Aufgaben:Aufgabe 3.11: Auslöschungskanal: Unterschied zwischen den Versionen
Zeile 75: | Zeile 75: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' Richtig ist | + | '''(1)''' Richtig ist der <u>Lösungsvorschlag 2:</u> |
− | * Aufgrund der Symmetrie der Übergangswahrscheinlichkeiten $P_{Y|X}(Y|X)$ ist offensichtlich, dass eine Gleichverteilung zur maximalen Transinformation $I(X; Y)$ und damit zur Kanalkapazität $C$ führen wird: | + | * Aufgrund der Symmetrie der Übergangswahrscheinlichkeiten $P_{Y|X}(Y|X)$ ist offensichtlich, dass eine Gleichverteilung zur maximalen Transinformation $I(X; Y)$ und damit zur Kanalkapazität $C$ führen wird: |
− | :$$ P_X(X) = P_X\big ( \hspace{0.03cm}X\hspace{-0.03cm}=1\hspace{0.03cm}, \hspace{0.08cm} X\hspace{-0.03cm}=2\hspace{0.03cm},\hspace{0.08cm}\text{...}\hspace{0.08cm}, X\hspace{-0.03cm}=M\hspace{0.03cm}\big ) = \big [\hspace{0.03cm}1/M\hspace{0.03cm}, \hspace{0.08cm} 1/M\hspace{0.03cm},\hspace{0.03cm}\text{...}\hspace{0.08cm},\hspace{0.08cm} 1/M\hspace{0.03cm}\big ]\hspace{0.05cm}$$ | + | :$$ P_X(X) = P_X\big ( \hspace{0.03cm}X\hspace{-0.03cm}=1\hspace{0.03cm}, \hspace{0.08cm} X\hspace{-0.03cm}=2\hspace{0.03cm},\hspace{0.08cm}\text{...}\hspace{0.08cm}, X\hspace{-0.03cm}=M\hspace{0.03cm}\big ) = \big [\hspace{0.03cm}1/M\hspace{0.03cm}, \hspace{0.08cm} 1/M\hspace{0.03cm},\hspace{0.03cm}\text{...}\hspace{0.08cm},\hspace{0.08cm} 1/M\hspace{0.03cm}\big ]\hspace{0.05cm}.$$ |
− | *Im Sonderfall $M = 2$ wäre auch $P_X(X) = (0.5, \ 0.5)$ richtig. | + | *Im Sonderfall $M = 2$ wäre auch $P_X(X) = (0.5, \ 0.5)$ richtig. |
− | '''(2)''' Zutreffend ist | + | '''(2)''' Zutreffend ist der <u>Lösungsvorschlag 3</u>, also genau $2M$ Verbindungen. Da: |
− | *Von jedem Quellensymbol $X = μ$ kommt man sowohl zum Sinkensymbol $Y = μ$ als auch zum Erasure $Y = \text{E}$. | + | *Von jedem Quellensymbol $X = μ$ kommt man sowohl zum Sinkensymbol $Y = μ$ als auch zum Erasure $Y = \text{E}$. |
− | '''(3)''' Alle Wahrscheinlichkeiten $Pr(Y = 1), \hspace{0.05cm} \text{...}\hspace{0.05cm} , \hspace{0.08cm}Pr(Y = M)$ sind gleich groß. Damit erhält man für $μ = 1, \hspace{0.05cm} \text{...} \hspace{0.05cm} , \hspace{0.08cm} M$: | + | '''(3)''' Alle Wahrscheinlichkeiten ${\rm Pr}(Y = 1), \hspace{0.05cm} \text{...}\hspace{0.05cm} , \hspace{0.08cm}{\rm Pr}(Y = M)$ sind gleich groß. Damit erhält man für $μ = 1, \hspace{0.05cm} \text{...} \hspace{0.05cm} , \hspace{0.08cm} M$: |
− | :$${\rm Pr}(Y \hspace{-0.05cm} = \mu) = ( 1-\lambda)/M \hspace{0.05cm}$$ | + | :$${\rm Pr}(Y \hspace{-0.05cm} = \mu) = ( 1-\lambda)/M \hspace{0.05cm}.$$ |
− | *Außerdem kommt man von jedem Quellensymbol $X = 1, \hspace{0.05cm} \text{...}\hspace{0.05cm} , X = M$ auch zum Erasure $Y = \text{E}$: | + | *Außerdem kommt man von jedem Quellensymbol $X = 1, \hspace{0.05cm} \text{...}\hspace{0.05cm} , X = M$ auch zum Erasure $Y = \text{E}$: |
