Aufgaben:Exercise 1.3: Rayleigh Fading: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
(Die Seite wurde neu angelegt: „{{quiz-Header|Buchseite=Mobile Kommunikation/Wahrscheinlichkeitsdichte des Rayleigh–Fadings}} Datei:P_ID2106__Mob_A_1_3.png|right|frame|Zeitverlauf von Ra…“)
 
Zeile 1: Zeile 1:
 
{{quiz-Header|Buchseite=Mobile Kommunikation/Wahrscheinlichkeitsdichte des Rayleigh–Fadings}}
 
{{quiz-Header|Buchseite=Mobile Kommunikation/Wahrscheinlichkeitsdichte des Rayleigh–Fadings}}
  
[[Datei:P_ID2106__Mob_A_1_3.png|right|frame|Zeitverlauf von Rayleigh–Fading]]
+
[[Datei:P_ID2106__Mob_A_1_3.png|right|frame|Time evolution of Rayleigh fading]]
Rayleigh–Fading ist anzuwenden, wenn
+
Rayleigh–Fading should be used when
* es zwischen Sender und Empfänger keine Direktverbindung gibt, und
+
* there is no direct connection between sender and receiver, and
* das Signal den Empfänger auf vielen Wegen erreicht, aber deren Laufzeiten näherungsweise gleich sind.
+
* the signal reaches the receiver in many ways, but their transit times are approximately the same.
  
  
Ein Beispiel eines solchen Rayleigh–Kanals tritt beim Mobilfunk im städtischen Gebiet auf, wenn  schmalbandige Signale verwendet werden mit Reichweiten zwischen  $50$  und  $100$  Meter.
+
An example of such a Rayleigh–channel occurs in urban mobile communications when narrowband signals are used with ranges between  $50$  and  $100$  meters.
  
Betrachtet man die Funksignale  $s(t)$  und  $r(t)$  im äquivalenten Tiefpassbereich $($das heißt, um die Frequenz  $f = 0)$, so wird die Signalübertragung durch die Gleichung
+
Looking at the radio signals  $s(t)$  and  $r(t)$  in the equivalent low-pass range $($that is, around the frequency  $f = 0)$, the signal transmission is given by the equation
:$$r(t)=   z(t) \cdot s(t)$$
+
:$$r(t)= z(t) \cdot s(t)$
  
vollständig beschrieben. Die multiplikative Verfälschung
+
described completely. The multiplicative falsification
:$$z(t)=   x(t) + {\rm j} \cdot y(t)$$
+
:$$z(t)= x(t) + {\rm j} \cdot y(t)$$
  
ist stets komplex und weist folgende Eigenschaften auf:
+
is always complex and has the following characteristics:
* Der Realteil  $x(t)$  und der Imaginärteil  $y(t)$  sind Gaußsche mittelwertfreie Zufallsgrößen, beide mit gleicher Varianz  $\sigma^2$. Innerhalb der Komponenten  $x(t)$  und  $y(t)$  kann es statistische Bindungen geben, was aber für die Lösung der vorliegenden Aufgabe nicht relevant ist. Es bestehen keine Bindungen zwischen  $x(t)$  und  $y(t)$; deren Kreuzkorrelationsfunktion ist identisch Null.
+
* The real part  $x(t)$  and the imaginary part  $y(t)$  are Gaussian mean-free random variables, both with equal variance  $\sigma^2$. Within the components  $x(t)$  and  $y(t)$  there may be statistical bindings, but this is not relevant for the solution of the present task. There are no bonds between  $x(t)$  and  $y(t)$; their cross-correlation function is identical to zero.
  
