm}(1-2\cdot p_j)}
 +
\hspace{0.05cm}.$$
  
 +
Beim&nbsp; $\text{SPC (5, 4, 2}$) &nbsp; &#8658; &nbsp; $n = 5$ ergibt sich dieses Produkt für $i = 5$ aus folgenden vier Multiplikanden:
 +
:$$\pi = \prod\limits_{j = 1,  \hspace{0.05cm}2,  \hspace{0.05cm}3,  \hspace{0.05cm}4} \hspace{0.05cm}(1-2\cdot p_j) =
 +
(1-2\cdot p_1) \cdot (1-2\cdot p_2) \cdot (1-2\cdot p_3) \cdot (1-2\cdot p_4)
 +
\hspace{0.05cm}.$$
  
 +
Der Vergleich mit der Teilaufgabe '''(3)''' zeigt, dass $L_{\rm E}(i = 5) = \ln {Q} = \ln {(1.0799)} \ \underline{\approx 0.077}$ ist.
  
  
 +
'''(5)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 3</u>, weil das Ergebnis für $L_{\rm E}(i = 5)$ unabhängig von $p_5$ ist.
 +
{{ML-Fuß}}
  
  
^]]
+
[[Category:Aufgaben zu  Kanalcodierung|^4.1 Soft–in Soft–out Decoder^]]

Aktuelle Version vom 5. Juli 2019, 13:48 Uhr

Hamming–Gewichte und Sequenzwahrscheinlichkeiten

Der Informationstheoretiker  Robert G. Gallager  hat sich bereits 1963 mit folgender Fragestellung beschäftigt:

  • Gegeben ist ein Zufallsvektor  $\underline{x} = (x_1, \, x_2, \hspace{-0.04cm} \text{ ...} \hspace{0.08cm} , x_n)$  mit  $n$  binären Elementen  $x_i ∈ \{0, \, 1\}$.
  • Bekannt sind alle Wahrscheinlichkeiten  $p_i = {\rm Pr}(x_i = 1)$  und  $q_i = {\rm Pr}(x_i = 0) = 1 - p_i$  mit Index  $i = 1, \hspace{-0.04cm}\text{ ...} \hspace{0.08cm} ,\ n$.
  • Gesucht ist die Wahrscheinlichkeit, dass die Anzahl der Einsen in diesem Vektor geradzahlig ist.
  • Oder ausgedrückt mit dem  Hamming–Gewicht:   Wie groß ist die Wahrscheinlichkeit  ${\rm Pr}[w_{\rm H}(\underline{x}) {\rm \ ist \ gerade}]$?


Die Grafik verdeutlicht die Aufgabenstellung für das Beispiel  $n = 4$  sowie  $p_1 = 0.2$,  $p_2 = 0.9$,  $p_3 = 0.3$  und  $p_4 = 0.6$.

  • Für die grün hinterlegte Zeile   ⇒   $\underline{x} = (1, \, 0, \, 0, \, 1)$  gilt  $w_{\rm H}(\underline{x}) = 2$  und
$${\rm Pr}(\underline{x}) = p_1 \cdot q_2 \cdot q_3 \cdot p_4 = 0.0084.$$
  • Blaue Schrift bedeutet „$w_{\rm H}(\underline{x})$ ist gerade”. Rote Schrift steht für „$w_{\rm H}(\underline{x})$ ist ungerade”.
  • Die Wahrscheinlichkeit  ${\rm Pr}[w_{\rm H}(\underline{x}) {\rm \ ist \ gerade}]$  ist die Summe der blauen Zahlen in der letzten Spalte.
  • Die Summe der roten Zahlen ergibt  ${\rm Pr}[w_{\rm H}(\underline{x}) {\rm \ ist \ ungerade}] = 1 - {\rm Pr}[w_{\rm H}(\underline{x}) {\rm \ ist \ gerade}]$.


Gallager hat das Problem in analytischer Weise gelöst:

$$ {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade} \right ] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1/2 \cdot [1 + \pi]\hspace{0.05cm},$$
$${\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade} \right ] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1/2 \cdot [1 - \pi]\hspace{0.05cm}.$$

Hierbei ist die folgende Hilfsgröße verwendet:

$$\pi = \prod\limits_{i =1}^{n} \hspace{0.25cm}(1-2p_i) \hspace{0.05cm}.$$

Die Gleichung wendet man zum Beispiel an, um die extrinsischen  $L$–Werte eines  Single Parity–check Codes  zu berechnen.