− | :$${\rm Pr}(Y \hspace{-0.05cm} = {\rm E}) = \lambda \hspace{0.05cm}$$ | + | :$${\rm Pr}(Y \hspace{-0.05cm} = {\rm E}) = \lambda \hspace{0.05cm}.$$ |
− | *Die Kontrolle ergibt, dass die Summe aller $M + 1$ Sinkensymbolwahrscheinlichkeiten tatsächlich $1$ ergibt. Daraus folgt für die Sinkenentropie | + | *Die Kontrolle ergibt, dass die Summe aller $M + 1$ Sinkensymbolwahrscheinlichkeiten tatsächlich $1$ ergibt. |
+ | *Daraus folgt für die Sinkenentropie: | ||
:$$H(Y) = M \cdot \frac{ 1-\lambda }{M} \cdot {\rm log}_2 \hspace{0.1cm} \frac{M}{1 - \lambda} \hspace{0.15cm}+\hspace{0.15cm} \lambda \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{\lambda} \hspace{0.05cm}.$$ | :$$H(Y) = M \cdot \frac{ 1-\lambda }{M} \cdot {\rm log}_2 \hspace{0.1cm} \frac{M}{1 - \lambda} \hspace{0.15cm}+\hspace{0.15cm} \lambda \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{\lambda} \hspace{0.05cm}.$$ | ||
*Zusammengefasst ergibt dies mit der binären Entropiefunktion: | *Zusammengefasst ergibt dies mit der binären Entropiefunktion: | ||
:$$H(Y) = (1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} M \hspace{0.15cm}+\hspace{0.15cm} H_{\rm bin} (\lambda ) \hspace{0.05cm}$$ | :$$H(Y) = (1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} M \hspace{0.15cm}+\hspace{0.15cm} H_{\rm bin} (\lambda ) \hspace{0.05cm}$$ | ||
− | :und mit $M = 4$ sowie $ λ = 0.2$: | + | :und mit $M = 4$ sowie $ λ = 0.2$: |
:$$H(Y) = 1.6 \,{\rm bit} + H_{\rm bin} (0.2 ) \hspace{0.15cm} \underline {=2.322\,{\rm bit}} \hspace{0.05cm}.$$ | :$$H(Y) = 1.6 \,{\rm bit} + H_{\rm bin} (0.2 ) \hspace{0.15cm} \underline {=2.322\,{\rm bit}} \hspace{0.05cm}.$$ | ||
− | '''(4)''' | + | |
− | + | '''(4)''' Die $2M$ Verbundwahrscheinlichkeiten | |
− | + | :$${\rm Pr} \big[(X = μ) ∩ (Y = κ)\big] ≠ 0$$ | |
+ | :und die bedingten Wahrscheinlichkeiten | ||
+ | :$$pκ|μ = {\rm Pr}(Y = κ|X = μ)$$ | ||
+ | :zeigen folgende Eigenschaften: | ||
+ | # Die Kombination $p_{μκ} = (1 – λ)/M$ und $p_{κ|μ} = 1 – λ$ kommt $M$ mal vor. | ||
+ | # Die Kombination $p_{μκ} = λ/M$ und $p_{κ|μ} = λ$ kommt ebenfalls $M$ mal vor. | ||
Daraus folgt: | Daraus folgt: | ||
− | :$$ H(Y \hspace{-0. | + | :$$ H(Y \hspace{-0.15cm}\mid \hspace{-0.15cm} X) \hspace{-0.01cm} =\hspace{-0.01cm} M \cdot \frac{ 1-\lambda }{M} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1 - \lambda} \hspace{0.15cm}+\hspace{0.15cm}M \cdot \frac{ \lambda }{M} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{ \lambda} = ( 1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1 - \lambda} \hspace{0.15cm}+\hspace{0.15cm} \lambda \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{ \lambda} = H_{\rm bin} (\lambda)\hspace{0.05cm}.$$ |
− | Das Ergebnis ist unabhängig von $M$. Mit $λ = 0.2$ erhält man: | + | *Das Ergebnis ist unabhängig von $M$. Mit $λ = 0.2$ erhält man: |
