Aufgaben:Aufgabe 4.4Z: Ergänzung zur Aufgabe 4.4: Unterschied zwischen den Versionen
Wael (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „{{quiz-Header|Buchseite=Kanalcodierung/Soft–in Soft–out Decoder }} [[Datei:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choice Fr…“) |
|||
(37 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
− | {{quiz-Header|Buchseite=Kanalcodierung/Soft–in Soft–out Decoder | + | {{quiz-Header|Buchseite=Kanalcodierung/Soft–in Soft–out Decoder}} |
+ | [[Datei:P_ID2994__KC_Z_4_4_v3.png |right|frame|Hamming–Gewichte und Sequenzwahrscheinlichkeiten ]] | ||
+ | Der Informationstheoretiker [https://de.wikipedia.org/wiki/Robert_Gray_Gallager Robert G. Gallager] hat sich bereits 1963 mit folgender Fragestellung beschäftigt: | ||
+ | * Gegeben ist ein Zufallsvektor $\underline{x} = (x_1, \, x_2, \hspace{-0.04cm} \text{ ...} \hspace{0.08cm} , x_n)$ mit $n$ binären Elementen $x_i ∈ \{0, \, 1\}$. | ||
+ | * Bekannt sind alle Wahrscheinlichkeiten $p_i = {\rm Pr}(x_i = 1)$ und $q_i = {\rm Pr}(x_i = 0) = 1 - p_i$ mit Index $i = 1, \hspace{-0.04cm}\text{ ...} \hspace{0.08cm} ,\ n$. | ||
+ | * Gesucht ist die Wahrscheinlichkeit, dass die Anzahl der Einsen in diesem Vektor geradzahlig ist. | ||
+ | * Oder ausgedrückt mit dem [[Kanalcodierung/Zielsetzung_der_Kanalcodierung#Einige_wichtige_Definitionen_zur_Blockcodierung|Hamming–Gewicht]]: Wie groß ist die Wahrscheinlichkeit ${\rm Pr}[w_{\rm H}(\underline{x}) {\rm \ ist \ gerade}]$? | ||
+ | Die Grafik verdeutlicht die Aufgabenstellung für das Beispiel $n = 4$ sowie $p_1 = 0.2$, $p_2 = 0.9$, $p_3 = 0.3$ und $p_4 = 0.6$. | ||
+ | * Für die grün hinterlegte Zeile ⇒ $\underline{x} = (1, \, 0, \, 0, \, 1)$ gilt $w_{\rm H}(\underline{x}) = 2$ und | ||
+ | :$${\rm Pr}(\underline{x}) = p_1 \cdot q_2 \cdot q_3 \cdot p_4 = 0.0084.$$ | ||
+ | * Blaue Schrift bedeutet „$w_{\rm H}(\underline{x})$ ist gerade”. Rote Schrift steht für „$w_{\rm H}(\underline{x})$ ist ungerade”. | ||
+ | * Die Wahrscheinlichkeit ${\rm Pr}[w_{\rm H}(\underline{x}) {\rm \ ist \ gerade}]$ ist die Summe der blauen Zahlen in der letzten Spalte. | ||
+ | *Die Summe der roten Zahlen ergibt ${\rm Pr}[w_{\rm H}(\underline{x}) {\rm \ ist \ ungerade}] = 1 - {\rm Pr}[w_{\rm H}(\underline{x}) {\rm \ ist \ gerade}]$. | ||
+ | Gallager hat das Problem in analytischer Weise gelöst: | ||
+ | :$$ {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade} \right ] | ||
+ | \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1/2 \cdot [1 + \pi]\hspace{0.05cm},$$ | ||
+ | :$${\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade} | ||
+ | \right ] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1/2 \cdot [1 - \pi]\hspace{0.05cm}.$$ | ||
+ | Hierbei ist die folgende Hilfsgröße verwendet: | ||
+ | :$$\pi = \prod\limits_{i =1}^{n} \hspace{0.25cm}(1-2p_i) | ||
+ | \hspace{0.05cm}.$$ | ||
