Aufgaben:Aufgabe 4.09: Recursive Systematic Convolutional Codes: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(17 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 2: Zeile 2:
  
 
[[Datei:P_ID3040__KC_A_4_9_v1.png|right|frame|Zustandsübergangsdiagramm eines RSC–Codes]]
 
[[Datei:P_ID3040__KC_A_4_9_v1.png|right|frame|Zustandsübergangsdiagramm eines RSC–Codes]]
In der [[Aufgaben:4.08_Wiederholung_zu_den_Faltungscodes|Aufgabe A4.8]] wurden bereits wichtige Eigenschaften von Faltungscodes aus dem Zustandsübergangsdiagramm abgeleitet, wobei von einer nichtrekursiven Filterstruktur ausgegangen wurde.
+
In der  [[Aufgaben:4.08_Wiederholung_zu_den_Faltungscodes|Aufgabe 4.8]]  wurden aus dem Zustandsübergangsdiagramm bereits wichtige Eigenschaften von Faltungscodes abgeleitet, wobei von einer nichtrekursiven Filterstruktur ausgegangen wurde.
  
Nun wird ein Rate–1/2–RSC–Code in ähnlicher Weise behandelt. Hierbei steht „RSC” für „Recursive Systematic Convolutional”.
+
Nun wird ein Rate–$1/2$–RSC–Code in ähnlicher Weise behandelt. Hierbei steht „RSC” für „Recursive Systematic Convolutional”.
  
 
Die Übertragungsfunktionsmatrix eines RSC–Faltungscodes kann wie folgt angegeben werden:
 
Die Übertragungsfunktionsmatrix eines RSC–Faltungscodes kann wie folgt angegeben werden:
Zeile 10: Zeile 10:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Ansonsten gelten hier die genau gleichen Voraussetzungen wie bei Aufgabe A4.8. Wir verweisen wieder auf folgende Theorieseiten:
+
Ansonsten gelten hier die genau gleichen Voraussetzungen wie bei der Aufgabe 4.8. Wir verweisen wieder auf folgende Theorieseiten:
  
[[Kanalcodierung/Algebraische_und_polynomische_Beschreibung#Systematische_Faltungscodes|Systematische Faltungscodes (1)]]
+
#[[Kanalcodierung/Algebraische_und_polynomische_Beschreibung#Systematische_Faltungscodes|Systematische Faltungscodes]]
 +
#[[Kanalcodierung/Codebeschreibung_mit_Zustands%E2%80%93_und_Trellisdiagramm#Darstellung_im_Zustands.C3.BCbergangsdiagramm|Darstellung im Zustandsübergangsdiagramm]]
 +
#[[Kanalcodierung/Codebeschreibung_mit_Zustands%E2%80%93_und_Trellisdiagramm#Definition_der_freien_Distanz|Definition der freien Distanz]]
 +
#[[Kanalcodierung/Algebraische_und_polynomische_Beschreibung#GF.282.29.E2.80.93Beschreibungsformen_eines_Digitalen_Filters|GF(2)–Beschreibungsformen eines Digitalen Filters]]
 +
#[[Kanalcodierung/Algebraische_und_polynomische_Beschreibung#Anwendung_der_D.E2.80.93Transformation_auf_Rate.E2.80.931.2Fn.E2.80.93Faltungscoder| Anwendung der $D$–Transformation auf Rate–1/ $n$–Faltungscodes]]
 +
#[[Kanalcodierung/Algebraische_und_polynomische_Beschreibung#Filterstruktur_bei_gebrochen.E2.80.93rationaler_.C3.9Cbertragungsfunktion|Filterstruktur bei gebrochen–rationaler Übertragungsfunktion]]
  
[[Kanalcodierung/Codebeschreibung_mit_Zustands%E2%80%93_und_Trellisdiagramm#Darstellung_im_Zustands.C3.BCbergangsdiagramm|Darstellung im Zustandsübergangsdiagramm (1)]]
 