* Der Betrag&nbsp; $a(t) = |z(t)|$&nbsp; besitzt eine Rayleigh&ndash;WDF, woraus sich der Name &bdquo;<i>Rayleigh&ndash;Fading</i>&rdquo; ableitet:
+
* The amount&nbsp; $a(t) = |z(t)|$&nbsp; has a Rayleigh&ndash;WDF, from which the name &bdquo;<i>Rayleigh&ndash;Fading</i>&rdquo; is derived:
 
:$$f_a(a) =
 
:$$f_a(a) =
\left\{ \begin{array}{c} a/\sigma^2 \cdot {\rm e}^ { -a^2/(2\sigma^2)} \\
+
\left\{ \begin{array}{c} a/\sigma^2 \cdot {\rm e}^ { -a^2/(2\sigma^2)} \\\
0 \end{array} \right.\quad
+
0 \end{array} \right.\quad
\begin{array}{*{1}c} {\rm f\ddot{u}r}\hspace{0.15cm} a \ge 0
+
\begin{array}{*{*{1}c} {\rm f\ddot{u}r}\hspace{0.15cm} a \ge 0
\\ {\rm f\ddot{u}r}\hspace{0.15cm} a < 0 \\ \end{array}
+
\\ {\rm f\ddot{u}r}\hspace{0.15cm} a < 0 \\\ \\ \end{array}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
* Das Betragsquadrat&nbsp; $p(t) = a(t)^2 = |z(t)|^2$&nbsp; ist exponentialverteilt entsprechend der Gleichung
+
* The absolute square&nbsp; $p(t) = a(t)^2 = |z(t)|^2$&nbsp; is exponentially distributed according to the equation
:$$f_p(p) = \left\{ \begin{array}{c} 1/(2\sigma^2) \cdot {\rm e}^ { -p/(2\sigma^2)} \\
+
$$f_p(p) = \left\{ \begin{array}{c} 1/(2\sigma^2) \cdot {\rm e}^ { -p/(2\sigma^2)} \\
0 \end{array} \right.\quad
+
0 \end{array} \right.\quad
\begin{array}{*{1}c} {\rm f\ddot{u}r}\hspace{0.15cm} p \ge 0
+
\begin{array}{*{*{1}c} {\rm f\ddot{u}r}\hspace{0.15cm} p \ge 0
\\ {\rm f\ddot{u}r}\hspace{0.15cm} p < 0 \\ \end{array}
+
\\ {\rm f\ddot{u}r}\hspace{0.15cm} p < 0 \\\ \\ \end{array}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Durch Messungen wurde ermittelt, dass die Zeitintervalle mit&nbsp; $a(t) &#8804; 1$&nbsp; (in der Grafik gelb hinterlegt) sich zu&nbsp; $\text{59 ms}$&nbsp; aufaddieren (rot markierte Bereiche). Mit der Gesamtmessdauer von&nbsp; $\text{150 ms}$&nbsp; ergibt sich so die Wahrscheinlichkeit, dass der Betrag des <i>Rayleigh&ndash;Fadings</i> kleiner oder gleich&nbsp; $1$&nbsp; ist, zu
+
Measurements have shown that the time intervals with&nbsp; $a(t) &#8804; 1$&nbsp; (highlighted in yellow in the graphic) add up to&nbsp; $\text{59 ms}$&nbsp; (areas highlighted in red). With the total measurement time of&nbsp; $\text{150 ms}$&nbsp; the probability that the amount of the <i>Rayleigh&ndash;fading</i> is less than or equal to&nbsp; $1$&nbsp; results in
:$${\rm Pr}(a(t) \le 1) = \frac{59\,\,{\rm ms}}{150\,\,{\rm ms}} = 39.4 \%
+
$${\rm Pr}(a(t) \le 1) = \frac{59\,\,{\,{\rm ms}}}{150\,\,{\rm ms}} = 39.4 \%
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
In der unteren Grafik grün hinterlegt ist der Wertebereich zwischen&nbsp; $\text{-3 dB}$&nbsp; und&nbsp; $\text{+3 dB}$&nbsp; hinsichtlich der logarithmierten Rayleigh&ndash;Größe&nbsp; $20 \cdot {\rm lg} \ a(t)$. Hierauf bezieht sich die Teilaufgabe '''(4)'''.
+
In the lower graphic the value range between&nbsp; $\text{-3 dB}$&nbsp; and&nbsp; $\text{+3 dB}$&nbsp; regarding the logarithmic Rayleigh&ndash;Size&nbsp; $20 \cdot {\rm lg} is highlighted in green. \ a(t)$. The subtask '''(4)'' refers to this.
  