Wie bereits in der  Aufgabe A4.4  dargelegt, lautet nämlich der extrinsische $L$–Wert mit dem Hamming–Gewicht  $w_{\rm H}$  der verkürzten Folge  $\underline{x}^{(-i)}$:

$$L_{\rm E}(i) = {\rm ln} \hspace{0.15cm}\frac{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]}{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]} \hspace{0.05cm}.$$

Hierbei ist berücksichtigt, dass man für  $L_{\rm E}(i)$  nur die anderen Symbole  $(j ≠ i)$  heranziehen darf:

$$\underline{x}^{(-i)} = \big ( \hspace{0.03cm}x_1, \hspace{-0.04cm} \text{ ...} \hspace{0.08cm} , \hspace{0.03cm} x_{i-1}, \hspace{0.43cm} x_{i+1}, \hspace{-0.04cm} \text{ ...} \hspace{0.08cm} , x_{n} \hspace{0.03cm} \big )\hspace{0.03cm}. $$





Hinweise:



Fragebogen

1

Wir betrachten den Vektor  $\underline{x} = (x_1, \, x_2) \ \Rightarrow \ n = 2$  mit  $x_i ∈ \{0, \, 1\}$  und  $p_1 = 0.2, \ p_2 = 0.9$.
Wie groß ist die Wahrscheinlichkeit, dass  $\underline{x}$  eine gerade Anzahl an Einsen beinhaltet?

${\rm Pr}\big [w_{\rm H}(\underline{x}) \ {\rm ist \ gerade}\big ] \ = \ $

2

Berechnen Sie die gleiche Wahrscheinlichkeit für  $\underline{x} = (x_1, \, x_2, \, x_3) \ \Rightarrow \ n = 3$  und  $p_1 = 0.2, \ p_2 = 0.9, \ p_3 = 0.3$.

${\rm Pr}\big [w_{\rm H}(\underline{x}) \ {\rm ist \ gerade}\big ] \ = \ $

3

Nun gelte  $n = 4$  und  $p_1 = 0.2, \ p_2 = 0.9, \ p_3 = 0.3, \ p_4 = 0.6$. Berechnen Sie nach der Gallager–Gleichung folgende Größen:

${\rm Pr(blau) = Pr}\big [w_{\rm H}(\underline{x}) \ {\rm ist \ gerade}\big ] \hspace{0.33cm} = \ $

${\rm Pr(rot) = Pr}\big [w_{\rm H}(\underline{x}) \ {\rm ist \ ungerade}\big ] \hspace{0.1cm} = \ $

$\text{Quotient }Q = {\rm Pr(blau)/Pr(rot)} \hspace{0.4cm} = \ $

4

Wie groß ist der extrinsische  $L$–Wert für das Symbol  $i = 5$  beim  $\text{SPC (5, 4, 2)}$  mit  $p_1 = 0.2, \ p_2 = 0.9, \ p_3 = 0.3, \ p_4 = 0.6, \ p_5 = 0.9$?

$L_{\rm E}(i = 5) \ = \ $

5

Wie ändert sich  $L_{\rm E}(i = 5)$, wenn man stattdessen von  $p_5 = 0.1$  ausgeht?

$L_{\rm E}(i = 5)$  wird größer.
$L_{\rm E}(i = 5)$  wird kleiner.
$L_{\rm E}(i = 5)$  wird gegenüber Teilaufgabe (4) nicht verändert.


Musterlösung

Herleitung „$w_{\rm H}$ ist gerade” für die Codelänge $n = 2$

(1)  Entsprechend der nebenstehenden Tabelle gilt:

$${\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.10cm}{\rm ist \hspace{0.10cm} gerade}\right ] = {\rm Pr} \left [w_{\rm H} = 0 \right] + {\rm Pr} \left [w_{\rm H} = 2 \right] \hspace{0.05cm}. $$

Mit den Wahrscheinlichkeiten

$$p_1 = {\rm Pr} (x_1 = 1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.2\hspace{0.05cm},\hspace{0.3cm}q_1 = {\rm Pr} (x_1 = 0) = 0.8\hspace{0.05cm},$$
$$p_2 = {\rm Pr} (x_2 = 1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.9\hspace{0.05cm},\hspace{0.3cm}q_2 = {\rm Pr} (x_2 = 0) = 0.1$$

erhält man:

$${\rm Pr} \left [w_{\rm H}(\underline{x}) = 0\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Pr} \left [(x_1 = 0)\cap (x_2 = 0) \right] = q_1 \cdot q_2 = 0.8 \cdot 0.1 = 0.08 \hspace{0.05cm},$$
$${\rm Pr} \left [w_{\rm H}(\underline{x}) = 2\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Pr} \left [(x_1 = 1)\cap (x_2 = 1) \right] = p_1 \cdot p_2 = 0.2 \cdot 0.9 = 0.18$$
$$\Rightarrow \hspace{0.3cm} {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade}\right] = 0.8 + 0.18 \hspace{0.15cm} \underline{= 0.26} \hspace{0.05cm}.$$

Die Gallager–Gleichung liefert für den gleichen Parametersatz:

$${\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade}\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.5 + 0.5 \cdot \prod\limits_{i =1}^{2} \hspace{0.25cm}(1-2\cdot p_i) = 0.5 + 0.5 \cdot (1 - 2 \cdot 0.2)\cdot (1 - 2 \cdot 0.9) = 0.26 \hspace{0.05cm}.$$

Die von Gallager 1963 angegebene Gleichung wurde hiermit für $n = 2$ verifiziert.