  
[[Kanalcodierung/Codebeschreibung_mit_Zustands%E2%80%93_und_Trellisdiagramm#Definition_der_freien_Distanz|Definition der freien Distanz (1)]]
+
Im Zustandsübergangsdiagramm wird grundsätzlich vom Zustand  $S_0$  ausgegangen. Von jedem Zustand gehen zwei Pfeile ab. Die Beschriftung lautet „$u_i \hspace{0.05cm}| \hspace{0.05cm} x_i^{(1)}x_i^{(2)}$”. Bei einem systematischen Code gilt dabei:
 +
* Das erste Codebit ist identisch mit dem Informationsbit:   $\hspace{0.2cm} x_i^{(1)} = u_i ∈ \{0, \, 1\}$.
 +
* Das zweite Codebit ist das Prüfbit (Paritybit):    $\hspace{0.2cm} x_i^{(2)} = p_i ∈ \{0, \, 1\}$.
 +
 
  
[[Kanalcodierung/Algebraische_und_polynomische_Beschreibung#GF.282.29.E2.80.93Beschreibungsformen_eines_Digitalen_Filters|GF(2)–Beschreibungsformen eines Digitalen Filters (2)]]
 
  
[[Kanalcodierung/Algebraische_und_polynomische_Beschreibung#Anwendung_der_D.E2.80.93Transformation_auf_Rate.E2.80.931.2Fn.E2.80.93Faltungscoder| Anwendung der $D$–Transformation auf Rate–1/n–Faltungscodes (2)]]
 
  
[[Kanalcodierung/Algebraische_und_polynomische_Beschreibung#Filterstruktur_bei_gebrochen.E2.80.93rationaler_.C3.9Cbertragungsfunktion|Filterstruktur bei gebrochen–rationaler Übertragungsfunktion]]
 
  
Im Zustandsübergangsdiagramm wird grundsätzlich vom Zustand $S_0$ ausgegangen. Von jedem Zustand gehen zwei Pfeile ab. Die Beschriftung lautet „$u_i | x_i^{(1)}x_i^{(2)}$”. Bei einem systematischen Code gilt dabei:
 
* Das erste Codebit ist identisch mit dem Informationsbit: $\hspace{0.2cm} x_i^{(1)} = u_i ∈ \{0, \, 1\}$.
 
* Das zweite Codebit ist das Prüfbit (Paritybit): $\hspace{0.2cm} x_i^{(2)} = p_i ∈ \{0, \, 1\}$.
 
  
  
 
''Hinweise:''
 
''Hinweise:''
* Die Aufgabe bezieht sich auf das Kapitel [[Kanalcodierung/Grundlegendes_zu_den_Turbocodes|Grundlegendes zu den Turbocodes]].
+
* Die Aufgabe bezieht sich auf das Kapitel   [[Kanalcodierung/Grundlegendes_zu_den_Turbocodes|Grundlegendes zu den Turbocodes]].
 
* Ähnliche Aufgaben finden Sie in den Kapiteln 3.1 bis 3.3.
 
* Ähnliche Aufgaben finden Sie in den Kapiteln 3.1 bis 3.3.
 +
 
* In den Fragen zu dieser Aufgabe werden folgende vektoriellen Größen verwendet:
 
* In den Fragen zu dieser Aufgabe werden folgende vektoriellen Größen verwendet:
** Informationssequenz: $\hspace{0.2cm} \underline{u} = (u_1, \, u_2, \, ...)$,
+
** die Informationssequenz:   $\hspace{0.2cm} \underline{u} = (u_1, \, u_2, \text{...} \hspace{0.05cm} )$,
** Paritysequenz: $\hspace{0.2cm} \underline{p} = (p_1, \, p_2, \, ...)$,
+
** die Paritysequenz:   $\hspace{0.2cm} \underline{p} = (p_1, \, p_2, \text{...}  \hspace{0.05cm})$,
** Impulsantwort: $\hspace{0.2cm} \underline{g} = (g_1, \, g_2, \, ...); \hspace{0.2cm}$ diese ist gleich der Paritysequenz $\underline{p}$ für $\underline{u} = (1, \, 0, \, 0, \, ...)$.
+
** die Impulsantwort:   $\hspace{0.2cm} \underline{g} = (g_1, \, g_2, \text{...}  \hspace{0.05cm} ); \hspace{0.2cm}$ diese ist gleich der Paritysequenz $\underline{p}$   für   $\underline{u} = (1, \, 0, \, 0, \text{...}  \hspace{0.05cm} )$.
  
