Applets:Augendiagramm und ungünstigste Fehlerwahrscheinlichkeit: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 56: Zeile 56:
  
 
$\text{Unterschiede bei den Mehrstufensystemen}$
 
$\text{Unterschiede bei den Mehrstufensystemen}$
*Es gibt  $M\hspace{-0.1cm}-\hspace{-0.1cm}1$ Augen und ebensoviele Schwellen   ⇒   $ö_{\rm norm} =1/(M\hspace{-0.1cm}-\hspace{-0.1cm}1)$  ⇒   $M=4$:  Quaternärsystem,  $M=3$:  AMI-Code, Duobinärcode.
+
*Es gibt  $M\hspace{-0.1cm}-\hspace{-0.1cm}1$ Augen und eben so viele Schwellen   ⇒   $ö_{\rm norm} =1/(M\hspace{-0.1cm}-\hspace{-0.1cm}1)$  ⇒   $M=4$:  Quaternärsystem,  $M=3$:  AMI-Code, Duobinärcode.
 
*Der normierte Detektionsrauscheffektivwert  $\sigma_{\rm norm}$  ist beim Quaternärsystem um den Faktor  $\sqrt{5/9} \approx 0.745$  als beim Binärsystem.
 
*Der normierte Detektionsrauscheffektivwert  $\sigma_{\rm norm}$  ist beim Quaternärsystem um den Faktor  $\sqrt{5/9} \approx 0.745$  als beim Binärsystem.
 
*Beim AMI-Code und dem Duobinärcode hat dieser Verbesserungsfaktor, der auf das kleinere  $E_{\rm B}/ N_0$  zurückgeht, den Wert  $\sqrt{1/2} \approx 0.707$.  
 
*Beim AMI-Code und dem Duobinärcode hat dieser Verbesserungsfaktor, der auf das kleinere  $E_{\rm B}/ N_0$  zurückgeht, den Wert  $\sqrt{1/2} \approx 0.707$.  
Zeile 65: Zeile 65:
 
[[Datei:Auge_2_neu.png|right|frame|Cosinus-Rolloff-Gesamtfrequenzgang ]]  
 
[[Datei:Auge_2_neu.png|right|frame|Cosinus-Rolloff-Gesamtfrequenzgang ]]  
  
Wir setzen voraus, dass der Gesamtfrequenzgang den Verlauf eines  [[Lineare_zeitinvariante_Systeme/Einige_systemtheoretische_Tiefpassfunktionen#Cosinus-Rolloff-Tiefpass|Cosinus-Rolloff-Tiefpasses]]  hat:
+
Wir setzen voraus, dass der Gesamtfrequenzgang zwischen der diracförmigen Quelle bis zum Entscheider  den Verlauf eines  [[Lineare_zeitinvariante_Systeme/Einige_systemtheoretische_Tiefpassfunktionen#Cosinus-Rolloff-Tiefpass|Cosinus-Rolloff-Tiefpasses]]  hat   ⇒   $H_{\rm S}(f)\cdot H_{\rm E}(f) = H_{\rm CRO}(f)$ .
 
*Der Flankenabfall von  $H_{\rm CRO}(f)$  ist punktsymmetrisch um die Nyquistfrequenz  $1/(2T)$. Je größer der Rolloff-Faktor  $r_f$  ist, um so flacher verläuft ist die Nyquistflanke.  
 
*Der Flankenabfall von  $H_{\rm CRO}(f)$  ist punktsymmetrisch um die Nyquistfrequenz  $1/(2T)$. Je größer der Rolloff-Faktor  $r_f$  ist, um so flacher verläuft ist die Nyquistflanke.  
*Der Detektionsgrundimpuls  $g_d(t) = s_0 \cdot T \cdot {\rm F}\big[H_{\rm CRO}(f)\big]$  hat unabhängig von  $r_f$   zu den Zeiten  $\nu \cdot T$  Nullstellen.  Weitere Nulldurchgänge gibt es abhängig von  $r_f$.  Für den Impuls gilt:   
+
*Der Detektionsgrundimpuls  $g_d(t) = s_0 \cdot T \cdot {\mathcal F}^{-1}\big[H_{\rm CRO}(f)\big]$  hat unabhängig von  $r_f$   zu den Zeiten  $\nu \cdot T$  Nullstellen.  Weitere Nulldurchgänge gibt es abhängig von  $r_f$.  Für den Impuls gilt:   
 
:$$g_d(t) = s_0 \hspace{-0.05cm}\cdot\hspace{-0.05cm} {\rm si}(\pi \hspace{-0.05cm}\cdot\hspace{-0.05cm}  t/T )\hspace{-0.05cm}\cdot\hspace{-0.05cm}\frac {\cos(\pi \cdot r_{\hspace{-0.05cm}f} \cdot t/T )}{1 - (2 \cdot
 
:$$g_d(t) = s_0 \hspace{-0.05cm}\cdot\hspace{-0.05cm} {\rm si}(\pi \hspace{-0.05cm}\cdot\hspace{-0.05cm}  t/T )\hspace{-0.05cm}\cdot\hspace{-0.05cm}\frac {\cos(\pi \cdot r_{\hspace{-0.05cm}f} \cdot t/T )}{1 - (2 \cdot
 
r_f \cdot t/T)^2}.$$  
 
r_f \cdot t/T)^2}.$$  
Zeile 74: Zeile 74:
  
 
[[Datei:Auge_3.png|right|frame|Zur Optimierung des Rolloff-Faktors ]]
 
[[Datei:Auge_3.png|right|frame|Zur Optimierung des Rolloff-Faktors ]]
 +
Betrachten wir nun die Rauschleistung vor dem Entscheider. Für diese gilt:
  
 
Betrachten wir nun die Rauschleistung vor dem Entscheider. Für diese gilt:
 
 
:$$\sigma_d^2 = N_0/2 \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 {\rm d}f  = N_0/2 \cdot \int_{-\infty}^{+\infty} \frac{|H_{\rm CRO}(f)|^2}{|H_{\rm S}(f)|^2} {\rm d}f.$$  
 
:$$\sigma_d^2 = N_0/2 \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 {\rm d}f  = N_0/2 \cdot \int_{-\infty}^{+\infty} \frac{|H_{\rm CRO}(f)|^2}{|H_{\rm S}(f)|^2} {\rm d}f.$$  
  
Zeile 87: Zeile 86:
  
 
Die Flächen unter diesen Kurven sind jeweils ein Maß für die Rauschleistung  $\sigma_d^2$  vor dem Entscheider. Das grau hinterlegte Rechteck markiert den kleinsten Wert  $\sigma_d^2 =\sigma_{\rm MF}^2$, der sich mit dem Matched-Filter-Empfänger ergibt.  
 
Die Flächen unter diesen Kurven sind jeweils ein Maß für die Rauschleistung  $\sigma_d^2$  vor dem Entscheider. Das grau hinterlegte Rechteck markiert den kleinsten Wert  $\sigma_d^2 =\sigma_{\rm MF}^2$, der sich mit dem Matched-Filter-Empfänger ergibt.  
 