:$$H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = H_{\rm bin} (0.2 ) \hspace{0.15cm} \underline {=0.722\,{\rm bit}} \hspace{0.05cm}.$$ | :$$H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = H_{\rm bin} (0.2 ) \hspace{0.15cm} \underline {=0.722\,{\rm bit}} \hspace{0.05cm}.$$ | ||
− | '''(5)''' Die Kanalkapazität $C$ ist gleich der maximalen Transinformation $I(X; Y)$, wobei die Maximierung hinsichtlich $P_X(X)$ bereits durch den symmetrischen Ansatz berücksichtigt wurde: | + | '''(5)''' Die Kanalkapazität $C$ ist gleich der maximalen Transinformation $I(X; Y)$, wobei die Maximierung hinsichtlich $P_X(X)$ bereits durch den symmetrischen Ansatz berücksichtigt wurde: |
:$$ C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) = H(Y) - H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = ( 1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} M + H_{\rm bin} (\lambda) - H_{\rm bin} (\lambda) = ( 1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} M \hspace{0.05cm}$$ | :$$ C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) = H(Y) - H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = ( 1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} M + H_{\rm bin} (\lambda) - H_{\rm bin} (\lambda) = ( 1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} M \hspace{0.05cm}$$ | ||
− | :$$\Rightarrow \hspace{0.3cm} M = 4: \hspace{0.3cm} \underline {C=1.6\,\,{\rm bit}} \hspace{0.05cm}, \hspace{0.8cm} | + | :$$\Rightarrow \hspace{0.3cm} M = 4\text{:} \hspace{0.3cm} \underline {C=1.6\,\,{\rm bit}} \hspace{0.05cm}, \hspace{0.8cm} |
− | M | + | M = 2\text{:} \hspace{0.3cm} \underline {C=0.8\,\,{\rm bit}} \hspace{0.05cm}.$$ |
+ | |||
− | '''(6)''' Der ''Binary Erasure Channel'' (BEC) ist ein Sonderfall des hier betrachteten allgemeinen Modells mit $M = 2$: | + | '''(6)''' Der ''Binary Erasure Channel'' $\rm (BEC)$ ist ein Sonderfall des hier betrachteten allgemeinen Modells mit $M = 2$: |
− | :$$C_{\rm BEC} = 1-\lambda \hspace{0.05cm}$$ | + | :$$C_{\rm BEC} = 1-\lambda \hspace{0.05cm}.$$ |
*Richtig ist somit der <u>Lösungsvorschlag 1</u>. | *Richtig ist somit der <u>Lösungsvorschlag 1</u>. | ||
− | *Der zweite Lösungsvorschlag gilt dagegen für den ''Binary Symmetric Channel'' (BSC) mit der Verfälschungswahrscheinlichkeit $λ$. | + | *Der zweite Lösungsvorschlag gilt dagegen für den ''Binary Symmetric Channel'' $\rm (BSC)$ mit der Verfälschungswahrscheinlichkeit $λ$. |
{{ML-Fuß}} | {{ML-Fuß}} |
Version vom 6. Februar 2020, 16:30 Uhr
Betrachtet wird ein Auslöschungskanal mit
- den $M$ Eingängen $x ∈ X = \{1,\ 2, \ \text{...} \ ,\ M\}$, und
- den $M + 1$ Ausgängen $y ∈ Y = \{1,\ 2,\ \ \text{...} \ ,\ M,\ \text{E}\}.$
Die Grafik zeigt das Modell für den Sonderfall $M = 4$. Das Sinkensymbol $y = \text{E}$ berücksichtigt eine Auslöschung (englisch: Erasure ) für den Fall, dass der Empfänger keine hinreichend gesicherte Entscheidung treffen kann.