  
Zeile 41: Zeile 43:
 
===Fragebogen===
 
===Fragebogen===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice
+
{Wie lautet die Impulsantwort&nbsp;  $\underline{g}$&nbsp;?
|type="[]"}
+
|type="()"}
+ correct
+
+ Es gilt&nbsp;  $\underline{g} = (1, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \text{...}  \hspace{0.05cm})$.
- false
+
- Es gilt&nbsp;  $\underline{g} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{...}  \hspace{0.05cm})$.
  
{Multiple-Choice
+
{Es gelte&nbsp;  $\underline{u} = (1, \, 1, \, 0, \, 1)$. Welche Aussagen gelten für die Paritysequenz&nbsp;  $\underline{p}$&nbsp;?
 
|type="[]"}
 
|type="[]"}
+ correct
+
- Es gilt&nbsp;  $\underline{p} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{...}  \hspace{0.05cm})$.
- false
+
+ Es gilt&nbsp;  $\underline{p} = (1, \, 0, \, 0, \, 0, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \text{...}  \hspace{0.05cm})$.
 +
- Bei begrenzter Informationssequenz&nbsp;  $\underline{u}$&nbsp;  ist stets auch&nbsp;  $\underline{p}$&nbsp;  begrenzt.
  
{Multiple-Choice
+
{Wie lautet die&nbsp;  $D$&ndash;Übertragungsfunktion&nbsp;  $G(D)$?
 
|type="[]"}
 
|type="[]"}
+ correct
+
+ Es gilt&nbsp;  $G(D) = 1 + D + D^2 + D^4 + D^5 + D^7 + D^8 + \text{...}  \hspace{0.05cm}$
- false
+
+ Es gilt&nbsp;  $G(D) = (1 + D^2)/(1 + D + D^2)$.
 +
- Es gilt&nbsp;  $G(D) = (1 + D + D^2)/(1 + D^2)$.
  
{Multiple-Choice
+
{Nun gelte&nbsp;  $\underline{u} = (1, \, 1, \, 1)$. Welche Aussagen gelten für die Paritysequenz&nbsp;  $\underline{p}$?
 
|type="[]"}
 
|type="[]"}
+ correct
+
+ Es gilt&nbsp;  $\underline{p} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{...}  \hspace{0.05cm})$.
- false
+
- Es gilt&nbsp;  $\underline{p} = (1, \, 0, \, 0, \, 0, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \text{...}  \hspace{0.05cm})$.
 +
- Bei unbegrenzter Impulsantwort&nbsp;  $\underline{g}$&nbsp;  ist stets auch&nbsp;  $\underline{p}$&nbsp;  unbegrenzt.
  
{Input-Box Frage
+
{Wie groß ist die freie Distanz&nbsp;  $d_{\rm F}$&nbsp;  dieses RSC&ndash;Coders?
 
|type="{}"}
 
|type="{}"}
$xyz \ = \ ${ 5.4 3% } $ab$
+
$d_{\rm F} \ = \ ${ 5 3% }
 
</quiz>
 
</quiz>
  
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
'''(1)'''&nbsp; Verfolgt man die Übergänge im Zustandsdiagramm für die Sequenz&nbsp;  $\underline{u} = (1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0)$&nbsp;  am Eingang, so erhält man den Weg
'''(2)'''&nbsp;  
+
:$$S_0 &#8594; S_1 &#8594; S_3 &#8594; S_2 &#8594; S_1 &#8594; S_3 &#8594; S_2 &#8594; S_1 &#8594; S_3 &#8594; \hspace{0.05cm}\text{...}  \hspace{0.05cm}$$
'''(3)'''&nbsp;  
+
 