+
<br clear=all>
 
Man erkennt aus dieser Darstellung:
 
Man erkennt aus dieser Darstellung:
 
*Der Rolloff&ndash;Faktor &nbsp;$r_f = 0$&nbsp; (Rechteck&ndash;Frequenzgang) führt trotz des schmalen Empfangsfilters zu &nbsp;$\sigma_d^2 =K \cdot \sigma_{\rm MF}^2$&nbsp; mit &nbsp;$K  \approx 1.5$, da &nbsp;$|H_{\rm E}(f)|^2$&nbsp; mit wachsendem &nbsp;$f$&nbsp; steil ansteigt. Der Grund für diese Rauschleistungsanhebung ist die Funktion &nbsp;$\rm si^2(\pi f T)$&nbsp; im Nenner, die zur Kompensation des &nbsp;$|H_{\rm S}(f)|^2$&ndash;Abfalls erforderlich ist. <br>
 
*Der Rolloff&ndash;Faktor &nbsp;$r_f = 0$&nbsp; (Rechteck&ndash;Frequenzgang) führt trotz des schmalen Empfangsfilters zu &nbsp;$\sigma_d^2 =K \cdot \sigma_{\rm MF}^2$&nbsp; mit &nbsp;$K  \approx 1.5$, da &nbsp;$|H_{\rm E}(f)|^2$&nbsp; mit wachsendem &nbsp;$f$&nbsp; steil ansteigt. Der Grund für diese Rauschleistungsanhebung ist die Funktion &nbsp;$\rm si^2(\pi f T)$&nbsp; im Nenner, die zur Kompensation des &nbsp;$|H_{\rm S}(f)|^2$&ndash;Abfalls erforderlich ist. <br>
 
* Da die Fläche unter der roten Kurve kleiner ist als die unter der grünen, führt &nbsp;$r_f = 1$&nbsp; trotz dopplelt  doppelt so breitem Spektrum zu einer niedrigeren Rauschleistung: &nbsp;$K \approx 1.23$.&nbsp; Für &nbsp;$r_f \approx 0.8$ ergibt sich noch ein geringfügig besserer Wert. Hierfür erreicht man den bestmöglichen Kompromiss zwischen Bandbreite und Überhöhung.
 
* Da die Fläche unter der roten Kurve kleiner ist als die unter der grünen, führt &nbsp;$r_f = 1$&nbsp; trotz dopplelt  doppelt so breitem Spektrum zu einer niedrigeren Rauschleistung: &nbsp;$K \approx 1.23$.&nbsp; Für &nbsp;$r_f \approx 0.8$ ergibt sich noch ein geringfügig besserer Wert. Hierfür erreicht man den bestmöglichen Kompromiss zwischen Bandbreite und Überhöhung.
 
*Der normierte Detektionsrauscheffektivwert lautet somit für den Rolloff&ndash;Faktor&nbsp; $r_f$:&nbsp; $\sigma_{\rm norm} =\sqrt{K(r_f)/(2 \cdot E_{\rm B}/ N_0)}$. <br>
 
*Der normierte Detektionsrauscheffektivwert lautet somit für den Rolloff&ndash;Faktor&nbsp; $r_f$:&nbsp; $\sigma_{\rm norm} =\sqrt{K(r_f)/(2 \cdot E_{\rm B}/ N_0)}$. <br>
*Auch hier stimmt die ungünstigste Fehlerwahrscheinlichkeit&nbsp; $p_{\rm U} = {\rm Q}\left[ö_{\rm norm}/\sigma_{\rm norm} \right ]$ &nbsp; nit der mittleren Fehlerwahrscheinlichkeit&nbsp; $p_{\rm M}$&nbsp; überein.
+
*Auch hier stimmt die ungünstigste Fehlerwahrscheinlichkeit&nbsp; $p_{\rm U} = {\rm Q}\left[ö_{\rm norm}/\sigma_{\rm norm} \right ]$ &nbsp; exakt mit der mittleren Fehlerwahrscheinlichkeit&nbsp; $p_{\rm M}$&nbsp; überein.
 +
 
 +
 
 +
$\text{Unterschiede bei den Mehrstufensystemen}$
 +
 
 +
Alle Anmerkungen im Abschnitt $2.2$ gelten in gleicher Weise für das &bdquo;Nyquist&ndash;System mit Cosinus-Rolloff-Gesamtfrequenzgang&rdquo;.
 +
 
  
 
===Impulsinterferenzbehaftetes System mit Gauß-Empfangsfilter===
 
===Impulsinterferenzbehaftetes System mit Gauß-Empfangsfilter===
Zeile 98: Zeile 103:
 
[[Datei:Auge_4.png|right|frame|System mit gaußförmigem Empfangsfilter ]]
 
[[Datei:Auge_4.png|right|frame|System mit gaußförmigem Empfangsfilter ]]
  
Wir gehen von dem skizzierten Blockschaltbild aus. Zur quantitativen Berücksichtigung der &nbsp;[[Digitalsignalübertragung/Ursachen_und_Auswirkungen_von_Impulsinterferenzen#Definition_des_Begriffs_.E2.80.9EImpulsinterferenz.E2.80.9D|Impulsinterferenzen]]&nbsp; wird folgende Konfiguration angenommen:
+
Wir gehen vom rechts skizzierten Blockschaltbild aus. Weiter soll gelten:
*Rechteckförmiger NRZ&ndash;Sendegrundimpuls &nbsp;$g_s(t)$&nbsp; mit der Höhe &nbsp;$s_0$&nbsp; und der Dauer &nbsp;$T$,<br>
+
*Rechteckförmiger NRZ&ndash;Sendegrundimpuls &nbsp;$g_s(t)$&nbsp; mit der Höhe &nbsp;$s_0$&nbsp; und der Dauer &nbsp;$T$:
*Gaußförmiges Empfangsfilter mit der Grenzfrequenz &nbsp;$f_{\rm G}$ &nbsp;(''Hinweis:'' &nbsp; In diesem Abschnitt bezeichnen wir die Exponentialfunktion oft auch mit &nbsp;$\rm exp [ . ]$):
+
:$$H_{\rm S}(f) = {\rm si}(\pi f T).$$
:$$H_{\rm E}(f) = H_{\rm G}(f) = {\rm exp}\left [\frac{\pi  \cdot f^2}{(2f_{\rm G})^2} \right ] \hspace{0.2cm} \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ
+
*Gaußförmiges Empfangsfilter mit der Grenzfrequenz &nbsp;$f_{\rm G}$:  
  \hspace{0.2cm}h_{\rm E}(t) = h_{\rm G}(t) = {\rm exp}\left [- \pi  \cdot (2
+
:$$H_{\rm E}(f) = H_{\rm G}(f) = {\rm e}^{-  \pi  \hspace{0.05cm}\cdot \hspace{0.05cm} f^2/(2\hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm G})^2 } \hspace{0.2cm} \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ
  f_{\rm G} t)^2\right ]
+
  \hspace{0.2cm}h_{\rm E}(t) = h_{\rm G}(t) = {\rm e}^{- \pi  \cdot (2\hspace{0.05cm}\cdot \hspace{0.05cm}
 +
  f_{\rm G}\hspace{0.05cm}\cdot \hspace{0.05cm} t)^2}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
*AWGN&ndash;Kanal, das heißt, es gilt $H_{\rm K}(f) = 1 $ und ${\it \Phi}_n(f) = N_0/2$.
 
