Aufgaben:Aufgabe 5.9: Minimierung des MQF: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID652__Sto_A_5_9.png|right|frame|Leistungsdichtespektren beim Wiener-Filter ]]
+
[[Datei:P_ID652__Sto_A_5_9.png|right|frame|Leistungsdichtespektren <br>beim Wiener-Filter ]]
Gegeben ist ein stochastisches Nutzsignal $s(t)$, von dem nur das Leistungsdichtespektrum (LDS) bekannt ist:
+
Gegeben ist ein stochastisches Nutzsignal&nbsp; $s(t)$, von dem nur das Leistungsdichtespektrum (LDS) bekannt ist:
 
:$${\it \Phi} _s (f) = \frac{\it{\Phi} _{\rm 0} }{1 + ( {f/f_0 } )^2 }.$$
 
:$${\it \Phi} _s (f) = \frac{\it{\Phi} _{\rm 0} }{1 + ( {f/f_0 } )^2 }.$$
Dieses Leistungsdichtespektrum ${\it \Phi} _s (f)$ ist in der nebenstehenden Grafik blau dargestellt.
+
Dieses Leistungsdichtespektrum&nbsp; ${\it \Phi} _s (f)$&nbsp; ist in der nebenstehenden Grafik blau dargestellt.
  
*Die mittlere Leistung von $s(t)$ ergibt sich durch Integration über das Leistungsdichtespektrum:
+
*Die mittlere Leistung von&nbsp; $s(t)$&nbsp; ergibt sich durch Integration über das Leistungsdichtespektrum:
 
:$$P_s  = \int_{ - \infty }^{ + \infty } {{\it \Phi} _s (f)}\, {\rm d} f = {\it \Phi} _0  \cdot f_0  \cdot {\rm{\pi }}.$$
 
:$$P_s  = \int_{ - \infty }^{ + \infty } {{\it \Phi} _s (f)}\, {\rm d} f = {\it \Phi} _0  \cdot f_0  \cdot {\rm{\pi }}.$$
*Additiv überlagert ist dem Nutzsignal $s(t)$ Weißes Rauschen mit der Rauschleistungsdichte ${\it \Phi}_n(f) = N_0/2.$  
+
*Additiv überlagert ist dem Nutzsignal&nbsp; $s(t)$&nbsp; Weißes Rauschen&nbsp; $n(t)$&nbsp; mit der Rauschleistungsdichte&nbsp; ${\it \Phi}_n(f) = N_0/2.$  
*Als Abkürzung verwenden wir $Q = 2 \cdot {\it \Phi}_0/N_0$, wobei $Q$ als &bdquo;Qualität&rdquo; interpretiert werden könnte.  
+
*Als Abkürzung verwenden wir&nbsp; $Q = 2 \cdot {\it \Phi}_0/N_0$, wobei&nbsp; $Q$&nbsp; als &bdquo;Qualität&rdquo; interpretiert werden könnte.  
*Zu beachten ist, dass $Q$ kein Signal&ndash;zu&ndash;Rauschleistungsverhältnis darstellt.
+
*Zu beachten ist, dass&nbsp; $Q$&nbsp; kein Signal&ndash;zu&ndash;Rauschleistungsverhältnis darstellt.
  
  
In dieser Aufgabe soll der Frequenzgang $H(f)$ eines Filters ermittelt werden, das den mittleren quadratischen Fehler $\rm (MQF)$ zwischen dem Nutzsignal $s(t)$ und dem Filterausgangssignal $d(t)$ minimiert:
+
In dieser Aufgabe soll der Frequenzgang&nbsp; $H(f)$&nbsp; eines Filters ermittelt werden, das den mittleren quadratischen Fehler&nbsp; $\rm (MQF)$&nbsp; zwischen dem Nutzsignal&nbsp; $s(t)$&nbsp; und dem Filterausgangssignal&nbsp; $d(t)$&nbsp; minimiert:
 
:$${\rm{MQF}} = \mathop {\lim }\limits_{T_{\rm M}  \to \infty } \frac{1}{T_{\rm M} }\int_{ - T_{\rm M} /2}^{T_{\rm M} /2} {\left| {d(t) - s(t)} \right|^2 \, {\rm{d}}t.}$$
 
:$${\rm{MQF}} = \mathop {\lim }\limits_{T_{\rm M}  \to \infty } \frac{1}{T_{\rm M} }\int_{ - T_{\rm M} /2}^{T_{\rm M} /2} {\left| {d(t) - s(t)} \right|^2 \, {\rm{d}}t.}$$
 +
 +
  
  
Zeile 23: Zeile 25:
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Wiener–Kolmogorow–Filter|Wiener–Kolmogorow–Filter]].
+
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Stochastische_Signaltheorie/Wiener–Kolmogorow–Filter|Wiener–Kolmogorow–Filter]].
 