+ | Die Gleichung wendet man zum Beispiel an, um die extrinsischen $L$–Werte eines <i>Single Parity–check Codes</i> zu berechnen. | ||
− | }} | + | Wie bereits in der [[Aufgaben:4.4_Extrinsische_L%E2%80%93Werte_beim_SPC| Aufgabe A4.4]] dargelegt, lautet nämlich der extrinsische $L$–Wert mit dem Hamming–Gewicht $w_{\rm H}$ der verkürzten Folge $\underline{x}^{(-i)}$: |
+ | :$$L_{\rm E}(i) = {\rm ln} \hspace{0.15cm}\frac{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]}{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]} | ||
+ | \hspace{0.05cm}.$$ | ||
+ | |||
+ | Hierbei ist berücksichtigt, dass man für $L_{\rm E}(i)$ nur die anderen Symbole $(j ≠ i)$ heranziehen darf: | ||
+ | :$$\underline{x}^{(-i)} = \big ( \hspace{0.03cm}x_1, \hspace{-0.04cm} \text{ ...} \hspace{0.08cm} , \hspace{0.03cm} x_{i-1}, \hspace{0.43cm} x_{i+1}, \hspace{-0.04cm} \text{ ...} \hspace{0.08cm} , x_{n} \hspace{0.03cm} \big )\hspace{0.03cm}. $$ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ''Hinweise:'' | ||
+ | * Die Aufgabe gehört zum Kapitel [[Kanalcodierung/Soft%E2%80%93in_Soft%E2%80%93out_Decoder| Soft–in Soft–out Decoder]]. | ||
+ | *Bezug genommen wird insbesondere auf die Seite [[Kanalcodierung/Soft–in_Soft–out_Decoder#Zur_Berechnung_der_extrinsischen_L.E2.80.93Werte|Zur Berechnung der extrinsischen $L$–Werte]]. | ||
+ | *Die Aufgabe ist als Ergänzung zur [[Aufgaben:Aufgabe_4.4:_Extrinsische_L–Werte_beim_SPC| Aufgabe 4.4]] gedacht. | ||
+ | |||
− | |||
===Fragebogen=== | ===Fragebogen=== | ||
− | |||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Wir betrachten den Vektor $\underline{x} = (x_1, \, x_2) \ \Rightarrow \ n = 2$ mit $x_i ∈ \{0, \, 1\}$ und $p_1 = 0.2, \ p_2 = 0.9$. <br>Wie groß ist die Wahrscheinlichkeit, dass $\underline{x}$ eine gerade Anzahl an Einsen beinhaltet? |
− | |type="[] | + | |type="{}"} |
− | + | ${\rm Pr}\big [w_{\rm H}(\underline{x}) \ {\rm ist \ gerade}\big ] \ = \ ${ 0.26 3% } | |
− | |||
+ | {Berechnen Sie die gleiche Wahrscheinlichkeit für $\underline{x} = (x_1, \, x_2, \, x_3) \ \Rightarrow \ n = 3$ und $p_1 = 0.2, \ p_2 = 0.9, \ p_3 = 0.3$. | ||
+ | |type="{}"} | ||
+ | ${\rm Pr}\big [w_{\rm H}(\underline{x}) \ {\rm ist \ gerade}\big ] \ = \ ${ 0.404 3% } | ||
− | { | + | {Nun gelte $n = 4$ und $p_1 = 0.2, \ p_2 = 0.9, \ p_3 = 0.3, \ p_4 = 0.6$. Berechnen Sie nach der Gallager–Gleichung folgende Größen: |
|type="{}"} | |type="{}"} | ||
− | $\ | + | ${\rm Pr(blau) = Pr}\big [w_{\rm H}(\underline{x}) \ {\rm ist \ gerade}\big ] \hspace{0.33cm} = \ ${ 0.5192 3% } |
− | + | ${\rm Pr(rot) = Pr}\big [w_{\rm H}(\underline{x}) \ {\rm ist \ ungerade}\big ] \hspace{0.1cm} = \ ${ 0.4808 3% } | |
+ | $\text{Quotient }Q = {\rm Pr(blau)/Pr(rot)} \hspace{0.4cm} = \ ${ 1.0799 3% } | ||
+ | {Wie groß ist der extrinsische $L$–Wert für das Symbol $i = 5$ beim $\text{SPC (5, 4, 2)}$ mit $p_1 = 0.2, \ p_2 = 0.9, \ p_3 = 0.3, \ p_4 = 0.6, \ p_5 = 0.9$? | ||