 
 
[[Datei:Dig_T_3_2_S1_version2.png|center|frame|Blockschaltbild für das Kapitel &bdquo;Fehlerwahrscheinlichkeit bei Impulsinterferenzen&rdquo; ]]
 
  
 
Aufgrund der hier getroffenen Voraussetzungen gilt für den Detektionsgrundimpuls:
 
Aufgrund der hier getroffenen Voraussetzungen gilt für den Detektionsgrundimpuls:
  
:$$g_d(t) = g_s(t) \star h_{\rm G}(t) = 2 f_{\rm G} \cdot s_0 \cdot \int_{t-T/2}^{t+T/2}
+
[[Datei:Auge_5.png|right|frame|Frequenzgang und Impulsantwort des Empfangsfilters ]]
 +
:$$g_d(t) = s_0 \cdot T \cdot \big [h_{\rm S}(t) \star h_{\rm G}(t)\big ] = 2 f_{\rm G} \cdot s_0 \cdot \int_{t-T/2}^{t+T/2}
 
{\rm e}^{- \pi  \hspace{0.05cm}\cdot\hspace{0.05cm} (2 \hspace{0.05cm}\cdot\hspace{0.05cm}
 
{\rm e}^{- \pi  \hspace{0.05cm}\cdot\hspace{0.05cm} (2 \hspace{0.05cm}\cdot\hspace{0.05cm}
 
  f_{\rm G}\hspace{0.05cm}\cdot\hspace{0.05cm} \tau )^2} \,{\rm d} \tau \hspace{0.05cm}.$$
 
  f_{\rm G}\hspace{0.05cm}\cdot\hspace{0.05cm} \tau )^2} \,{\rm d} \tau \hspace{0.05cm}.$$
  
Die Integration führt zu folgenden äquivalenten Ergebnissen:
+
Die Integration führt zum Ergebnis:
  
 
:$$g_d(t) =  s_0 \cdot \big [ {\rm Q} \left (  2 \cdot \sqrt {2 \pi}
 
:$$g_d(t) =  s_0 \cdot \big [ {\rm Q} \left (  2 \cdot \sqrt {2 \pi}
Zeile 122: Zeile 125:
 
2 \cdot \sqrt {2 \pi} \cdot f_{\rm G}\cdot ( t + {T}/{2}
 
2 \cdot \sqrt {2 \pi} \cdot f_{\rm G}\cdot ( t + {T}/{2}
 
)\right ) \big ],$$
 
)\right ) \big ],$$
:$$g_d(t) =  s_0 \cdot\big [ {\rm erfc} \left (  2 \cdot
 
\sqrt {\pi} \cdot f_{\rm G}\cdot  ( t - {T}/{2})\right )- {\rm
 
erfc} \left (  2 \cdot \sqrt {\pi} \cdot f_{\rm G}\cdot ( t +
 
{T}/{2} )\right ) \big ]\hspace{0.05cm}.$$
 
  
Hierbei sind zwei Varianten der komplementären Gaußschen Fehlerfunktion verwendet, nämlich
+
unter Verwendung der komplementären Gaußschen Fehlerfunktion  
  
 
:$${\rm Q} (x) = \frac{\rm 1}{\sqrt{\rm 2\pi}}\int_{\it
 
:$${\rm Q} (x) = \frac{\rm 1}{\sqrt{\rm 2\pi}}\int_{\it
 
x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d {\it u}
 
x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d {\it u}
\hspace{0.05cm},\hspace{0.5cm}
 
{\rm erfc} (\it x) = \frac{\rm 2}{\sqrt{\rm
 
\pi}}\int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}}\,d \it u
 
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
 +
 +
[[Datei:Auge_6.png|center|frame|Blockschaltbild für das Kapitel &bdquo;Fehlerwahrscheinlichkeit bei Impulsinterferenzen&rdquo; ]]
  
 
Das Modul &nbsp;[[Applets:Komplementäre_Gaußsche_Fehlerfunktionen_(neues_Applet)|Komplementäre Gaußsche Fehlerfunktionen]]&nbsp; liefert die Zahlenwerte von &nbsp;${\rm Q} (x)$&nbsp; und &nbsp;$0.5 \cdot {\rm erfc} (x)$.<br>
 
Das Modul &nbsp;[[Applets:Komplementäre_Gaußsche_Fehlerfunktionen_(neues_Applet)|Komplementäre Gaußsche Fehlerfunktionen]]&nbsp; liefert die Zahlenwerte von &nbsp;${\rm Q} (x)$&nbsp; und &nbsp;$0.5 \cdot {\rm erfc} (x)$.<br>

Version vom 30. Oktober 2019, 16:15 Uhr

Applet in neuem Tab öffnen

Programmbeschreibung


Das Applet verdeutlicht die Augendiagramme für

  • verschiedene Codierungen  (binär–redundanzfrei,  quaternär–redundanzfrei,  pseudo–ternär:  AMI und Duobinär)  sowie
  • verschiedene Empfangskonzepte  (Matched–Filter–Empfänger,  CRO–Nyquistsystem,  gaußförmiges Empfangsfilter).


Das letzte Empfängerkonzept führt zu Impulsinterferenzen, das heißt:  Benachbarte Symbole beeinträchtigen sich bei der Symbolentscheidung gegenseitig.

Solche Impulsinterferenzen und deren Einfluss auf die Fehlerwahrscheinlichkeit lassen sich durch das Augendiagramm sehr einfach erfassen und quantifizieren.  Aber auch für die beiden anderen (impulsinterferenzfreien) Systemen lassen sich anhand der Grafiken wichtige Erkenntnisse gewinnen.

Ausgegeben wird zudem die ungünstigste („worst case”) Fehlerwahrscheinlichkeit  $p_{\rm U} = {\rm Q}\left[ö_{\rm norm}/\sigma_{\rm norm} \right ]$, die bei den binären Nyquistsystemen identisch mit der mittleren Fehlerwahrscheinlichkeit  $p_{\rm M}$  ist und für die anderen Systemvarianten eine geeignete obere Schranke darstellt:  $p_{\rm U} \ge p_{\rm M}$.

In der  $p_{\rm U}$–Gleichung bedeuten:

  • ${\rm Q}(x)$  ist die  Komplementäre Gaußsche Fehlerfunktion.
  • Die normierte Augenöffnung kann Werte zwischen  $0 \le ö_{\rm norm} \le 1$  annehmen;  der Maximalwert gilt für die binären Nyquistsysteme.
  • Der normierte Detektionsrauscheffektivwert  $\sigma_{\rm norm}$  hängt vom einstellbaren Parameter  $10 \cdot \lg \ E_{\rm B}/N_0$  ab, aber auch von der Codierung und vom Empfängerkonzept.