'''(4)'''&nbsp;  
+
*Bei jedem Übergang ist das erste Codesymbol $x_i^{(1)}$ gleich dem Informationsbit $u_i$ und das Codesymbol $x_i^{(2)}$ gibt das Paritybit $p_i$ an.
'''(5)'''&nbsp;  
+
*Damit erhält man das Ergebnis entsprechend dem <u>Lösungsvorschlag 1</u>:
 +
:$$\underline{p}= (\hspace{0.05cm}1\hspace{0.05cm},
 +
\hspace{0.05cm}1\hspace{0.05cm},
 +
\hspace{0.05cm}1\hspace{0.05cm},
 +
\hspace{0.05cm} 0\hspace{0.05cm},
 +
\hspace{0.05cm} 1\hspace{0.05cm},
 +
\hspace{0.05cm} 1\hspace{0.05cm},
 +
\hspace{0.05cm} 0\hspace{0.05cm},
 +
\hspace{0.05cm} 1\hspace{0.05cm},
 +
\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}\text{...}  \hspace{0.05cm})
 +
= \underline{g}\hspace{0.05cm}.$$
 +
 
 +
*Bei einem jeden RSC&ndash;Code ist die Impulsantwort $\underline{g}$ unendlich lang und wird irgendwann periodisch, in diesem Beispiel mit der Periode&nbsp;  $P = 3$&nbsp;  und&nbsp;  &bdquo;$0, \, 1, \, 1$&rdquo;.
 +
 
 +
 
 +
 
 +
[[Datei:P_ID3054__KC_A_4_9b_v1.png|right|frame|Verdeutlichung von&nbsp;  $\underline{p} = (1, \, 1, \, 0, \, 1)^{\rm T} \cdot \mathbf{G}$]]
 +
'''(2)'''&nbsp; Die Grafik zeigt die Lösung dieser Aufgabe entsprechend der Gleichung&nbsp;  $\underline{p} = \underline{u}^{\rm T} \cdot \mathbf{G}$.
 +
* Hierbei ist die Generatormatrix&nbsp;  $\mathbf{G}$&nbsp;  nach unten und rechts unendlich weit ausgedehnt.
 +
*Richtig ist <u>der Lösungsvorschlag 2</u>.
 +
<br clear=all>
 +
'''(3)'''&nbsp; Richtig sind <u>die Lösungsvorschläge 1 und 2</u>:
 +
*Zwischen der Impulsantwort $\underline{g}$ und der $D$&ndash;Übertragungsfunktion $\mathbf{G}(D)$ besteht der Zusammenhang gemäß dem ersten Lösungsvorschlag:
 +
:$$\underline{g}= (\hspace{-0.05cm}1\hspace{-0.05cm},
 +
\hspace{-0.05cm}1\hspace{-0.05cm},
 +
\hspace{-0.05cm}1\hspace{-0.05cm},
 +
\hspace{-0.05cm}0\hspace{-0.05cm},
 +
\hspace{-0.05cm}1\hspace{-0.05cm},
 +
\hspace{-0.05cm}1\hspace{-0.05cm},
 +
\hspace{-0.05cm}0\hspace{-0.05cm},
 +
\hspace{-0.05cm}1\hspace{-0.05cm},
 +
\hspace{-0.05cm}1\hspace{-0.05cm},
 +
... ) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad
 +
G(D) =  1\hspace{-0.05cm}+\hspace{-0.05cm} D\hspace{-0.05cm} +\hspace{-0.05cm} D^2\hspace{-0.05cm} +\hspace{-0.05cm} D^4 \hspace{-0.05cm}+\hspace{-0.05cm} D^5 \hspace{-0.05cm}+\hspace{-0.05cm} D^7 \hspace{-0.05cm}+\hspace{-0.05cm} D^8 +  \hspace{0.05cm} \text{...} \hspace{0.05cm}.$$
 +
 
 +
*Überprüfen wir nun den zweiten Vorschlag:
 +
:$$G(D) = \frac{1+  D^2}{1+ D  + D^2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 +
G(D) \cdot [1+ D  + D^2] = 1+  D^2 \hspace{0.05cm}.$$
 +
 