  
''Hinweise:''  
+
''Notes:''  
* Die Aufgabe gehört zum Kapitel&nbsp; [[Mobile_Kommunikation/Wahrscheinlichkeitsdichte_des_Rayleigh%E2%80%93Fadings|Wahrscheinlichkeitsdichte des Rayleigh&ndash;Fadings]]&nbsp; dieses Buches.  
+
* The task belongs to chapter&nbsp; [[Mobile_Communications/Probability Density_of_Rayleigh%E2%80%93Fadings|Probability Density of Rayleigh&ndash;Fadings]]&nbsp; of this book.  
* Eine ähnliche Thematik wird mit anderer Herangehensweise im Kapitel&nbsp; [[Stochastische_Signaltheorie/Weitere_Verteilungen|Weitere Verteilungen]]&nbsp; des Buches &bdquo;Stochastische Signaltheorie&rdquo; behandelt.
+
* A similar topic is treated with a different approach in chapter&nbsp; [[Stochastic_Signal Theory/Weitere_Verteilungen|Weitere Verteilungen]]&nbsp; of the book &bdquo;Stochastic Signal Theory&rdquo;.
* Zur Überprüfung Ihrer Ergebnisse können Sie das interaktive Applet&nbsp; [[Applets:WDF_VTF|WDF, VTF und Momente]]&nbsp; benutzen.
+
* To check your results you can use the interactive applet&nbsp; [[Applets:WDF_VTF|WDF, VTF and Moments]]&nbsp; of the book &bdquo;Stochastic Signal Theory&rdquo;.
 
   
 
   
  
  
===Fragebogen===
+
===Questionnaire===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Im gesamten Bereich gilt für die Betragsfunktion&nbsp; $a(t) &#8804; 2$. Welcher Maximalwert ergibt sich in diesem Bereich für die logarithmische Größe?
+
{For the entire range, the amount function&nbsp; $a(t) &#8804; 2$ applies. What is the maximum value for the logarithmic quantity in this range?
 
|type="{}"}
 
|type="{}"}
${\rm Max}\big[20 \cdot {\rm lg} \ {a(t)}\big] \ = \ $ { 6 3% } $\ \rm dB$
+
${\rm Max}\big [20 \cdot {\rm lg} \ {a(t)}\big] \ = \ $ { 6 3% } $\ \rm dB$
  
{Welcher Maximalwert ergibt sich für&nbsp; $p(t) = |z(t)|^2$&nbsp; sowohl in linearer als auch in logarithmischer Darstellung?
+
{What is the maximum value for&nbsp; $p(t) = |z(t)|^2$&nbsp; both in linear and logarithmic representation?
 
|type="{}"}
 
|type="{}"}
${\rm Max}\big[p(t)\big] \ = \ $ { 4 3% }  
+
${\rm Max}\big[p(t)\big] \ = \ $ {\ $ 4 3% }  
${\rm Max}\big[10 \cdot {\rm lg} \ p(t)\big] \ = \ $ { 6 3% } $ \ \rm dB$
+
${\rm Max}\big [10 \cdot {\rm lg} \ p(t)\big] \ = \ $ { 6 3% } $ \ \rm dB$
  
{Es sei&nbsp; ${\rm Pr}\big[a(t) &#8804; 1\big] = 0.394$. Ermitteln Sie den Rayleigh&ndash;Parameter&nbsp; $\sigma$.
+
{Let &nbsp; ${\rm Pr}\big[a(t) &#8804; 1\big] = $0.394 Determine the Rayleigh&ndash;parameter&nbsp; $\sigma$.
 