Theoretischer Hintergrund


Systembeschreibung und Voraussetzungen

Für diese Applet gilt das unten skizzierte Modell der binären Basisbandübertragung. Zunächst gelten folgende Voraussetzungen:

  • Die Übertragung erfolgt binär, bipolar und redundanzfrei mit der Bitrate  $R_{\rm B} = 1/T$, wobei  $T$  die Symboldauer angibt.
  • Das Sendesignal  $s(t)$  ist zu allen Zeiten  $t$  gleich  $ \pm s_0$   ⇒   Der Sendegrundimpuls  $g_s(t)$  ist NRZ–rechteckförmig mit Amplitude  $s_0$  und Impulsdauer  $T$.
  • Das Empfangssignal sei  $r(t) = s(t) + n(t)$. Der AWGN–Term  $n(t)$  ist durch die (einseitige) Rauschleistungsdichte  $N_0$  gekennzeichnet.
  • Der Kanalfrequenzgang sei bestmöglich (ideal) und muss nicht weiter berücksichtigt werden:  $H_{\rm K}(f) =1$.
  • Das Empfangsfilter mit der Impulsantwort  $h_{\rm E}(t)$  formt aus  $r(t)$  das Detektionssignal  $d(t) = d_{\rm S}(t)+ d_{\rm N}(t)$.
  • Dieses wird vom Entscheider mit der Entscheiderschwelle  $E = 0$  zu den äquidistanten Zeiten  $\nu \cdot T$  ausgewertet.
  • Es wird zwischen dem Signalanteil  $d_{\rm S}(t)$  – herrührend von  $s(t)$  – und dem Rauschanteil  $d_{\rm N}(t)$  unterschieden, dessen Ursache das AWGN–Rauschen  $n(t)$  ist.
  • $d_{\rm S}(t)$  kann als gewichtete Summe von gewichteten und jeweils um  $T$  verschobenen Detektionsgrundimpulsen  $g_d(t) = g_s(t) \star h_{\rm E}(t)$  dargestellt werden.
  • Zur Berechnung der (mittleren) Fehlerwahrscheinlichkeit benötigt man ferner die Varianz  $\sigma_d^2 = {\rm E}\big[d_{\rm N}(t)^2\big]$  des Detektionsrauschanteils (bei AWGN–Rauschen).


Optimales impulsinterferenzfreies System – Matched-Filter-Empfänger

Die minimale Fehlerwahrscheinlichkeit ergibt sich für den hier betrachteten Fall  $H_{\rm K}(f) =1$  mit dem Matched-Filter-Empfänger, also dann, wenn  $h_{\rm E}(t)$  formgleich mit dem NRZ–Sendegrundimpuls  $g_s(t)$  ist. Die rechteckförmige Impulsantwort  $h_{\rm E}(t)$  hat dann die Dauer  $T_{\rm E} = T$  und die Höhe  $1/T$.

Binäres Basisbandübertragungssystem;  die Skizze für  $h_{\rm E}(t)$  gilt nur für den Matched-Filter-Empfänger
  • Der Detektionsgrundimpuls  $g_d(t)$  ist dreieckförmig mit dem Maximum  $s_0$  bei  $t=0$ ; es gilt  $g_d(t)=0$  für  $|t| \ge T$. Aufgrund dieser engen zeitlichen Begrenzung kommt es nicht zu Impulsinterferenzen   ⇒   $d_{\rm S}(t = \nu \cdot T) = \pm s_0$   ⇒   der Abstand aller Nutzabtastwerte von der Schwelle  $E = 0$  ist stets  $|d_{\rm S}(t = \nu \cdot T)| = s_0$.
  • Die Detektionsrauschleistung ist bei dieser Konstellation:
$$\sigma_d^2 = N_0/2 \cdot \int_{-\infty}^{+\infty} |h_{\rm E}(t)|^2 {\rm d}t = N_0/(2T)=\sigma_{\rm MF}^2.$$
$$p_{\rm M} = {\rm Q}\left[\sqrt{{s_0^2}/{\sigma_d^2}}\right ] = {\rm Q}\left[\sqrt{{2 \cdot s_0^2 \cdot T}/{N_0}}\right ] = {\rm Q}\left[\sqrt{2 \cdot E_{\rm B}/ N_0}\right ].$$

Das Applet berücksichtigt diesen Fall mit den Einstellungen „nach Spalt–Tiefpass” sowie  $T_{\rm E}/T = 1$. Die ausgegebenen Werte sind im Hinblick auf spätere Konstellationen

  • die normierte Augenöffnung  $ö_{\rm norm} =1$   ⇒   dies ist der maximal mögliche Wert,
  • der normierte Detektionsrauscheffektivwert  $\sigma_{\rm norm} =\sqrt{1/(2 \cdot E_{\rm B}/ N_0)}$  sowie
  • die ungünstigste Fehlerwahrscheinlichkeit  $p_{\rm U} = {\rm Q}\left[ö_{\rm norm}/\sigma_{\rm norm} \right ]$   ⇒   bei impulsinterferenzfreien Systemen stimmen  $p_{\rm M}$  und   $p_{\rm U}$  überein.


$\text{Unterschiede bei den Mehrstufensystemen}$

  • Es gibt  $M\hspace{-0.1cm}-\hspace{-0.1cm}1$ Augen und eben so viele Schwellen   ⇒   $ö_{\rm norm} =1/(M\hspace{-0.1cm}-\hspace{-0.1cm}1)$  ⇒   $M=4$:  Quaternärsystem,  $M=3$:  AMI-Code, Duobinärcode.
  • Der normierte Detektionsrauscheffektivwert  $\sigma_{\rm norm}$  ist beim Quaternärsystem um den Faktor  $\sqrt{5/9} \approx 0.745$  als beim Binärsystem.
  • Beim AMI-Code und dem Duobinärcode hat dieser Verbesserungsfaktor, der auf das kleinere  $E_{\rm B}/ N_0$  zurückgeht, den Wert  $\sqrt{1/2} \approx 0.707$.


Nyquist–System mit Cosinus-Rolloff-Gesamtfrequenzgang

Cosinus-Rolloff-Gesamtfrequenzgang

Wir setzen voraus, dass der Gesamtfrequenzgang zwischen der diracförmigen Quelle bis zum Entscheider den Verlauf eines  Cosinus-Rolloff-Tiefpasses  hat   ⇒   $H_{\rm S}(f)\cdot H_{\rm E}(f) = H_{\rm CRO}(f)$ .

  • Der Flankenabfall von  $H_{\rm CRO}(f)$  ist punktsymmetrisch um die Nyquistfrequenz  $1/(2T)$. Je größer der Rolloff-Faktor  $r_f$  ist, um so flacher verläuft ist die Nyquistflanke.
  • Der Detektionsgrundimpuls  $g_d(t) = s_0 \cdot T \cdot {\mathcal F}^{-1}\big[H_{\rm CRO}(f)\big]$  hat unabhängig von  $r_f$  zu den Zeiten  $\nu \cdot T$  Nullstellen.  Weitere Nulldurchgänge gibt es abhängig von  $r_f$.  Für den Impuls gilt:
$$g_d(t) = s_0 \hspace{-0.05cm}\cdot\hspace{-0.05cm} {\rm si}(\pi \hspace{-0.05cm}\cdot\hspace{-0.05cm} t/T )\hspace{-0.05cm}\cdot\hspace{-0.05cm}\frac {\cos(\pi \cdot r_{\hspace{-0.05cm}f} \cdot t/T )}{1 - (2 \cdot r_f \cdot t/T)^2}.$$
  • Daraus folgt:  Wie beim Matched-Filter-Empfänger ist das Auge maximal geöffnet   ⇒   $ö_{\rm norm} =1$.