+ | |type="{}"} | ||
+ | $L_{\rm E}(i = 5) \ = \ ${ 0.077 3% } | ||
+ | {Wie ändert sich $L_{\rm E}(i = 5)$, wenn man stattdessen von $p_5 = 0.1$ ausgeht? | ||
+ | |type="()"} | ||
+ | - $L_{\rm E}(i = 5)$ wird größer. | ||
+ | - $L_{\rm E}(i = 5)$ wird kleiner. | ||
+ | + $L_{\rm E}(i = 5)$ wird gegenüber Teilaufgabe '''(4)''' nicht verändert. | ||
</quiz> | </quiz> | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1 | + | [[Datei:P_ID2996__KC_Z_4_4a_v1.png|frame|right|Herleitung „$w_{\rm H}$ ist gerade” für die Codelänge $n = 2$]] |
− | '''2 | + | '''(1)''' Entsprechend der nebenstehenden Tabelle gilt: |
− | + | :$${\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.10cm}{\rm ist \hspace{0.10cm} gerade}\right ] = | |
− | + | {\rm Pr} \left [w_{\rm H} = 0 \right] + {\rm Pr} \left [w_{\rm H} = 2 \right] | |
− | ''' | + | \hspace{0.05cm}. $$ |
− | + | ||
− | + | Mit den Wahrscheinlichkeiten | |
− | {{ | + | :$$p_1 = {\rm Pr} (x_1 = 1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.2\hspace{0.05cm},\hspace{0.3cm}q_1 = {\rm Pr} (x_1 = 0) = 0.8\hspace{0.05cm},$$ |
+ | :$$p_2 = {\rm Pr} (x_2 = 1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.9\hspace{0.05cm},\hspace{0.3cm}q_2 = {\rm Pr} (x_2 = 0) = 0.1$$ | ||
+ | |||
+ | erhält man: | ||
+ | :$${\rm Pr} \left [w_{\rm H}(\underline{x}) = 0\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} | ||
+ | {\rm Pr} \left [(x_1 = 0)\cap (x_2 = 0) \right] = q_1 \cdot q_2 = 0.8 \cdot 0.1 | ||
+ | = 0.08 \hspace{0.05cm},$$ | ||
+ | :$${\rm Pr} \left [w_{\rm H}(\underline{x}) = 2\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} | ||
+ | {\rm Pr} \left [(x_1 = 1)\cap (x_2 = 1) \right] = p_1 \cdot p_2 = 0.2 \cdot 0.9 = 0.18$$ | ||
+ | :$$\Rightarrow \hspace{0.3cm} {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade}\right] = 0.8 + 0.18 \hspace{0.15cm} \underline{= 0.26} | ||
+ | \hspace{0.05cm}.$$ | ||
+ | |||
+ | Die Gallager–Gleichung liefert für den gleichen Parametersatz: | ||
+ | :$${\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade}\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.5 + 0.5 \cdot \prod\limits_{i =1}^{2} \hspace{0.25cm}(1-2\cdot p_i) = 0.5 + 0.5 \cdot (1 - 2 \cdot 0.2)\cdot (1 - 2 \cdot 0.9) = 0.26 | ||
+ | \hspace{0.05cm}.$$ | ||
+ | |||
+ | Die von Gallager 1963 angegebene Gleichung wurde hiermit für $n = 2$ verifiziert. | ||
+ | |||
+ | |||
+ | [[Datei:P_ID2997__KC_Z_4_4b_v1.png|right|frame|Herleitung „$w_{\rm H}$ ist gerade” für die Codelänge $n = 3$]] | ||
+ | '''(2)''' In der zweiten Tabelle sind die vier Kombinationen mit einer geraden Anzahl an Einsen blau markiert. Die Auftrittswahrscheinlichkeiten der einzelnen Kombinationen sind in der letzten Spalte angegeben. Somit ergibt sich: | ||
+ | :$$ {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade}\right] = 0.056 + 0.216 + 0.006 + 0.126 \hspace{0.15cm} \underline{= 0.404} | ||