 +
*Die folgende Rechnung zeigt, dass diese Gleichung tatsächlich stimmt:
 +
:$$(1+ D+ D^2+ D^4 +D^5 + D^7 + D^8 + \hspace{0.05cm} \text{...}) \cdot (1+ D+ D^2 ) =$$
 +
:$$=1+ D+ D^2\hspace{1.05cm} +D^4 +  D^5 \hspace{1.05cm} +D^7 + D^8 \hspace{1.05cm} + D^{10}+ \hspace{0.05cm} \text{...}$$
 +
:$$+ \hspace{0.8cm}D+ D^2+D^3 \hspace{1.05cm}+  D^5 +  D^6 \hspace{1.05cm} +D^8 + D^9 \hspace{1.25cm} +\hspace{0.05cm} \text{...} $$
 +
:$$+ \hspace{1.63cm} D^2+D^3+  D^4  \hspace{1.05cm}+  D^6 +D^7  \hspace{1.05cm}+ D^9 + D^{10} \hspace{0.12cm}+ \hspace{0.05cm} \text{...}$$
 +
:$$=\underline{1\hspace{0.72
 +
cm}+ D^2} \hspace{0.05cm}.$$
 +
 
 +
*Da aber die Gleichung (2) stimmt, muss die letzte Gleichung falsch sein.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Richtig ist nur der <u>Lösungsvorschlag 1</u>:
 +
*Aus $\underline{u} = (1, \, 1, \, 1)$ folgt $U(D) = 1 + D + D^2$. Damit gilt auch:
 +
:$$P(D) = U(D) \cdot G(D) = (1+D+D^2) \cdot \frac{1+D^2}{1+D+D^2}= 1+D^2\hspace{0.3cm}
 +
\Rightarrow\hspace{0.3cm}  \underline{p}= (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}\text{...}\hspace{0.05cm})\hspace{0.05cm}. $$
 +
* Wären die Größen&nbsp;  $u_i$&nbsp;  und&nbsp;  $g_i$&nbsp;  reellwertig, so würde die (diskrete) Faltung&nbsp;  $\underline{p} = \underline{u} * \underline{g}$&nbsp;  stets zu einer Verbreiterung führen &nbsp; &#8658; &nbsp; $\underline{p}$&nbsp;  wäre in diesem Fall breiter als&nbsp;  $\underline{u}$&nbsp;  und auch breiter als&nbsp;  $\underline{g}$.
 +
* Bei&nbsp;  $u_i &#8712; {\rm GF}(2)$&nbsp;  und&nbsp;  $g_i &#8712; {\rm GF}(2)$&nbsp;  kann es (muss es aber nicht) dagegen vorkommen, dass auch bei unbegrenztem&nbsp;  $\underline{u}$&nbsp;  oder bei unbegrenztem&nbsp;  $\underline{g}$&nbsp;  das Faltungsprodukt&nbsp;  $\underline{p} = \underline{u} * \underline{g}$&nbsp;  begrenzt ist.
 +
[[Datei:P_ID3057__KC_A_4_9d_v1.png|right|frame|Verdeutlichung von&nbsp;  $\underline{p} = (1, \, 1, \, 1, \, 0, \, ...)^{\rm T} \cdot \mathbf{G}$]]
 +
*Das Ergebnis wird abschließend  noch entsprechend der Gleichung $\underline{p} = \underline{u}^{\rm T} \cdot \mathbf{G}$ überprüft.
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; Nach ähnlicher Vorgehensweise wie in der [[Aufgaben:4.08_Wiederholung_zu_den_Faltungscodes|Aufgabe A4.8, (4)]] erkennt man:
 +
*Die freie Distanz wird auch hier  durch den Pfad&nbsp; $S_0 &#8594; S_0 &#8594; S_1 &#8594; S_2 &#8594; S_0 &#8594; S_0 &#8594; \hspace{0.05cm}\text{...}\hspace{0.05cm}$ bestimmt.
 +
*Die zugehörige Codesequenz&nbsp; $\underline{x}$&nbsp; ist nun aber &nbsp;&bdquo; $00 \ 11 \ 10 \ 11 \ 00 \ ... $&rdquo;.
 +
*Damit ergibt sich die freie Distanz zu&nbsp; $d_{\rm F} \ \underline{= 5}$.
 +
*Beim nichtrekursiven Code (Aufgabe 4.8) war dagegen die freie Distanz&nbsp; $d_{\rm F} = 3$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Aktuelle Version vom 9. Juli 2019, 13:42 Uhr