Zur Optimierung des Rolloff-Faktors

Betrachten wir nun die Rauschleistung vor dem Entscheider. Für diese gilt:

$$\sigma_d^2 = N_0/2 \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 {\rm d}f = N_0/2 \cdot \int_{-\infty}^{+\infty} \frac{|H_{\rm CRO}(f)|^2}{|H_{\rm S}(f)|^2} {\rm d}f.$$

Die Grafik zeigt die Leistungsübertragungsfunktion  $|H_{\rm E}(f)|^2$  für drei verschiedene Rolloff–Faktoren

  • $r_f=0$   ⇒   grüne Kurve,
  • $r_f=1$   ⇒   rote Kurve,
  • $r_f=0.8$   ⇒   blaue Kurve.


Die Flächen unter diesen Kurven sind jeweils ein Maß für die Rauschleistung  $\sigma_d^2$  vor dem Entscheider. Das grau hinterlegte Rechteck markiert den kleinsten Wert  $\sigma_d^2 =\sigma_{\rm MF}^2$, der sich mit dem Matched-Filter-Empfänger ergibt.
Man erkennt aus dieser Darstellung:

  • Der Rolloff–Faktor  $r_f = 0$  (Rechteck–Frequenzgang) führt trotz des schmalen Empfangsfilters zu  $\sigma_d^2 =K \cdot \sigma_{\rm MF}^2$  mit  $K \approx 1.5$, da  $|H_{\rm E}(f)|^2$  mit wachsendem  $f$  steil ansteigt. Der Grund für diese Rauschleistungsanhebung ist die Funktion  $\rm si^2(\pi f T)$  im Nenner, die zur Kompensation des  $|H_{\rm S}(f)|^2$–Abfalls erforderlich ist.
  • Da die Fläche unter der roten Kurve kleiner ist als die unter der grünen, führt  $r_f = 1$  trotz dopplelt doppelt so breitem Spektrum zu einer niedrigeren Rauschleistung:  $K \approx 1.23$.  Für  $r_f \approx 0.8$ ergibt sich noch ein geringfügig besserer Wert. Hierfür erreicht man den bestmöglichen Kompromiss zwischen Bandbreite und Überhöhung.
  • Der normierte Detektionsrauscheffektivwert lautet somit für den Rolloff–Faktor  $r_f$:  $\sigma_{\rm norm} =\sqrt{K(r_f)/(2 \cdot E_{\rm B}/ N_0)}$.
  • Auch hier stimmt die ungünstigste Fehlerwahrscheinlichkeit  $p_{\rm U} = {\rm Q}\left[ö_{\rm norm}/\sigma_{\rm norm} \right ]$   exakt mit der mittleren Fehlerwahrscheinlichkeit  $p_{\rm M}$  überein.


$\text{Unterschiede bei den Mehrstufensystemen}$

Alle Anmerkungen im Abschnitt $2.2$ gelten in gleicher Weise für das „Nyquist–System mit Cosinus-Rolloff-Gesamtfrequenzgang”.


Impulsinterferenzbehaftetes System mit Gauß-Empfangsfilter

System mit gaußförmigem Empfangsfilter

Wir gehen vom rechts skizzierten Blockschaltbild aus. Weiter soll gelten:

  • Rechteckförmiger NRZ–Sendegrundimpuls  $g_s(t)$  mit der Höhe  $s_0$  und der Dauer  $T$:
$$H_{\rm S}(f) = {\rm si}(\pi f T).$$
  • Gaußförmiges Empfangsfilter mit der Grenzfrequenz  $f_{\rm G}$:
$$H_{\rm E}(f) = H_{\rm G}(f) = {\rm e}^{- \pi \hspace{0.05cm}\cdot \hspace{0.05cm} f^2/(2\hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm G})^2 } \hspace{0.2cm} \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ \hspace{0.2cm}h_{\rm E}(t) = h_{\rm G}(t) = {\rm e}^{- \pi \cdot (2\hspace{0.05cm}\cdot \hspace{0.05cm} f_{\rm G}\hspace{0.05cm}\cdot \hspace{0.05cm} t)^2} \hspace{0.05cm}.$$

Aufgrund der hier getroffenen Voraussetzungen gilt für den Detektionsgrundimpuls:

Frequenzgang und Impulsantwort des Empfangsfilters
$$g_d(t) = s_0 \cdot T \cdot \big [h_{\rm S}(t) \star h_{\rm G}(t)\big ] = 2 f_{\rm G} \cdot s_0 \cdot \int_{t-T/2}^{t+T/2} {\rm e}^{- \pi \hspace{0.05cm}\cdot\hspace{0.05cm} (2 \hspace{0.05cm}\cdot\hspace{0.05cm} f_{\rm G}\hspace{0.05cm}\cdot\hspace{0.05cm} \tau )^2} \,{\rm d} \tau \hspace{0.05cm}.$$

Die Integration führt zum Ergebnis:

$$g_d(t) = s_0 \cdot \big [ {\rm Q} \left ( 2 \cdot \sqrt {2 \pi} \cdot f_{\rm G}\cdot ( t - {T}/{2})\right )- {\rm Q} \left ( 2 \cdot \sqrt {2 \pi} \cdot f_{\rm G}\cdot ( t + {T}/{2} )\right ) \big ],$$

unter Verwendung der komplementären Gaußschen Fehlerfunktion

$${\rm Q} (x) = \frac{\rm 1}{\sqrt{\rm 2\pi}}\int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d {\it u} \hspace{0.05cm}.$$
Blockschaltbild für das Kapitel „Fehlerwahrscheinlichkeit bei Impulsinterferenzen”

Das Modul  Komplementäre Gaußsche Fehlerfunktionen  liefert die Zahlenwerte von  ${\rm Q} (x)$  und  $0.5 \cdot {\rm erfc} (x)$.


Die Rauschleistung am Ausgang des gaußförmigen Empfangsfilters  $H_{\rm G}(f)$  ist gleich

$$\sigma_d^2 = \frac{N_0}{2} \cdot \int_{-\infty}^{+\infty} |H_{\rm G}(f)|^2 \,{\rm d} f = \frac{N_0\cdot f_{\rm G}}{\sqrt{2}}\hspace{0.05cm}.$$

Aus diesen beiden Gleichungen erkennt man bereits:

  • Je kleiner die Grenzfrequenz  $f_{\rm G}$  des Gauß–Tiefpasses ist, desto kleiner ist der Rauscheffektivwert  $\sigma_d$  und umso besser ist demzufolge das Rauschverhalten.
  • Eine kleine Grenzfrequenz führt aber zu einer starken Abweichung des Detektionsgrundimpulses  $g_d(t)$  von der Rechteckform und damit zu Impulsinterferenzen.