   
 
   
 
*Zur Lösung vorgegeben wird das folgende unbestimmte Integral:
 
*Zur Lösung vorgegeben wird das folgende unbestimmte Integral:
Zeile 36: Zeile 38:
 
{Welche der folgenden Aussagen sind zutreffend?
 
{Welche der folgenden Aussagen sind zutreffend?
 
|type="[]"}
 
|type="[]"}
- $H(f)$ ist ein Gaußtiefpass.
+
- $H(f)$&nbsp; ist ein Gaußtiefpass.
- $H(f)$ stellt ein Matched&ndash;Filter dar.
+
- $H(f)$&nbsp; stellt ein Matched&ndash;Filter dar.
+ $H(f)$ ist ein Wiener&ndash;Kolmogorow&ndash;Filter.
+
+ $H(f)$&nbsp; ist ein Wiener&ndash;Kolmogorow&ndash;Filter.
  
  
{Bestimmen Sie den Frequenzgang $H(f)$ des hierfür optimalen Filters. <br>Welche Werte ergeben sich  mit $Q = 3$ bei $f = 0$ und $f = 2f_0$?
+
{Bestimmen Sie den Frequenzgang&nbsp; $H(f)$&nbsp; des hierfür optimalen Filters.&nbsp; Welche Werte ergeben sich  mit&nbsp; $Q = 3$&nbsp; bei&nbsp; $f = 0$&nbsp; und&nbsp; $f = 2f_0$?
 
|type="{}"}
 
|type="{}"}
 
$H(f = 0) \ = \ $ { 0.75 3% }
 
$H(f = 0) \ = \ $ { 0.75 3% }
Zeile 47: Zeile 49:
  
  
{Es gelte weiter $Q = 3$. Berechnen Sie den mittleren quadratischen Fehler $(\rm MQF)$ bezogen auf $P_s$ für das bestmögliche Filter.
+
{Es gelte weiter&nbsp; $Q = 3$.&nbsp; Berechnen Sie den mittleren quadratischen Fehler&nbsp; $(\rm MQF)$&nbsp; bezogen auf&nbsp; $P_s$&nbsp; für das bestmögliche Filter.
 
|type="{}"}
 
|type="{}"}
 
${\rm MQF}/P_s \ =  \ $ { 0.5 3% }
 
${\rm MQF}/P_s \ =  \ $ { 0.5 3% }
  
  
{Wie groß muss der &bdquo;Qualitätsfaktor&rdquo; $Q$ mindestens gewählt werden, damit für den Quotienten der Wert ${\rm MQF}/P_s = 0.1$ erreicht werden kann?
+
{Wie groß muss der &bdquo;Qualitätsfaktor&rdquo;&nbsp; $Q$&nbsp; mindestens gewählt werden, damit für den Quotienten der Wert&nbsp; ${\rm MQF}/P_s = 0.1$&nbsp; erreicht werden kann?
 
|type="{}"}
 
|type="{}"}
 
$Q_\text{min} \ =  \ $ { 99 3% }
 
$Q_\text{min} \ =  \ $ { 99 3% }
Zeile 59: Zeile 61:
 
{Welche der folgenden Aussagen sind zutreffend?
 
{Welche der folgenden Aussagen sind zutreffend?
 
|type="[]"}
 
|type="[]"}
- Ein formgleiches Filter $H(f) = K \cdot H_{\rm WF}(f)$ führt zum gleichen Ergebnis.
+
- Ein formgleiches Filter&nbsp; $H(f) = K \cdot H_{\rm WF}(f)$&nbsp; führt zum gleichen Ergebnis.
+ Das Ausgangssignal $d(t)$ enthält bei größerem $Q$ mehr höherfrequente Anteile.
+
+ Das Ausgangssignal&nbsp; $d(t)$&nbsp; enthält bei größerem&nbsp; $Q$&nbsp; mehr höherfrequente Anteile.
  