Zustandsübergangsdiagramm eines RSC–Codes

In der  Aufgabe 4.8  wurden aus dem Zustandsübergangsdiagramm bereits wichtige Eigenschaften von Faltungscodes abgeleitet, wobei von einer nichtrekursiven Filterstruktur ausgegangen wurde.

Nun wird ein Rate–$1/2$–RSC–Code in ähnlicher Weise behandelt. Hierbei steht „RSC” für „Recursive Systematic Convolutional”.

Die Übertragungsfunktionsmatrix eines RSC–Faltungscodes kann wie folgt angegeben werden:

$${\boldsymbol{\rm G}}(D) = \left [ 1\hspace{0.05cm},\hspace{0.3cm} G^{(2)}(D)/G^{(1)}(D) \right ] \hspace{0.05cm}.$$

Ansonsten gelten hier die genau gleichen Voraussetzungen wie bei der Aufgabe 4.8. Wir verweisen wieder auf folgende Theorieseiten:

  1. Systematische Faltungscodes
  2. Darstellung im Zustandsübergangsdiagramm
  3. Definition der freien Distanz
  4. GF(2)–Beschreibungsformen eines Digitalen Filters
  5. Anwendung der $D$–Transformation auf Rate–1/ $n$–Faltungscodes
  6. Filterstruktur bei gebrochen–rationaler Übertragungsfunktion


Im Zustandsübergangsdiagramm wird grundsätzlich vom Zustand  $S_0$  ausgegangen. Von jedem Zustand gehen zwei Pfeile ab. Die Beschriftung lautet „$u_i \hspace{0.05cm}| \hspace{0.05cm} x_i^{(1)}x_i^{(2)}$”. Bei einem systematischen Code gilt dabei:

  • Das erste Codebit ist identisch mit dem Informationsbit:   $\hspace{0.2cm} x_i^{(1)} = u_i ∈ \{0, \, 1\}$.
  • Das zweite Codebit ist das Prüfbit (Paritybit):   $\hspace{0.2cm} x_i^{(2)} = p_i ∈ \{0, \, 1\}$.




Hinweise:

  • In den Fragen zu dieser Aufgabe werden folgende vektoriellen Größen verwendet:
    • die Informationssequenz:  $\hspace{0.2cm} \underline{u} = (u_1, \, u_2, \text{...} \hspace{0.05cm} )$,
    • die Paritysequenz:  $\hspace{0.2cm} \underline{p} = (p_1, \, p_2, \text{...} \hspace{0.05cm})$,
    • die Impulsantwort:  $\hspace{0.2cm} \underline{g} = (g_1, \, g_2, \text{...} \hspace{0.05cm} ); \hspace{0.2cm}$ diese ist gleich der Paritysequenz $\underline{p}$  für  $\underline{u} = (1, \, 0, \, 0, \text{...} \hspace{0.05cm} )$.


Fragebogen

1

Wie lautet die Impulsantwort  $\underline{g}$ ?

Es gilt  $\underline{g} = (1, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \text{...} \hspace{0.05cm})$.
Es gilt  $\underline{g} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{...} \hspace{0.05cm})$.

2

Es gelte  $\underline{u} = (1, \, 1, \, 0, \, 1)$. Welche Aussagen gelten für die Paritysequenz  $\underline{p}$ ?

Es gilt  $\underline{p} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{...} \hspace{0.05cm})$.
Es gilt  $\underline{p} = (1, \, 0, \, 0, \, 0, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \text{...} \hspace{0.05cm})$.
Bei begrenzter Informationssequenz  $\underline{u}$  ist stets auch  $\underline{p}$  begrenzt.