Mit der Impulsantwort  $h_{\rm E}(t)$  als die Fourierrücktransformierte des Frequenzgangs  $H_{\rm E}(f)$  gilt:

$$d_{\rm S}(t) = s(t) \star h_{\rm E} (t)\hspace{0.05cm},\hspace{0.5cm}d_{\rm N}(t) = n(t) \star h_{\rm E} (t)\hspace{0.05cm}.$$
  • Das weiße Rauschen  $n(t)$  am Empfängereingang besitzt theoretisch eine unendliche große Leistung (praktisch:   eine unnötig große Leistung). Durch den Tiefpass mit dem Frequenzgang  $H_{\rm E}(f)$  wird diese auf den quadratischen Erwartungswert des Detektionsstörsignals („Varianz”) begrenzt:
\[\sigma_d^2 = {\rm E}\big[d_{\rm N}(t)^2\big] \hspace{0.05cm}.\]
  • Allerdings ist zu beachten, dass der Tiefpass  $H_{\rm E}(f)$  nicht nur das Störsignal  $n(t)$, sondern auch das Nutzsignal  $s(t)$  verändert. Dadurch werden die einzelnen Sendeimpulse verbreitert und in ihrer Amplitude vermindert. Nach den Voraussetzungen für dieses Kapitel muss sichergestellt werden, dass es nicht zu  Impulsinterferenzen  kommt.
  • Aufgabe des Entscheiders ist es, aus dem wert– und zeitkontinuierlichen Detektionssignal  $d(t)$  das wert– und zeitdiskrete Sinkensignal  $v(t)$  zu erzeugen, das die Nachricht des Sendesignals  $s(t)$  „möglichst gut” wiedergeben sollte.

wird  $($Entscheiderschwelle  $E = 0)$.

ist optimal an den Sendegrundimpuls  $g_s(t)$  angepasst, so dass Impulsinterferenzen keine Rolle spielen. Impulsinterferenzbehaftete Systeme und die Entzerrungsverfahren werden im dritten Hauptkapitel  dieses Buches  behandelt.

  • Die Parameter des (binären) Schwellenwertentscheiders sind optimal gewählt. Aufgrund der bipolaren Signalisierung ist die optimale Entscheiderschwelle  $E = 0$  und wegen der symmetrischen Impulsform liegen die optimalen Detektionszeitpunkte bei  $\nu \cdot T$.
  • Das Empfangsfilter mit dem Frequenzgang  $H_{\rm E}(f)$,  Impulsantwort  $h_{\rm E}(t) = {\rm F}^{-1}\big[H_{\rm E}(f)\big])$  ist optimal an den Sendegrundimpuls  $g_s(t)$  angepasst, so dass Impulsinterferenzen keine Rolle spielen.


Versuchsdurchführung


Aufgaben 2D-Gauss.png

Noch überarbeiten

  • Wählen Sie zunächst die Nummer  (1, ...)  der zu bearbeitenden Aufgabe.
  • Eine Aufgabenbeschreibung wird angezeigt. Die Parameterwerte sind angepasst.
  • Lösung nach Drücken von „Musterlösung”.
  • $M=2$  steht für „Binärcode” und  $M=4$  für „Quaternärärcode”.
  • „Gauß” steht für bdquo;nach Gauß&dash;Empfangsfilter”.
  • „Rechteck” steht für „Empfangsfilter mit rechteckförmiger Impulsantwort”.


Die Nummer 0 entspricht einem „Reset”:

  • Gleiche Einstellung wie beim Programmstart.
  • Ausgabe eines „Reset–Textes” mit weiteren Erläuterungen zum Applet.

Bis hierher

(1)  Verdeutlichen Sie sich die Entstehung des Augendiagramms für  $M=2 \text{, nach Gauß–TP, }f_{\rm G}/R_{\rm B} = 0.48$. Wählen Sie hierfür „Einzelschritt”.

  •  Dieses Augendiagramm ergibt sich, wenn man das Detektionsnutzsignal  $d_{\rm S}(t)$  in Stücke der Dauer  $2T$  unterteilt und diese Teile übereinander zeichnet.
  •  In  $d_{\rm S}(t)$  müssen alle „Fünf–Bit–Kombinationen” enthalten sein   ⇒   mindestens  $2^5 = 32$  Teilstücke   ⇒   maximal  $32$  unterscheidbare Linien.
  •  Das Diagramm bewertet das Einschwingverhalten des Nutzsignals. Je größer die (normierte) Augenöffnung ist, desto weniger Impulsinterferenzen gibt es.

(2)  Gleiche Einstellung wie in  (1). Zusätzlich gilt  $10 \cdot \lg \ E_{\rm B}/N_0 = 10 \ {\rm dB}$. Bewerten Sie die ausgegebenen Größen  $ö_{\rm norm}$,  $\sigma_{\rm norm}$  und  $p_{\rm U}$.

  •  $ö_{\rm norm}= 0.542$  zeigt an, dass die Symboldetektion durch benachbarte Impulse beeinträchtigt wird. Für impulsinterferenzfreie Binärsysteme gilt  $ö_{\rm norm}= 1$.
  •  Die Augenöffnung kennzeichnet nur das Nutzsignal. Der Rauscheinfluss wird durch  $\sigma_{\rm norm}= 0.184$  erfasst. Dieser Wert sollte möglichst klein sein.
  •  Die Fehlerwahrscheinlichkeit  $p_{\rm U} = {\rm Q}(ö_{\rm norm}/\sigma_{\rm norm}\approx 0.16\%)$  bezieht sich allein auf die „ungünstigsten Folgen”, bei „Gauß” z. B.  $-1, -1, +1, -1, -1$.
  •  Andere Folgen werden weniger verfälscht   ⇒   die mittlere Fehlerwahrscheinlichkeit  $p_{\rm M}$  ist (meist) deutlich kleiner als $p_{\rm U}$  (beschreibt den „Worst Case”).

(3)  Die letzten Einstellungen bleiben. Mit welchem  $f_{\rm G}/R_{\rm B}$–Wert wird die ungünstigste Fehlerwahrscheinlichkeit  $p_{\rm U}$  minimal? Auch das Augendiagramm betrachten.

  •  Der minimale Wert  $p_{\rm U, \ min} \approx 0.65 \cdot 10^{-4}$  ergibt sich für  $f_{\rm G}/R_{\rm B} \approx 0.8$, und zwar nahezu unabhängig vom eingestellten  $10 \cdot \lg \ E_{\rm B}/N_0$.
  •  Der normierte Rauscheffektivwert steigt zwar gegenüber dem Versuch  (2)  von  $\sigma_{\rm norm}= 0.168$  auf  $\sigma_{\rm norm}= 0.238$  an.
  •  Dies wird aber durch die größere Augenöffnung  $ö_{\rm norm}= 0.91$  gegenüber  $ö_{\rm norm}= 0.368$  mehr als ausgeglichen  $($Vergrößerungsfaktor $\approx 2.5)$.

(4)  Für welche Grenzfrequenzen  $(f_{\rm G}/R_{\rm B})$  ergibt sich eine völlig unzureichende Fehlerwahrscheinlichkeit  $p_{\rm U} \approx 50\%$ ? Auch das Augendiagramm betrachten.