|type="{}"}
 
|type="{}"}
$\sigma \ = \ $ { 1 3% }
+
$\sigma \ = \ $ { 1 3% }
  
{Mit welcher Wahrscheinlichkeit liegt die logarithmierte Rayleigh&ndash;Größe &nbsp; &#8658; &nbsp; $10 \cdot {\rm lg} \ p(t)$&nbsp; im Bereich zwischen zwischen&nbsp; $\text{-3 dB}$&nbsp; und&nbsp; $\text{+3 dB}$?
+
{What is the probability of the logarithmic Rayleigh&ndash;size &nbsp; &#8658; &nbsp; $10 \cdot {\rm lg} \ p(t)$&nbsp; in the range between between&nbsp; $\text{-3 dB}$&nbsp; and&nbsp; $\text{+3 dB}$?
 
|type="{}"}
 
|type="{}"}
${\rm Pr}(|10 \cdot {\rm lg} \ p(t)| < 3 \ \rm dB) \ = \ $ { 0.411 3% }
+
${\rm Pr}(|10 \cdot {\rm lg} \ p(t)| < 3 \ \rm dB) \ = \ $ { 0.411 3% }
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Sample solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Aus ${\rm Max}[a(t)] = 2$ folgt direkt:
+
'''(1)''&nbsp; From ${\rm Max}[a(t)] = 2$ follows directly:
:$${\rm Max} \left [ 20 \cdot {\rm lg}\hspace{0.15cm}a(t) \right ] = 20 \cdot {\rm lg}\hspace{0.15cm}(2) \hspace{0.15cm} \underline{\approx 6\,\,{\rm dB}}
+
$${\rm Max} \left [ 20 \cdot {\rm lg}\hspace{0.15cm}a(t) \right ] = 20 \cdot {\rm lg}\hspace{0.15cm}(2) \hspace{0.15cm} \underline{\approx 6\,\,{\rm dB}}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; Der Maximalwert des Betragsquadrats $p(t) = a(t)^2$ beträgt
+
'''(2)'''&nbsp; The maximum value of the square $p(t) = a(t)^2$ is
:$${\rm Max} \left [ p(t) \right ] = {\rm Max} \left [ a(t)^2 \right ] \hspace{0.15cm} \underline{= 4}
+
$$${\rm Max} \left [ p(t) \right ] = {\rm Max} \left [ a(t)^2 \right ] \hspace{0.15cm} \underline{\4}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
*Die logarithmische Darstellung des Betragsquadrats $p(t)$ ist identisch mit der logarithmischen Darstellung des Betrags $a(t)$. Da $p(t)$ eine Leistungsgröße ist, gilt
+
*The logarithmic representation of the square of the amount $p(t)$ is identical to the logarithmic representation of the amount $a(t)$. Since $p(t)$ is a power quantity
:$$10 \cdot {\rm lg}\hspace{0.15cm} p(t) = 10 \cdot {\rm lg}\hspace{0.15cm}a(t)^2 = 20 \cdot {\rm lg}\hspace{0.15cm} a(t)
+
$$10 \cdot {\rm lg}\hspace{0.15cm} p(t) = 10 \cdot {\rm lg}\hspace{0.15cm}a(t)^2 = 20 \cdot {\rm lg}\hspace{0.15cm} a(t)
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
*Der Maximalwert ist somit ebenfalls $\underline{\approx 6\,\,{\rm dB}}$.
+
*The maximum value is thus also $\underline{\approx 6\,\,{\rm dB}}$.
  
  
  
'''(3)'''&nbsp; Die Bedingung $a(t) &#8804; 1$ ist gleichbedeutend mit der Forderung $p(t) = a(t)^2 &#8804; 1$.  
+
'''(3)'''&nbsp; The condition $a(t) &#8804; 1$ is equivalent to the requirement $p(t) = a(t)^2 &#8804; 1$.  
*Das Betragsquadrat ist bekanntermaßen exponentialverteilt, und für $p &#8805; 0$ gilt demzufolge:
+
*The absolute square is known to be exponentially distributed, and for $p &#8805; 0$ applies accordingly:
:$$f_p(p) = \frac{1}{2\sigma^2} \cdot {\rm exp} [ -\frac{p}{2\sigma^2}]  
+
$$f_p(p) = \frac{1}{2\sigma^2} \cdot {\rm exp} [ -\frac{p}{2\sigma^2}]  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
[[Datei:P_ID2112__Mob_A_1_3c.png|right|frame|WDF und Wahrscheinlichkeitsgebiete ]]
+
[[File:P_ID2112__Mob_A_1_3c.png|right|frame|WDF and probability regions ]]
*Daraus folgt:
+
*It follows:
  