+ | \hspace{0.05cm}.$$ | ||
+ | |||
+ | Die roten Zeilen liefern das Komplementärereignis: | ||
+ | :$$ {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade}\right] = 0.024 + 0.504 + 0.014 + 0.054= 0.596 | ||
+ | \hspace{0.05cm}.$$ | ||
+ | |||
+ | Die Gallager–Gleichung liefert auch hier wieder das exakt gleiche Ergebnis, wobei anzumerken ist, dass diese Gleichung für alle $n$ und alle beliebigen Wahrscheinlichkeiten gültig ist: | ||
+ | :$${\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade}\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.5 + 0.5 \cdot \prod\limits_{i =1}^{3} \hspace{0.25cm}(1-2\cdot p_i) $$ | ||
+ | :$$\Rightarrow\hspace{0.3cm}{\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade}\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.5 + 0.5 \cdot (+0.6) \cdot (-0.8) \cdot (+0.4) = 0.404 | ||
+ | \hspace{0.05cm}.$$ | ||
+ | |||
+ | |||
+ | '''(3)''' Entsprechend der Angabenseite gilt: | ||
+ | :$$\pi = \prod\limits_{i =1}^{4} \hspace{0.25cm}(1-2\cdot p_i) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1 - 2 \cdot 0.2) \cdot (1 - 2 \cdot 0.9) \cdot (1 - 2 \cdot 0.3) \cdot (1 - 2 \cdot 0.6) $$ | ||
+ | :$$\Rightarrow\hspace{0.3cm}\pi = \prod\limits_{i =1}^{4} \hspace{0.25cm}(1-2\cdot p_i) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}(+0.6) \cdot (-0.8) \cdot (+0.4) \cdot (-0.2) = 0.0384 | ||
+ | \hspace{0.05cm}.$$ | ||
+ | |||
+ | Daraus lassen sich berechnen: | ||
+ | :$${\rm Pr}({\rm blau}) = {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade}\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.5 + 0.5 \cdot \pi = 0.5 + 0.5 \cdot 0.0384\hspace{0.15cm} \underline{= 0.5192}\hspace{0.05cm},$$ | ||
+ | :$${\rm Pr}({\rm rot}) = {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade}\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.5 - 0.5 \cdot \pi = 0.5 - 0.5 \cdot 0.0384\hspace{0.15cm} \underline{= 0.4808}\hspace{0.05cm}. $$ | ||
+ | |||
+ | Addiert man die blauen bzw. die roten Wahrscheinlichkeiten auf der Angabenseite, so erhält man exakt die hier berechneten Werte. | ||
+ | Für den Quotienten ergibt sich: | ||
+ | :$$Q = \frac{{\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade}\right]} { {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade}\right]} = \frac{0.5192}{0.4808}\hspace{0.15cm} \underline{= 1.0799} | ||
+ | \hspace{0.05cm}. $$ | ||
− | [[ | + | '''(4)''' Für den <i>Single Parity–check Code</i> wurde der extrinsische $L$–Wert bezüglich des $i$–ten Bits wie folgt angegeben: |
+ | :$$L_{\rm E}(i) = {\rm ln} \hspace{0.15cm}\frac{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]}{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]} | ||
+ | \hspace{0.05cm},$$ | ||
+ | oder: | ||
+ | :$$L_{\rm E}(i) = {\rm ln} \hspace{0.15cm}\frac{1+\prod_{j \ne i} \hspace{0.25cm}(1-2\cdot p_j)}{1-\prod_{j \ne i} \hspace{0.25cm}(1-2\cdot p_j)} | ||