  •  Für  $f_{\rm G}/R_{\rm B}<0.28$  ergibt sich ein geschlossenes Auge  $(ö_{\rm norm}= 0)$  und damit eine worst–case Fehlerwahrscheinlichkeit in der Größenordnung von  $50\%$.
  •  Die Entscheidung über ungünstig eingerahmte Bit muss dann zufällig erfolgen, auch bei guten Rauschverhältnissen  $(10 \cdot \lg \ E_{\rm B}/N_0 = 16 \ {\rm dB})$.

(5)  Wählen Sie nun die Einstellungen  $M=2 \text{, nach Spalt–TP, }T_{\rm E}/T = 1$,  $10 \cdot \lg \ E_{\rm B}/N_0 = 10 \ {\rm dB}$  sowie „Auge – Gesamt”. Interpretieren Sie die Ergebnisse.

  •  Der Detektionsgrundimpuls ist dreieckförmig und das Auge vollständig geöffnet. Die normierte Augenöffnung ist demzufolge  $ö_{\rm norm}= 1.$
  •  Aus $10 \cdot \lg \ E_{\rm B}/N_0 = 10 \ {\rm dB}$  folgt $E_{\rm B}/N_0 = 10$   ⇒   $\sigma_{\rm norm} =\sqrt{1/(2\cdot E_{\rm B}/ N_0)} = \sqrt{0.05} \approx 0.224 $  ⇒   $p_{\rm U} = {\rm Q}(4.47) \approx 3.9 \cdot 10^{-6}.$
  •  Dieser Wert ist um den Faktor  $15$  besser als in (3).   Aber:  Bei  $H_{\rm K}(f) \ne 1$  ist der Matched-Filter-Empfänger so nicht anwendbar.

(6)  Gleiche Einstellung wie in  (5). Variieren Sie nun  $T_{\rm E}/T$  im Bereich zwischen  $0.5$  und  $1.5$. Interpretieren Sie die Ergebnisse.

  •  Für  $T_{\rm E}/T < 1$  gilt weiterhin  $ö_{\rm norm}= 1$. Aber  $\sigma_{\rm norm}$  wird größer, zum Beispiel  $\sigma_{\rm norm} = 0.316$  für  $T_{\rm E}/T =0.5$   ⇒   das Filter ist zu breitbandig!
  •  Für  $T_{\rm E}/T > 1$  ergibt sich im Vergleich zu  (5)  ein kleineres  $\sigma_{\rm norm}$. Aber Das Auge ist nicht mehr geöffnet.  $T_{\rm E}/T =1.25$:  $ö_{\rm norm}= g_0 - 2 \cdot g_1 = 0.6$.

(7)  Wählen Sie nun die Einstellungen  $M=2 \text{, CRO–Nyquist, }r_f = 0.2$  sowie „Auge – Gesamt”. Interpretieren Sie das Augendiagramm, auch für andere  $r_f$–Werte.

  •  Im Gegensatz zu  (6)  ist hier der Grundimpuls für  $|t|>T$  nicht Null, aber  $g_d(t)$  hat äquidistane Nulldurchgänge:  $g_0 = 1, \ g_1 = g_2 = 0$   ⇒   Nyquistsystem.
  •  Alle  $32$  Augenlinien gehen bei  $t=0$  durch nur zwei Punkte. Die vertikale Augenöffnung ist für alle  $r_f$  maximal   ⇒    $ö_{\rm norm}= 1$.
  •  Dagegen nimmt die horizontale Augenöffnung mit  $r_f$  zu und ist  $r_f = 1$  maximal gleich  $T$   ⇒   Phasenjitter hat in diesem Fall nur geringen Einfluss.

(8)  Gleiche Einstellung wie in  (7). Variieren Sie nun  $r_f$  im Hinblick auf minimale Fehlerwahrscheinlichkeit. Interpretieren Sie die Ergebnisse.

  •  $ö_{\rm norm}= 1$  gilt stets. Dagegen zeigt  $\sigma_{\rm norm}$  eine leichte Abhängigkeit von  $r_f$.  DasMinimum  $\sigma_{\rm norm}=0.236$  ergibt sich für  $r_f = 0.9$   ⇒   $p_{\rm U} \approx 1.1 \cdot 10^{-5}.$
  •  Gegenüber dem bestmöglichen Fall gemäß  (7)  „Matched–Filter–Empfänger” ist  $p_{\rm U}$  dreimal so groß, obwohl  $\sigma_{\rm norm}$  nur um ca.  $5\%$  größer ist.
  •  Der größere  $\sigma_{\rm norm}$–Wert geht auf die Überhöhung des Rausch–LDS zurück, um den Abfall durch den Sender–Frequenzgang  $H_{\rm S}(f)$  auszugleichen.

(9)  Wählen Sie die Einstellungen  $M=4 \text{, nach Spalt–TP, }T_{\rm E}/T = 1$,  $10 \cdot \lg \ E_{\rm B}/N_0 = 10 \ {\rm dB}$  und  $12 \ {\rm dB}$.  Interpretieren Sie die Ergebnisse.

  •  Es gibt nun drei Augenöffnungen. Gegenüber  (5)  ist also  $ö_{\rm norm}$  um den Faktor  $3$  kleiner,  $\sigma_{\rm norm}$  dagegen nur um etwa den Faktor  $\sqrt{5/9)} \approx 0.75$.
  •  Für  $10 \cdot \lg \ E_{\rm B}/N_0 = 10 \ {\rm dB}$  ergibt sich nun die Fehlerwahrscheinlichkeit  $p_{\rm U} \approx 2.27\%$  und für  $10 \cdot \lg \ E_{\rm B}/N_0 = 10 \ {\rm dB}$  nur mehr  $0.59\%$.

(10)  Für die restlichen Aufgaben gelte stets  $10 \cdot \lg \ E_{\rm B}/N_0 = 12 \ {\rm dB}$. Betrachten Sie das Augendiagramm für  $M=4 \text{, CRO–Nyquist, }r_f = 0.5$.

  •  In  $d_{\rm S}(t)$  müssen alle „Fünf–Symbol–Kombinationen” enthalten sein   ⇒   mindestens  $4^5 = 1024$  Teilstücke   ⇒   maximal  $1024$  unterscheidbare Linien.
  •  Alle  $1024$  Augenlinien gehen bei  $t=0$  durch nur vier Punkte:  $ö_{\rm norm}= 0.333$. $\sigma_{\rm norm} = 0.143$  ist etwas größer als in  (9)  ⇒   ebenso  $p_{\rm U} \approx 1\%$.

(11)  Wählen Sie die Einstellungen  $M=4 \text{, nach Gauß–TP, }f_{\rm G}/R_{\rm B} = 0.48$  und variieren Sie  $f_{\rm G}/R_{\rm B}$.   Interpretieren Sie die Ergebnisse.