:$${\rm Pr}(p(t) \le 1) = \frac{1}{2\sigma^2} \cdot \int_{0}^{1}{\rm exp} [ -\frac{p}{2\sigma^2}] \hspace{0.15cm}{\rm d}p =  
+
$${\rm Pr}(p(t) \le 1) = \frac{1}{2\sigma^2} \cdot \int_{0}^{1}{\rm exp} [ -\frac{p}{2\sigma^2}] \hspace{0.15cm}{\rm d}p =  
 
  1 - {\rm exp} [ -\frac{1}{2\sigma^2}] = 0.394$$
 
  1 - {\rm exp} [ -\frac{1}{2\sigma^2}] = 0.394$$
:$$\Rightarrow \hspace{0.3cm} {\rm exp} [ -\frac{1}{2\sigma^2}] = 0.606 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}
+
$$\Rightarrow \hspace{0.3cm} {\rm exp} [ -\frac{1}{2\sigma^2}] = 0.606 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}
  \sigma^2 = \frac{1}{2 \cdot {\rm ln}\hspace{0.1cm}(0.606)} = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}  
+
  \sigma^2 = \frac{1}{2 \cdot {\rm ln}\hspace{0.1cm}(0.606)} = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}  
 
  \underline{\sigma = 1} \hspace{0.05cm}.$$
 
  \underline{\sigma = 1} \hspace{0.05cm}.$$
  
Die Grafik zeigt
+
The graphic shows
* links die Wahrscheinlichkeit&nbsp; ${\rm Pr}(p(t) &#8804; 1)$,
+
* left the probability&nbsp; ${\rm Pr}(p(t) &#8804; 1)$,
* rechts die Wahrscheinlichkeit&nbsp; ${\rm Pr}(0.5 \le p(t) &#8804; 2)$.
+
* right the probability&nbsp; ${\rm Pr}(0.5 \le p(t) &#8804; 2)$.
  
  
  
  
'''(4)'''&nbsp; Aus $10 \cdot {\rm lg} \ p_1 = \ &ndash;3 \ \rm dB$ folgt $p_1 = 0.5$ und die obere Grenze des Integrationsbereichs ergibt sich aus der Bedingung  $10 \cdot {\rm lg} \ p_2 = +3 \ \rm dB$ zu $p_2 = 2$.  
+
'''(4)''&nbsp; From $10 \cdot {\rm lg} \ p_1 = \ &ndash;3 \ \ \rm dB$ follows $p_1 = 0.5$ and the upper limit of the integration range results from the condition $10 \cdot {\rm lg} \ p_2 = +3 \ \ \rm dB$ to $p_2 = 2$.  
*Damit erhält man gemäß der obigen Grafik:
+
*This gives you, according to the above graphic:
:$${\rm Pr}(-3\,\,{\rm dB}\le 10 \cdot {\rm lg}\hspace{0.15cm}p(t) \le +3\,\,{\rm dB}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \int_{0.5}^{2}f_p(p)\hspace{0.15cm}{\rm d}p =  
+
$${\rm Pr}(-3\,\,{\rm dB}\le 10 \cdot {\rm lg}\hspace{0.15cm}p(t) \le +3\,\,{\rm dB}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \int_{0.5}^{2}f_p(p)\hspace{0.15cm}{\rm d}p =  
 
   \left [ - {\rm e}^{ -{p}/(2\sigma^2)}\hspace{0.15cm} \right ]_{0.5}^{2} ={\rm e}^{-0.25}- {\rm e}^{-1} \approx 0.779 - 0.368 \hspace{0.15cm} \underline{ = 0.411} \hspace{0.05cm}.$$
 
   \left [ - {\rm e}^{ -{p}/(2\sigma^2)}\hspace{0.15cm} \right ]_{0.5}^{2} ={\rm e}^{-0.25}- {\rm e}^{-1} \approx 0.779 - 0.368 \hspace{0.15cm} \underline{ = 0.411} \hspace{0.05cm}.$$
  

Version vom 25. März 2020, 17:09 Uhr

Time evolution of Rayleigh fading

Rayleigh–Fading should be used when

  • there is no direct connection between sender and receiver, and
  • the signal reaches the receiver in many ways, but their transit times are approximately the same.