+ | \hspace{0.05cm}.$$ | ||
+ | Beim $\text{SPC (5, 4, 2}$) ⇒ $n = 5$ ergibt sich dieses Produkt für $i = 5$ aus folgenden vier Multiplikanden: | ||
+ | :$$\pi = \prod\limits_{j = 1, \hspace{0.05cm}2, \hspace{0.05cm}3, \hspace{0.05cm}4} \hspace{0.05cm}(1-2\cdot p_j) = | ||
+ | (1-2\cdot p_1) \cdot (1-2\cdot p_2) \cdot (1-2\cdot p_3) \cdot (1-2\cdot p_4) | ||
+ | \hspace{0.05cm}.$$ | ||
+ | Der Vergleich mit der Teilaufgabe '''(3)''' zeigt, dass $L_{\rm E}(i = 5) = \ln {Q} = \ln {(1.0799)} \ \underline{\approx 0.077}$ ist. | ||
+ | '''(5)''' Richtig ist der <u>Lösungsvorschlag 3</u>, weil das Ergebnis für $L_{\rm E}(i = 5)$ unabhängig von $p_5$ ist. | ||
+ | {{ML-Fuß}} | ||
− | ^]] | + | [[Category:Aufgaben zu Kanalcodierung|^4.1 Soft–in Soft–out Decoder^]] |
Aktuelle Version vom 5. Juli 2019, 13:48 Uhr
Der Informationstheoretiker Robert G. Gallager hat sich bereits 1963 mit folgender Fragestellung beschäftigt:
- Gegeben ist ein Zufallsvektor $\underline{x} = (x_1, \, x_2, \hspace{-0.04cm} \text{ ...} \hspace{0.08cm} , x_n)$ mit $n$ binären Elementen $x_i ∈ \{0, \, 1\}$.
- Bekannt sind alle Wahrscheinlichkeiten $p_i = {\rm Pr}(x_i = 1)$ und $q_i = {\rm Pr}(x_i = 0) = 1 - p_i$ mit Index $i = 1, \hspace{-0.04cm}\text{ ...} \hspace{0.08cm} ,\ n$.
- Gesucht ist die Wahrscheinlichkeit, dass die Anzahl der Einsen in diesem Vektor geradzahlig ist.
- Oder ausgedrückt mit dem Hamming–Gewicht: Wie groß ist die Wahrscheinlichkeit ${\rm Pr}[w_{\rm H}(\underline{x}) {\rm \ ist \ gerade}]$?
Die Grafik verdeutlicht die Aufgabenstellung für das Beispiel $n = 4$ sowie $p_1 = 0.2$, $p_2 = 0.9$, $p_3 = 0.3$ und $p_4 = 0.6$.
- Für die grün hinterlegte Zeile ⇒ $\underline{x} = (1, \, 0, \, 0, \, 1)$ gilt $w_{\rm H}(\underline{x}) = 2$ und
- $${\rm Pr}(\underline{x}) = p_1 \cdot q_2 \cdot q_3 \cdot p_4 = 0.0084.$$
- Blaue Schrift bedeutet „$w_{\rm H}(\underline{x})$ ist gerade”. Rote Schrift steht für „$w_{\rm H}(\underline{x})$ ist ungerade”.
- Die Wahrscheinlichkeit ${\rm Pr}[w_{\rm H}(\underline{x}) {\rm \ ist \ gerade}]$ ist die Summe der blauen Zahlen in der letzten Spalte.
- Die Summe der roten Zahlen ergibt ${\rm Pr}[w_{\rm H}(\underline{x}) {\rm \ ist \ ungerade}] = 1 - {\rm Pr}[w_{\rm H}(\underline{x}) {\rm \ ist \ gerade}]$.
Gallager hat das Problem in analytischer Weise gelöst:
- $$ {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade} \right ] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1/2 \cdot [1 + \pi]\hspace{0.05cm},$$
- $${\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade} \right ] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1/2 \cdot [1 - \pi]\hspace{0.05cm}.$$
Hierbei ist die folgende Hilfsgröße verwendet:
- $$\pi = \prod\limits_{i =1}^{n} \hspace{0.25cm}(1-2p_i) \hspace{0.05cm}.$$
Die Gleichung wendet man zum Beispiel an, um die extrinsischen $L$–Werte eines Single Parity–check Codes zu berechnen.