Herleitung „$w_{\rm H}$ ist gerade” für die Codelänge $n = 3$

(2)  In der zweiten Tabelle sind die vier Kombinationen mit einer geraden Anzahl an Einsen blau markiert. Die Auftrittswahrscheinlichkeiten der einzelnen Kombinationen sind in der letzten Spalte angegeben. Somit ergibt sich:

$$ {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade}\right] = 0.056 + 0.216 + 0.006 + 0.126 \hspace{0.15cm} \underline{= 0.404} \hspace{0.05cm}.$$

Die roten Zeilen liefern das Komplementärereignis:

$$ {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade}\right] = 0.024 + 0.504 + 0.014 + 0.054= 0.596 \hspace{0.05cm}.$$

Die Gallager–Gleichung liefert auch hier wieder das exakt gleiche Ergebnis, wobei anzumerken ist, dass diese Gleichung für alle $n$ und alle beliebigen Wahrscheinlichkeiten gültig ist:

$${\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade}\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.5 + 0.5 \cdot \prod\limits_{i =1}^{3} \hspace{0.25cm}(1-2\cdot p_i) $$
$$\Rightarrow\hspace{0.3cm}{\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade}\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.5 + 0.5 \cdot (+0.6) \cdot (-0.8) \cdot (+0.4) = 0.404 \hspace{0.05cm}.$$


(3)  Entsprechend der Angabenseite gilt:

$$\pi = \prod\limits_{i =1}^{4} \hspace{0.25cm}(1-2\cdot p_i) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1 - 2 \cdot 0.2) \cdot (1 - 2 \cdot 0.9) \cdot (1 - 2 \cdot 0.3) \cdot (1 - 2 \cdot 0.6) $$
$$\Rightarrow\hspace{0.3cm}\pi = \prod\limits_{i =1}^{4} \hspace{0.25cm}(1-2\cdot p_i) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}(+0.6) \cdot (-0.8) \cdot (+0.4) \cdot (-0.2) = 0.0384 \hspace{0.05cm}.$$

Daraus lassen sich berechnen:

$${\rm Pr}({\rm blau}) = {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade}\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.5 + 0.5 \cdot \pi = 0.5 + 0.5 \cdot 0.0384\hspace{0.15cm} \underline{= 0.5192}\hspace{0.05cm},$$
$${\rm Pr}({\rm rot}) = {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade}\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.5 - 0.5 \cdot \pi = 0.5 - 0.5 \cdot 0.0384\hspace{0.15cm} \underline{= 0.4808}\hspace{0.05cm}. $$

Addiert man die blauen bzw. die roten Wahrscheinlichkeiten auf der Angabenseite, so erhält man exakt die hier berechneten Werte.

Für den Quotienten ergibt sich:

$$Q = \frac{{\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade}\right]} { {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade}\right]} = \frac{0.5192}{0.4808}\hspace{0.15cm} \underline{= 1.0799} \hspace{0.05cm}. $$


(4)  Für den Single Parity–check Code wurde der extrinsische $L$–Wert bezüglich des $i$–ten Bits wie folgt angegeben:

$$L_{\rm E}(i) = {\rm ln} \hspace{0.15cm}\frac{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]}{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]} \hspace{0.05cm},$$

oder:

$$L_{\rm E}(i) = {\rm ln} \hspace{0.15cm}\frac{1+\prod_{j \ne i} \hspace{0.25cm}(1-2\cdot p_j)}{1-\prod_{j \ne i} \hspace{0.25cm}(1-2\cdot p_j)} \hspace{0.05cm}.$$

Beim  $\text{SPC (5, 4, 2}$)   ⇒   $n = 5$ ergibt sich dieses Produkt für $i = 5$ aus folgenden vier Multiplikanden:

$$\pi = \prod\limits_{j = 1, \hspace{0.05cm}2, \hspace{0.05cm}3, \hspace{0.05cm}4} \hspace{0.05cm}(1-2\cdot p_j) = (1-2\cdot p_1) \cdot (1-2\cdot p_2) \cdot (1-2\cdot p_3) \cdot (1-2\cdot p_4) \hspace{0.05cm}.$$

Der Vergleich mit der Teilaufgabe (3) zeigt, dass $L_{\rm E}(i = 5) = \ln {Q} = \ln {(1.0799)} \ \underline{\approx 0.077}$ ist.


(5)  Richtig ist der Lösungsvorschlag 3, weil das Ergebnis für $L_{\rm E}(i = 5)$ unabhängig von $p_5$ ist.