3

Wie lautet die  $D$–Übertragungsfunktion  $G(D)$?

Es gilt  $G(D) = 1 + D + D^2 + D^4 + D^5 + D^7 + D^8 + \text{...} \hspace{0.05cm}$
Es gilt  $G(D) = (1 + D^2)/(1 + D + D^2)$.
Es gilt  $G(D) = (1 + D + D^2)/(1 + D^2)$.

4

Nun gelte  $\underline{u} = (1, \, 1, \, 1)$. Welche Aussagen gelten für die Paritysequenz  $\underline{p}$?

Es gilt  $\underline{p} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{...} \hspace{0.05cm})$.
Es gilt  $\underline{p} = (1, \, 0, \, 0, \, 0, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \text{...} \hspace{0.05cm})$.
Bei unbegrenzter Impulsantwort  $\underline{g}$  ist stets auch  $\underline{p}$  unbegrenzt.

5

Wie groß ist die freie Distanz  $d_{\rm F}$  dieses RSC–Coders?

$d_{\rm F} \ = \ $


Musterlösung

(1)  Verfolgt man die Übergänge im Zustandsdiagramm für die Sequenz  $\underline{u} = (1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0)$  am Eingang, so erhält man den Weg

$$S_0 → S_1 → S_3 → S_2 → S_1 → S_3 → S_2 → S_1 → S_3 → \hspace{0.05cm}\text{...} \hspace{0.05cm}$$
  • Bei jedem Übergang ist das erste Codesymbol $x_i^{(1)}$ gleich dem Informationsbit $u_i$ und das Codesymbol $x_i^{(2)}$ gibt das Paritybit $p_i$ an.
  • Damit erhält man das Ergebnis entsprechend dem Lösungsvorschlag 1:
$$\underline{p}= (\hspace{0.05cm}1\hspace{0.05cm}, \hspace{0.05cm}1\hspace{0.05cm}, \hspace{0.05cm}1\hspace{0.05cm}, \hspace{0.05cm} 0\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 0\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}\text{...} \hspace{0.05cm}) = \underline{g}\hspace{0.05cm}.$$
  • Bei einem jeden RSC–Code ist die Impulsantwort $\underline{g}$ unendlich lang und wird irgendwann periodisch, in diesem Beispiel mit der Periode  $P = 3$  und  „$0, \, 1, \, 1$”.


Verdeutlichung von  $\underline{p} = (1, \, 1, \, 0, \, 1)^{\rm T} \cdot \mathbf{G}$

(2)  Die Grafik zeigt die Lösung dieser Aufgabe entsprechend der Gleichung  $\underline{p} = \underline{u}^{\rm T} \cdot \mathbf{G}$.

  • Hierbei ist die Generatormatrix  $\mathbf{G}$  nach unten und rechts unendlich weit ausgedehnt.
  • Richtig ist der Lösungsvorschlag 2.


(3)  Richtig sind die Lösungsvorschläge 1 und 2:

  • Zwischen der Impulsantwort $\underline{g}$ und der $D$–Übertragungsfunktion $\mathbf{G}(D)$ besteht der Zusammenhang gemäß dem ersten Lösungsvorschlag:
$$\underline{g}= (\hspace{-0.05cm}1\hspace{-0.05cm}, \hspace{-0.05cm}1\hspace{-0.05cm}, \hspace{-0.05cm}1\hspace{-0.05cm}, \hspace{-0.05cm}0\hspace{-0.05cm}, \hspace{-0.05cm}1\hspace{-0.05cm}, \hspace{-0.05cm}1\hspace{-0.05cm}, \hspace{-0.05cm}0\hspace{-0.05cm}, \hspace{-0.05cm}1\hspace{-0.05cm}, \hspace{-0.05cm}1\hspace{-0.05cm}, ... ) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad G(D) = 1\hspace{-0.05cm}+\hspace{-0.05cm} D\hspace{-0.05cm} +\hspace{-0.05cm} D^2\hspace{-0.05cm} +\hspace{-0.05cm} D^4 \hspace{-0.05cm}+\hspace{-0.05cm} D^5 \hspace{-0.05cm}+\hspace{-0.05cm} D^7 \hspace{-0.05cm}+\hspace{-0.05cm} D^8 + \hspace{0.05cm} \text{...} \hspace{0.05cm}.$$
  • Überprüfen wir nun den zweiten Vorschlag:
$$G(D) = \frac{1+ D^2}{1+ D + D^2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} G(D) \cdot [1+ D + D^2] = 1+ D^2 \hspace{0.05cm}.$$
  • Die folgende Rechnung zeigt, dass diese Gleichung tatsächlich stimmt:
$$(1+ D+ D^2+ D^4 +D^5 + D^7 + D^8 + \hspace{0.05cm} \text{...}) \cdot (1+ D+ D^2 ) =$$
$$=1+ D+ D^2\hspace{1.05cm} +D^4 + D^5 \hspace{1.05cm} +D^7 + D^8 \hspace{1.05cm} + D^{10}+ \hspace{0.05cm} \text{...}$$
$$+ \hspace{0.8cm}D+ D^2+D^3 \hspace{1.05cm}+ D^5 + D^6 \hspace{1.05cm} +D^8 + D^9 \hspace{1.25cm} +\hspace{0.05cm} \text{...} $$
$$+ \hspace{1.63cm} D^2+D^3+ D^4 \hspace{1.05cm}+ D^6 +D^7 \hspace{1.05cm}+ D^9 + D^{10} \hspace{0.12cm}+ \hspace{0.05cm} \text{...}$$
$$=\underline{1\hspace{0.72 cm}+ D^2} \hspace{0.05cm}.$$
  • Da aber die Gleichung (2) stimmt, muss die letzte Gleichung falsch sein.


(4)  Richtig ist nur der Lösungsvorschlag 1:

  • Aus $\underline{u} = (1, \, 1, \, 1)$ folgt $U(D) = 1 + D + D^2$. Damit gilt auch:
$$P(D) = U(D) \cdot G(D) = (1+D+D^2) \cdot \frac{1+D^2}{1+D+D^2}= 1+D^2\hspace{0.3cm} \Rightarrow\hspace{0.3cm} \underline{p}= (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}\text{...}\hspace{0.05cm})\hspace{0.05cm}. $$
  • Wären die Größen  $u_i$  und  $g_i$  reellwertig, so würde die (diskrete) Faltung  $\underline{p} = \underline{u} * \underline{g}$  stets zu einer Verbreiterung führen   ⇒   $\underline{p}$  wäre in diesem Fall breiter als  $\underline{u}$  und auch breiter als  $\underline{g}$.
  • Bei  $u_i ∈ {\rm GF}(2)$  und  $g_i ∈ {\rm GF}(2)$  kann es (muss es aber nicht) dagegen vorkommen, dass auch bei unbegrenztem  $\underline{u}$  oder bei unbegrenztem  $\underline{g}$  das Faltungsprodukt  $\underline{p} = \underline{u} * \underline{g}$  begrenzt ist.
Verdeutlichung von  $\underline{p} = (1, \, 1, \, 1, \, 0, \, ...)^{\rm T} \cdot \mathbf{G}$
  • Das Ergebnis wird abschließend noch entsprechend der Gleichung $\underline{p} = \underline{u}^{\rm T} \cdot \mathbf{G}$ überprüft.


(5)  Nach ähnlicher Vorgehensweise wie in der Aufgabe A4.8, (4) erkennt man:

  • Die freie Distanz wird auch hier durch den Pfad  $S_0 → S_0 → S_1 → S_2 → S_0 → S_0 → \hspace{0.05cm}\text{...}\hspace{0.05cm}$ bestimmt.
  • Die zugehörige Codesequenz  $\underline{x}$  ist nun aber  „ $00 \ 11 \ 10 \ 11 \ 00 \ ... $”.
  • Damit ergibt sich die freie Distanz zu  $d_{\rm F} \ \underline{= 5}$.
  • Beim nichtrekursiven Code (Aufgabe 4.8) war dagegen die freie Distanz  $d_{\rm F} = 3$.