  

Version vom 10. Dezember 2019, 12:06 Uhr

Leistungsdichtespektren
beim Wiener-Filter

Gegeben ist ein stochastisches Nutzsignal  $s(t)$, von dem nur das Leistungsdichtespektrum (LDS) bekannt ist:

$${\it \Phi} _s (f) = \frac{\it{\Phi} _{\rm 0} }{1 + ( {f/f_0 } )^2 }.$$

Dieses Leistungsdichtespektrum  ${\it \Phi} _s (f)$  ist in der nebenstehenden Grafik blau dargestellt.

  • Die mittlere Leistung von  $s(t)$  ergibt sich durch Integration über das Leistungsdichtespektrum:
$$P_s = \int_{ - \infty }^{ + \infty } {{\it \Phi} _s (f)}\, {\rm d} f = {\it \Phi} _0 \cdot f_0 \cdot {\rm{\pi }}.$$
  • Additiv überlagert ist dem Nutzsignal  $s(t)$  Weißes Rauschen  $n(t)$  mit der Rauschleistungsdichte  ${\it \Phi}_n(f) = N_0/2.$
  • Als Abkürzung verwenden wir  $Q = 2 \cdot {\it \Phi}_0/N_0$, wobei  $Q$  als „Qualität” interpretiert werden könnte.
  • Zu beachten ist, dass  $Q$  kein Signal–zu–Rauschleistungsverhältnis darstellt.


In dieser Aufgabe soll der Frequenzgang  $H(f)$  eines Filters ermittelt werden, das den mittleren quadratischen Fehler  $\rm (MQF)$  zwischen dem Nutzsignal  $s(t)$  und dem Filterausgangssignal  $d(t)$  minimiert:

$${\rm{MQF}} = \mathop {\lim }\limits_{T_{\rm M} \to \infty } \frac{1}{T_{\rm M} }\int_{ - T_{\rm M} /2}^{T_{\rm M} /2} {\left| {d(t) - s(t)} \right|^2 \, {\rm{d}}t.}$$




Hinweise:

  • Zur Lösung vorgegeben wird das folgende unbestimmte Integral:
$$\int {\frac{1}{a^2 + x^2 }} \, {\rm{d}}x ={1}/{a} \cdot \arctan \left( {{x}/{a}} \right).$$



Fragebogen

1

Welche der folgenden Aussagen sind zutreffend?

$H(f)$  ist ein Gaußtiefpass.
$H(f)$  stellt ein Matched–Filter dar.
$H(f)$  ist ein Wiener–Kolmogorow–Filter.

2

Bestimmen Sie den Frequenzgang  $H(f)$  des hierfür optimalen Filters.  Welche Werte ergeben sich mit  $Q = 3$  bei  $f = 0$  und  $f = 2f_0$?

$H(f = 0) \ = \ $

$H(f = 2f_0)\ = \ $

3

Es gelte weiter  $Q = 3$.  Berechnen Sie den mittleren quadratischen Fehler  $(\rm MQF)$  bezogen auf  $P_s$  für das bestmögliche Filter.

${\rm MQF}/P_s \ = \ $

4

Wie groß muss der „Qualitätsfaktor”  $Q$  mindestens gewählt werden, damit für den Quotienten der Wert  ${\rm MQF}/P_s = 0.1$  erreicht werden kann?

$Q_\text{min} \ = \ $

5

Welche der folgenden Aussagen sind zutreffend?

Ein formgleiches Filter  $H(f) = K \cdot H_{\rm WF}(f)$  führt zum gleichen Ergebnis.
Das Ausgangssignal  $d(t)$  enthält bei größerem  $Q$  mehr höherfrequente Anteile.


Musterlösung

(1)  Richtig ist nur der letzte Lösungsvorschlag:

  • Die Aufgabenstellung   ⇒   „Minimierung des mittleren quadratischen Fehlers” weist bereits auf das Filter nach Wiener–Kolmogorow hin.
  • Das Matched–Filter verwendet man dagegen, um die Signalenergie zu bündeln und dadurch für einen vorgegebenen Zeitpunkt das S/N–Verhältnis zu maximieren.