Die Übergangswahrscheinlichkeiten sind für $1 ≤ μ ≤ M$ wie folgt gegeben:
- $${\rm Pr}(Y \hspace{-0.05cm} = \mu\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= \mu) = 1-\lambda \hspace{0.05cm},$$
- $${\rm Pr}(Y \hspace{-0.05cm} = {\rm E}\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= \mu) = \lambda \hspace{0.05cm}.$$
Gesucht werden:
- die Kapazität $C_{M\rm –EC}$ dieses M–ary Erasure Channels,
- die Kapazität $C_{\rm BEC}$ des Binary Erasure Channels als Sonderfall des obigen Modells.
Hinweise:
- Die Aufgabe gehört zum Kapitel Anwendung auf die Digitalsignalübertragung.
- Bezug genommen wird insbesondere auf die Seite Informationstheoretisches Modell der Digitalsignalübertragung.
- Im obigen Schaubild sind Auslöschungen $($mit Wahrscheinlichkeit $λ)$ blau gezeichnet.
- „Richtige Übertragungswege” $($also von $X = μ$ nach $Y = μ)$ sind rot dargestellt ($1 ≤ μ ≤ M$).
Fragebogen
Musterlösung
- Aufgrund der Symmetrie der Übergangswahrscheinlichkeiten $P_{Y|X}(Y|X)$ ist offensichtlich, dass eine Gleichverteilung zur maximalen Transinformation $I(X; Y)$ und damit zur Kanalkapazität $C$ führen wird:
- $$ P_X(X) = P_X\big ( \hspace{0.03cm}X\hspace{-0.03cm}=1\hspace{0.03cm}, \hspace{0.08cm} X\hspace{-0.03cm}=2\hspace{0.03cm},\hspace{0.08cm}\text{...}\hspace{0.08cm}, X\hspace{-0.03cm}=M\hspace{0.03cm}\big ) = \big [\hspace{0.03cm}1/M\hspace{0.03cm}, \hspace{0.08cm} 1/M\hspace{0.03cm},\hspace{0.03cm}\text{...}\hspace{0.08cm},\hspace{0.08cm} 1/M\hspace{0.03cm}\big ]\hspace{0.05cm}.$$
- Im Sonderfall $M = 2$ wäre auch $P_X(X) = (0.5, \ 0.5)$ richtig.
(2) Zutreffend ist der Lösungsvorschlag 3, also genau $2M$ Verbindungen. Da:
- Von jedem Quellensymbol $X = μ$ kommt man sowohl zum Sinkensymbol $Y = μ$ als auch zum Erasure $Y = \text{E}$.
(3) Alle Wahrscheinlichkeiten ${\rm Pr}(Y = 1), \hspace{0.05cm} \text{...}\hspace{0.05cm} , \hspace{0.08cm}{\rm Pr}(Y = M)$ sind gleich groß. Damit erhält man für $μ = 1, \hspace{0.05cm} \text{...} \hspace{0.05cm} , \hspace{0.08cm} M$:
- $${\rm Pr}(Y \hspace{-0.05cm} = \mu) = ( 1-\lambda)/M \hspace{0.05cm}.$$
- Außerdem kommt man von jedem Quellensymbol $X = 1, \hspace{0.05cm} \text{...}\hspace{0.05cm} , X = M$ auch zum Erasure $Y = \text{E}$:
- $${\rm Pr}(Y \hspace{-0.05cm} = {\rm E}) = \lambda \hspace{0.05cm}.$$
- Die Kontrolle ergibt, dass die Summe aller $M + 1$ Sinkensymbolwahrscheinlichkeiten tatsächlich $1$ ergibt.
