Aufgaben:Aufgabe 1.2: Schaltlogik (D/B-Wandler): Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 27: Zeile 27:
 
*Die Aufgabe gehört zum  Kapitel  [[Stochastische_Signaltheorie/Mengentheoretische_Grundlagen|Mengentheoretische Grundlagen]].
 
*Die Aufgabe gehört zum  Kapitel  [[Stochastische_Signaltheorie/Mengentheoretische_Grundlagen|Mengentheoretische Grundlagen]].
 
   
 
   
*Eine Zusammenfassung der theoretischen Grundlagen mit Beispielen bringt das Lernvideo  [[Klassische_Definition_der_Wahrscheinlickeit_(Lernvideo)|Mengentheoretische Begriffe und Gesetzmäßigkeiten]].
+
*Eine Zusammenfassung der theoretischen Grundlagen mit Beispielen bringt das Lernvideo  [[Mengentheoretische_Begriffe_und_Gesetzmäßigkeiten_(Lernvideo)|Mengentheoretische Begriffe und Gesetzmäßigkeiten]].
  
  

Version vom 8. November 2019, 18:40 Uhr

A1.2 Schaltlogik (D/B-Wandler)

Logisches Schaltwerk

Ein Zahlengenerator  $Z$  liefert Dezimalwerte im Bereich von  $1$  bis  $15$.

  • Diese werden in Binärzahlen umgewandelt  (rot umrandeter Block).
  • Der Ausgang besteht aus den vier Binärwerten  $A$,  $B$,  $C$  und  $D$  mit abnehmender Wertigkeit.
  • Beispielsweise liefert  $Z = 11$  die Binärwerte
$$ A = 1, \ B = 0, \ C = 1, \ D = 1. $$

Mengentheoretisch lässt sich dies wie folgt darstellen:

$$ Z = 11\qquad\widehat{=}\qquad A \cap\overline{ B} \cap C \cap D.$$

Aus den binären Größen  $A$,  $B$,  $C$  und  $D$  werden drei weitere Boolsche Ausdrücke gebildet, deren Vereinigungsmenge mit  $X$  bezeichnet wird:

\[ U = A \cap \overline{D} \]
\[ V = \overline{A} \cap B \cap \overline{D} \]
$$W,\; {\rm wobei} \; \, \overline{W} = \overline{A} \cup \overline{D} \cup (\overline{B} \cap C) \cup (B \cap \overline{C}). $$
  • Es ist zu berücksichtigen, dass  $Z = 0 \ ⇒ \ A = B = C = D = 0$  bereits durch den Zahlengenerator ausgeschlossen ist.
  • Beachten Sie ferner, dass nicht alle Eingangsgrößen  $A$,  $B$,  $C$  und  $D$  zur Berechnung aller Zwischengrößen  $U$,  $V$  und  $W$  herangezogen werden.




Hinweise:



Fragebogen zu "A1.2 Schaltlogik (D/B-Wandler)"

1

Welche Aussagen sind bezüglich der Zufallsgröße  $U$  zutreffend?

$U$  beinhaltet zwei Elemente.
$U$  beinhaltet vier Elemente.
Das kleinste Element von  $U$  ist  $4$.
Das größte Element von  $U$  ist  $14$.

2

Welche Aussagen sind bezüglich der Zufallsgröße  $V$  zutreffend?

$V$  beinhaltet zwei Elemente.
$V$  beinhaltet vier Elemente.
Das kleinste Element von  $V$  ist  $4$.
Das größte Element von  $V$  ist  $14$.

3

Welche Aussagen sind bezüglich der Zufallsgröße  $W$  zutreffend?

$W$  beinhaltet zwei Elemente.
$W$  beinhaltet vier Elemente.
Das kleinste Element von  $W$  ist  $4$.
Das größte Element von  $W$  ist  $14$.

4

Welche Aussagen sind bezüglich der Zufallsgröße  $P$  zutreffend?

$P$  beinhaltet alle Zweierpotenzen.
$P$  beinhaltet alle Primzahlen.
$P$  beschreibt die leere Menge \(\phi\) .
$P$  ist identisch mit der Grundmenge  $G = {1,2, \ \text{...} \ , 15}$.


Musterlösung

(1)  Das Ereignis $U$ beinhaltet diejenigen Zahlen größer/gleich acht $(A = 1)$, die gerade sind $(D = 0)$: $8, 10, 12, 14$   ⇒   Richtig sind die Lösungsvorschläge 2 und 4.


(2)  Das Ereignis $V$ besteht aus den beiden Zahlen $4$ (binär 0100) und $6$ (binär 0110)   ⇒   Richtig sind hier die Lösungsvorschläge 1 und 3.


Hilfs–Venndiagramm

(3)  Für das Ereignis $W$ gilt mit dem Theorem von de Morgan:

$$\overline W = \overline A \cup \overline D \cup (\overline B \cap C) \cup (B \cap \overline C) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} W = \overline{\overline W} = A \cap D \cap (\overline{\overline B \cap C}) \cap (\overline{B \cap \overline C}).$$

Mit den Sätzen von de Morgan folgt daraus weiter:

$$ W = A \cap D \cap (B \cup \overline C) \cap (\overline B \cup C).$$

Mit der Boolschen Beziehung $(B \cup \overline C) \cap (\overline B \cup C) = (B \cap C) \cup (\overline B \cap \overline C)$ erhält man schließlich (siehe Skizze):

$$W = (A \cap B \cap C \cap D) \cup (A \cap \overline B \cap \overline C \cap D).$$

Somit beinhaltet W die Zahlen $15$ und $9$   ⇒   nur der Lösungsvorschlag 1 ist richtig.


(4)  Die Vereinigungsmenge von $U$, $V$ und $W$ beinhaltet folgende Zahlen:   $4, 6, 8, 9, 10, 12, 14, 15$.

  • Dementsprechend gilt für die Menge $P$ als das Komplement dieser Vereinigungsmenge:   $P \in {\{1, 2, 3, 5, 7, 11, 13\}}$.
  • Dies sind genau die mit vier Bit darstellbaren Primzahlen   ⇒   Lösungsvorschlag 2.