(2)  Für den optimalen Frequenzgang gilt nach Wiener und Kolmogorow allgemein:

$$H(f) = H_{\rm WF} (f) = \frac{1}{{1 + {\it \Phi} _n (f)/{\it \Phi} _s (f)}}.$$
  • Mit den gegebenen Leistungsdichtespektren kann hierfür auch geschrieben werden:
$$H(f) = \frac{1}{{1 + {N_0 }/({{2{\it \Phi} _0 })}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}} = \frac{1}{{1 + {1}/{Q}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}}.$$
  • Mit $Q = 3$ folgt daraus:
$$H( {f = 0} ) = \frac{1}{{1 + {1}/{Q}}} = \frac{Q}{Q + 1} \hspace{0.15cm}\underline {= 0.75},$$
$$H( {f = 2f_0 } ) = \frac{1}{{1 + {5}/{Q}}} = \frac{Q}{Q + 5} \hspace{0.15cm}\underline {= 0.375}.$$


(3)  Für das in der Teilaufgabe (2) berechnete Filter gilt unter Berücksichtigung der Symmetrie:

$${\rm{MQF = }}\int_{-\infty}^{+\infty} H(f) \cdot {\it \Phi} _n (f) \,\, {\rm{d}}f = \int_{0}^{+\infty} \frac{N_0}{{1 + {N_0 }/({{2{\it \Phi} _0 })}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}} \,\, {\rm{d}}f .$$
  • Hierfür kann mit  $Q = 2 \cdot {\it \Phi}_0/N_0$  und  $a^2 = Q + 1$  auch geschrieben werden:
$${\rm{MQF = }}\int_0^\infty {\frac{{2{\it \Phi} _0 }}{{ Q+1 + ( {f/f_0 })^2 }}} \,\, {\rm{d}}f = 2{\it \Phi} _0 \cdot f_0 \int_0^\infty {\frac{1}{a^2 + x^2 }}\,\, {\rm{d}}x.$$
  • Mit dem angegebenen Integral führt dies zum Ergebnis:
$${\rm{MQF}} = \frac{{2{\it \Phi} _0 f_0 }}{{\sqrt {1 + Q} }}\left( {\arctan ( \infty ) - \arctan ( 0 )} \right) = \frac{{{\it \Phi} _0 f_0 {\rm{\pi }}}}{{\sqrt {1 + Q} }}.$$
  • Normiert man MQF auf die Nutzleistung $P_s$, so erhält man für $Q=3$:
$$\frac{\rm{MQF}}{P_s} = \frac{1}{{\sqrt {1 + Q} }} \hspace{0.15cm}\underline { = 0.5}.$$


(4)  Aus der Berechnung in in der Teilaufgabe (3) folgt für ${\rm MQF}/P_s \ge 0.1$ direkt die Bedingung $Q \ge 99$   ⇒   $Q_{\rm min} \hspace{0.15cm}\underline{= 99}$.

  • Je größer $Q$ ist, desto kleiner wird der mittlere quadratische Fehler.


(5)  Richtig ist nur der zweite Lösungsvorschlag:

  • Ein zum Wiener–Kolmogorow–Filterr formgleicher Frequenzgang  ⇒  $H(f) = K \cdot H_{\rm WF}(f)$ mit $K \ne 1$ führt stets zu großen Verfälschungen.
  • Dies kann man sich zum Beispiel am rauschfreien Fall ($Q \to \infty$) verdeutlichen:
In diesem Fall wäre $d(t) = K \cdot s(t)$ und die Optimierungsaufgabe trotz guter Bedingungen extrem schlecht gelöst.
  • Aus der Gleichung
$${\rm{MQF}} = \int_{ - \infty }^{ + \infty } {H_{\rm WF} (f)} \cdot \it{\Phi} _n (f)\,\,{\rm{d}}f$$
könnte man fälschlicherweise schließen, dass durch ein Filter $H(f) = 2 \cdot H_{\rm WF}(f))$ der mittlere quadratische Fehler nur verdoppelt wird.
  • Dem ist jedoch nicht so, da $H(f)$dann kein Wiener-Filter mehr ist und obige Gleichung auch nicht mehr anwendbar.


Leistungsdichtespektren beim Wiener-Filter

Die zweite Aussage ist zutreffend, wie aus der nebenstehenden Skizze hervorgeht.

  • Die Punkte markieren den Frequenzgang $H_{\rm WF}(f))$ des Wiener–Kolmogorow–Filters für $Q = 3$ bzw. für $Q = 10$.
  • Bei größerem $Q (= 10)$ werden hohe Anteile weniger gedämpft als bei niedrigerem $Q (= 3)$.
  • Deshalb beinhaltet das Filterausgangssignal im Fall $Q = 10$ auch mehr höherfrequente Anteile, die auf das Rauschen $n(t)$ zurückgehen.