Wie bereits in der Aufgabe A4.4 dargelegt, lautet nämlich der extrinsische $L$–Wert mit dem Hamming–Gewicht $w_{\rm H}$ der verkürzten Folge $\underline{x}^{(-i)}$:
- $$L_{\rm E}(i) = {\rm ln} \hspace{0.15cm}\frac{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]}{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]} \hspace{0.05cm}.$$
Hierbei ist berücksichtigt, dass man für $L_{\rm E}(i)$ nur die anderen Symbole $(j ≠ i)$ heranziehen darf:
- $$\underline{x}^{(-i)} = \big ( \hspace{0.03cm}x_1, \hspace{-0.04cm} \text{ ...} \hspace{0.08cm} , \hspace{0.03cm} x_{i-1}, \hspace{0.43cm} x_{i+1}, \hspace{-0.04cm} \text{ ...} \hspace{0.08cm} , x_{n} \hspace{0.03cm} \big )\hspace{0.03cm}. $$
Hinweise:
- Die Aufgabe gehört zum Kapitel Soft–in Soft–out Decoder.
- Bezug genommen wird insbesondere auf die Seite Zur Berechnung der extrinsischen $L$–Werte.
- Die Aufgabe ist als Ergänzung zur Aufgabe 4.4 gedacht.
Fragebogen
Musterlösung
(1) Entsprechend der nebenstehenden Tabelle gilt:
- $${\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.10cm}{\rm ist \hspace{0.10cm} gerade}\right ] = {\rm Pr} \left [w_{\rm H} = 0 \right] + {\rm Pr} \left [w_{\rm H} = 2 \right] \hspace{0.05cm}. $$
Mit den Wahrscheinlichkeiten
- $$p_1 = {\rm Pr} (x_1 = 1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.2\hspace{0.05cm},\hspace{0.3cm}q_1 = {\rm Pr} (x_1 = 0) = 0.8\hspace{0.05cm},$$
- $$p_2 = {\rm Pr} (x_2 = 1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.9\hspace{0.05cm},\hspace{0.3cm}q_2 = {\rm Pr} (x_2 = 0) = 0.1$$
erhält man:
- $${\rm Pr} \left [w_{\rm H}(\underline{x}) = 0\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Pr} \left [(x_1 = 0)\cap (x_2 = 0) \right] = q_1 \cdot q_2 = 0.8 \cdot 0.1 = 0.08 \hspace{0.05cm},$$
- $${\rm Pr} \left [w_{\rm H}(\underline{x}) = 2\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Pr} \left [(x_1 = 1)\cap (x_2 = 1) \right] = p_1 \cdot p_2 = 0.2 \cdot 0.9 = 0.18$$
- $$\Rightarrow \hspace{0.3cm} {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade}\right] = 0.8 + 0.18 \hspace{0.15cm} \underline{= 0.26} \hspace{0.05cm}.$$
Die Gallager–Gleichung liefert für den gleichen Parametersatz:
- $${\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade}\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.5 + 0.5 \cdot \prod\limits_{i =1}^{2} \hspace{0.25cm}(1-2\cdot p_i) = 0.5 + 0.5 \cdot (1 - 2 \cdot 0.2)\cdot (1 - 2 \cdot 0.9) = 0.26 \hspace{0.05cm}.$$
Die von Gallager 1963 angegebene Gleichung wurde hiermit für $n = 2$ verifiziert.