- Daraus folgt für die Sinkenentropie:
- $$H(Y) = M \cdot \frac{ 1-\lambda }{M} \cdot {\rm log}_2 \hspace{0.1cm} \frac{M}{1 - \lambda} \hspace{0.15cm}+\hspace{0.15cm} \lambda \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{\lambda} \hspace{0.05cm}.$$
- Zusammengefasst ergibt dies mit der binären Entropiefunktion:
- $$H(Y) = (1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} M \hspace{0.15cm}+\hspace{0.15cm} H_{\rm bin} (\lambda ) \hspace{0.05cm}$$
- und mit $M = 4$ sowie $ λ = 0.2$:
- $$H(Y) = 1.6 \,{\rm bit} + H_{\rm bin} (0.2 ) \hspace{0.15cm} \underline {=2.322\,{\rm bit}} \hspace{0.05cm}.$$
(4) Die $2M$ Verbundwahrscheinlichkeiten
- $${\rm Pr} \big[(X = μ) ∩ (Y = κ)\big] ≠ 0$$
- und die bedingten Wahrscheinlichkeiten
- $$pκ|μ = {\rm Pr}(Y = κ|X = μ)$$
- zeigen folgende Eigenschaften:
- Die Kombination $p_{μκ} = (1 – λ)/M$ und $p_{κ|μ} = 1 – λ$ kommt $M$ mal vor.
- Die Kombination $p_{μκ} = λ/M$ und $p_{κ|μ} = λ$ kommt ebenfalls $M$ mal vor.
Daraus folgt:
- $$ H(Y \hspace{-0.15cm}\mid \hspace{-0.15cm} X) \hspace{-0.01cm} =\hspace{-0.01cm} M \cdot \frac{ 1-\lambda }{M} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1 - \lambda} \hspace{0.15cm}+\hspace{0.15cm}M \cdot \frac{ \lambda }{M} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{ \lambda} = ( 1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1 - \lambda} \hspace{0.15cm}+\hspace{0.15cm} \lambda \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{ \lambda} = H_{\rm bin} (\lambda)\hspace{0.05cm}.$$
- Das Ergebnis ist unabhängig von $M$. Mit $λ = 0.2$ erhält man:
- $$H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = H_{\rm bin} (0.2 ) \hspace{0.15cm} \underline {=0.722\,{\rm bit}} \hspace{0.05cm}.$$
(5) Die Kanalkapazität $C$ ist gleich der maximalen Transinformation $I(X; Y)$, wobei die Maximierung hinsichtlich $P_X(X)$ bereits durch den symmetrischen Ansatz berücksichtigt wurde:
- $$ C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) = H(Y) - H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = ( 1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} M + H_{\rm bin} (\lambda) - H_{\rm bin} (\lambda) = ( 1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} M \hspace{0.05cm}$$
- $$\Rightarrow \hspace{0.3cm} M = 4\text{:} \hspace{0.3cm} \underline {C=1.6\,\,{\rm bit}} \hspace{0.05cm}, \hspace{0.8cm} M = 2\text{:} \hspace{0.3cm} \underline {C=0.8\,\,{\rm bit}} \hspace{0.05cm}.$$
(6) Der Binary Erasure Channel $\rm (BEC)$ ist ein Sonderfall des hier betrachteten allgemeinen Modells mit $M = 2$:
- $$C_{\rm BEC} = 1-\lambda \hspace{0.05cm}.$$
- Richtig ist somit der Lösungsvorschlag 1.
- Der zweite Lösungsvorschlag gilt dagegen für den Binary Symmetric Channel $\rm (BSC)$ mit der Verfälschungswahrscheinlichkeit $λ$.