  •  $f_{\rm G}/R_{\rm B}=0.48$  führt zur minimalen Fehlerwahrscheinlichkeit  $p_{\rm U} \approx 0.21\%$.  Kompromiss zwischen  $ö_{\rm norm}= 0.312$  und  $\sigma_{\rm norm}= 0.109$.
  •  Bei zu kleiner Grenzfrequenz dominieren die Impulsinterferenzen.  Beispiel:  $f_{\rm G}/R_{\rm B}= 0.3$:  $ö_{\rm norm}= 0.157; $ $\sigma_{\rm norm}= 0.086$  ⇒    $p_{\rm U} \approx 3.5\%$.
  •  Bei zu großer Grenzfrequenz dominiert das Rauschen.  Beispiel:  $f_{\rm G}/R_{\rm B}= 1.0$:  $ö_{\rm norm}= 0.333; $ $\sigma_{\rm norm}= 0.157$  ⇒    $p_{\rm U} \approx 1.7\%$.
  •  Bitte beachten Sie:  Bei Quaternärcodierung ist es günstiger, Impulsinterferenzen zuzulassen.

(12)  Welche Unterschiede zeigt das Auge für  $M=3 \text{ (AMI-Code), nach Gauß–TP, }f_{\rm G}/R_{\rm B} = 0.48$  gegenüber dem vergleichbaren Binärsystem? Interpretation.

  •  Der Detektionsgrundimpuls  $g_d(t)$  ist in beiden Fällen gleich. Die Abtastwerte sind jeweils  $g_0 = 0.771, \ g_1 = 0.114$.
  •  Beim AMI–Code gibt es zwei Augenöffnungen mit je  $ö_{\rm norm}= 1/2 \cdot (g_0 -2 \cdot g_1) = 0.214$.  Beim Binärcode:  $ö_{\rm norm}= g_0 -2 \cdot g_1 = 0.543$.
  •  Die AMI–Folge besteht zu 50% aus Nullen. Die Symbole  $+1$  und  $-1$  wechseln sich ab   ⇒   es gibt keine lange  $+1$–Folge und keine lange  $-1$–Folge.
  •  Darin liegt der einzige Vorteil des AMI–Codes:  Dieser kann auch bei einem gleichsignalfreien Kanal   ⇒   $H_{\rm K}(f= 0)=0$  angewendet werden.

(13)  Gleiche Einstellung wie in  (12), zudem  $10 \cdot \lg \ E_{\rm B}/N_0 = 12 \ {\rm dB}$. Analysieren Sie die Fehlerwahrscheinlichkeit des AMI–Codes.

  •  Trotz kleinerem  $\sigma_{\rm norm} = 0.103$  hat der AMI–Code eine höhere Fehlerwahrscheinlichkeit  $p_{\rm U} \approx 2\%$  als der Binärcode:  $\sigma_{\rm norm} = 0.146, \ p_{\rm U} \approx \cdot 10^{-4}.$
  •  Für  $f_{\rm G}/R_{\rm B}<0.34$  ergibt sich ein geschlossenes Auge  $(ö_{\rm norm}= 0)$  ⇒    $p_{\rm U} =50\%$. Beim Binärcode:  Für  $f_{\rm G}/R_{\rm B}>0.34$  ist das Auge geöffnet.

(14)  Welche Unterschiede zeigt das Auge für  $M=3 \text{ (Duobinärcode), nach Gauß–TP, }f_{\rm G}/R_{\rm B} = 0.48$  gegenüber dem vergleichbaren Binärsystem?

  •  Redundanzfreier Binärcode:  $ö_{\rm norm}= 0.096, \ \sigma_{\rm norm} = 0.116 \ p_{\rm U} \approx 20\% $       Duobinärcode:  $ö_{\rm norm}= 0.167, \ \sigma_{\rm norm} = 0.082 \ p_{\rm U} \approx 2\% $.
  • Insbesondere bei kleinem  $f_{\rm G}/R_{\rm B}$  liefert der Duobinärcode gute Ergebnisse, da die Übergänge von  $+1$  nach  $-1$  (und umgekehrt) im Auge fehlen.
  • Selbst mit  $f_{\rm G}/R_{\rm B}=0.2$  ist das Auge noch geöffnet. Im Gegensatz zum AMI–Code  ist aber „Duobinär” bei gleichsignalfreiem Kanal nicht anwendbar.

Zur Handhabung des Applets


Anleitung DFT endgültig.png

    (A)     Zeitbereich (Eingabe- und Ergebnisfeld)

    (B)     (A)–Darstellung numerisch, grafisch, Betrag

    (C)     Frequenzbereich (Eingabe- und Ergebnisfeld)

    (D)     (C)–Darstellung numerisch, grafisch, Betrag

    (E)     Auswahl: DFT  $(t \to f)$  oder IDFT  $(f \to t)$

    (F)     Vorgegebene  $d(\nu)$–Belegungen (falls DFT), oder

                    Vorgegebene  $D(\mu)$–Belegungen (falls IDFT)

    (G)     Eingabefeld auf Null setzen

    (H)     Eingabefeld zyklisch nach unten (bzw. oben) verschieben

    ( I )     Bereich für die Versuchsdurchführung:   Aufgabenauwahl

    (J)     Bereich für die Versuchsdurchführung:   Aufgabenstellung

    (K)     Bereich für die Versuchsdurchführung:   Musterlösung einblenden

  • Vorgegebene  $d(\nu)$–Belegungen (für DFT):
(a)  entsprechend Zahlenfeld,  (b)  Gleichsignal,  (c)  Komplexe Exponentialfunktion der Zeit,  (d)  Harmonische Schwingung  $($Phase  $\varphi = 45^\circ)$,
(e)  Cosinussignal (eine Periode),  (f)  Sinussignal (eine Periode),  (g)  Cosinussignal (zwei Perioden), (h)  Alternierende Zeitkoeffizienten,
  (i)  Diracimpuls,  (j)  Rechteckimpuls,  (k)  Dreieckimpuls,  (l)  Gaußimpuls.
  • Vorgegebene  $D(\mu)$–Belegungen (für IDFT):
(A)  entsprechend Zahlenfeld,  (B)  Konstantes Spektrum,  (C)  Komplexe Exponentialfunktion der Frequenz,  (D)  äquivalent zur Einstellung (d) im Zeitbereich ,
(E)  Cosinussignal (eine Frequenzperiode),  (F)  Sinussignal (eine Frequenzperiode),  (G)  Cosinussignal (zwei Frequenzperioden),  (H)  Alternierende Spektralkoeffizienten,
(I)  Diracspektrum,  (J)  Rechteckspektrum,  (K)  Dreieckspektrum,  (L)  Gaußspektrum.


Über die Autoren

Dieses interaktive Berechnungstool wurde am  Lehrstuhl für Nachrichtentechnik  der  Technischen Universität München  konzipiert und realisiert.

  • Die erste Version wurde 2008 von  Thomas Großer  im Rahmen einer Werkstudententätigkeit mit „FlashMX–Actionscript” erstellt (Betreuer:  Günter Söder).
  • 2019 wurde das Programm von  Carolin Mirschina  im Rahmen einer Werkstudententätigkeit auf „HTML5” umgesetzt und neu gestaltet (Betreuer:  Tasnád Kernetzky).


Die Umsetzung dieses Applets auf HTML 5 wurde durch  Studienzuschüsse  der Fakultät EI der TU München finanziell unterstützt. Wir bedanken uns.


Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster

Applet in neuem Tab öffnen