(2) In der zweiten Tabelle sind die vier Kombinationen mit einer geraden Anzahl an Einsen blau markiert. Die Auftrittswahrscheinlichkeiten der einzelnen Kombinationen sind in der letzten Spalte angegeben. Somit ergibt sich:
- $$ {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade}\right] = 0.056 + 0.216 + 0.006 + 0.126 \hspace{0.15cm} \underline{= 0.404} \hspace{0.05cm}.$$
Die roten Zeilen liefern das Komplementärereignis:
- $$ {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade}\right] = 0.024 + 0.504 + 0.014 + 0.054= 0.596 \hspace{0.05cm}.$$
Die Gallager–Gleichung liefert auch hier wieder das exakt gleiche Ergebnis, wobei anzumerken ist, dass diese Gleichung für alle $n$ und alle beliebigen Wahrscheinlichkeiten gültig ist:
- $${\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade}\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.5 + 0.5 \cdot \prod\limits_{i =1}^{3} \hspace{0.25cm}(1-2\cdot p_i) $$
- $$\Rightarrow\hspace{0.3cm}{\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade}\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.5 + 0.5 \cdot (+0.6) \cdot (-0.8) \cdot (+0.4) = 0.404 \hspace{0.05cm}.$$
(3) Entsprechend der Angabenseite gilt:
- $$\pi = \prod\limits_{i =1}^{4} \hspace{0.25cm}(1-2\cdot p_i) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1 - 2 \cdot 0.2) \cdot (1 - 2 \cdot 0.9) \cdot (1 - 2 \cdot 0.3) \cdot (1 - 2 \cdot 0.6) $$
- $$\Rightarrow\hspace{0.3cm}\pi = \prod\limits_{i =1}^{4} \hspace{0.25cm}(1-2\cdot p_i) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}(+0.6) \cdot (-0.8) \cdot (+0.4) \cdot (-0.2) = 0.0384 \hspace{0.05cm}.$$
Daraus lassen sich berechnen:
- $${\rm Pr}({\rm blau}) = {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade}\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.5 + 0.5 \cdot \pi = 0.5 + 0.5 \cdot 0.0384\hspace{0.15cm} \underline{= 0.5192}\hspace{0.05cm},$$
- $${\rm Pr}({\rm rot}) = {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade}\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.5 - 0.5 \cdot \pi = 0.5 - 0.5 \cdot 0.0384\hspace{0.15cm} \underline{= 0.4808}\hspace{0.05cm}. $$
Addiert man die blauen bzw. die roten Wahrscheinlichkeiten auf der Angabenseite, so erhält man exakt die hier berechneten Werte.
Für den Quotienten ergibt sich:
- $$Q = \frac{{\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade}\right]} { {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade}\right]} = \frac{0.5192}{0.4808}\hspace{0.15cm} \underline{= 1.0799} \hspace{0.05cm}. $$
(4) Für den Single Parity–check Code wurde der extrinsische $L$–Wert bezüglich des $i$–ten Bits wie folgt angegeben:
- $$L_{\rm E}(i) = {\rm ln} \hspace{0.15cm}\frac{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]}{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]} \hspace{0.05cm},$$
oder:
- $$L_{\rm E}(i) = {\rm ln} \hspace{0.15cm}\frac{1+\prod_{j \ne i} \hspace{0.25cm}(1-2\cdot p_j)}{1-\prod_{j \ne i} \hspace{0.25cm}(1-2\cdot p_j)} \hspace{0.05cm}.$$
Beim $\text{SPC (5, 4, 2}$) ⇒ $n = 5$ ergibt sich dieses Produkt für $i = 5$ aus folgenden vier Multiplikanden:
- $$\pi = \prod\limits_{j = 1, \hspace{0.05cm}2, \hspace{0.05cm}3, \hspace{0.05cm}4} \hspace{0.05cm}(1-2\cdot p_j) = (1-2\cdot p_1) \cdot (1-2\cdot p_2) \cdot (1-2\cdot p_3) \cdot (1-2\cdot p_4) \hspace{0.05cm}.$$
Der Vergleich mit der Teilaufgabe (3) zeigt, dass $L_{\rm E}(i = 5) = \ln {Q} = \ln {(1.0799)} \ \underline{\approx 0.077}$ ist.
(5) Richtig ist der Lösungsvorschlag 3, weil das Ergebnis für $L_{\rm E}(i = 5)$ unabhängig von $p_5$ ist.