An example of such a Rayleigh–channel occurs in urban mobile communications when narrowband signals are used with ranges between  $50$  and  $100$  meters.

Looking at the radio signals  $s(t)$  and  $r(t)$  in the equivalent low-pass range $($that is, around the frequency  $f = 0)$, the signal transmission is given by the equation

$$r(t)= z(t) \cdot s(t)$ described completely. The multiplicative falsification :$$z(t)= x(t) + {\rm j} \cdot y(t)$$ is always complex and has the following characteristics: * The real part  $x(t)$  and the imaginary part  $y(t)$  are Gaussian mean-free random variables, both with equal variance  $\sigma^2$. Within the components  $x(t)$  and  $y(t)$  there may be statistical bindings, but this is not relevant for the solution of the present task. There are no bonds between  $x(t)$  and  $y(t)$; their cross-correlation function is identical to zero. * The amount  $a(t) = |z(t)|$  has a Rayleigh–WDF, from which the name „<i>Rayleigh–Fading</i>” is derived: :$$f_a(a) =

\left\{ \begin{array}{c} a/\sigma^2 \cdot {\rm e}^ { -a^2/(2\sigma^2)} \\\ 0 \end{array} \right.\quad \begin{array}{*{*{1}c} {\rm f\ddot{u}r}\hspace{0.15cm} a \ge 0 \\ {\rm f\ddot{u}r}\hspace{0.15cm} a < 0 \\\ \\ \end{array}

\hspace{0.05cm}.$$

* The absolute square  $p(t) = a(t)^2 = |z(t)|^2$  is exponentially distributed according to the equation
$$f_p(p) = \left\{ \begin{array}{c} 1/(2\sigma^2) \cdot {\rm e}^ { -p/(2\sigma^2)} \\
0 \end{array} \right.\quad

\begin{array}{*{*{1}c} {\rm f\ddot{u}r}\hspace{0.15cm} p \ge 0 \\ {\rm f\ddot{u}r}\hspace{0.15cm} p < 0 \\\ \\ \end{array}

\hspace{0.05cm}.$$

Measurements have shown that the time intervals with  $a(t) ≤ 1$  (highlighted in yellow in the graphic) add up to  $\text{59 ms}$  (areas highlighted in red). With the total measurement time of  $\text{150 ms}$  the probability that the amount of the <i>Rayleigh–fading</i> is less than or equal to  $1$  results in
$${\rm Pr}(a(t) \le 1) = \frac{59\,\,{\,{\rm ms}}}{150\,\,{\rm ms}} = 39.4 \%
\hspace{0.05cm}.$$

In the lower graphic the value range between  $\text{-3 dB}$  and  $\text{+3 dB}$  regarding the logarithmic Rayleigh–Size  $20 \cdot {\rm lg} is highlighted in green. \ a(t)$. The subtask '''(4)'' refers to this.


''Notes:'' 
* The task belongs to chapter  [[Mobile_Communications/Probability Density_of_Rayleigh%E2%80%93Fadings|Probability Density of Rayleigh–Fadings]]  of this book. 
* A similar topic is treated with a different approach in chapter  [[Stochastic_Signal Theory/Weitere_Verteilungen|Weitere Verteilungen]]  of the book „Stochastic Signal Theory”.
* To check your results you can use the interactive applet  [[Applets:WDF_VTF|WDF, VTF and Moments]]  of the book „Stochastic Signal Theory”.
 


==='"`UNIQ--h-0--QINU`"'Questionnaire===

'"`UNIQ--quiz-00000002-QINU`"'

==='"`UNIQ--h-1--QINU`"'Sample solution===
'"`UNIQ--html-00000003-QINU`"'
'''(1)''  From ${\rm Max}[a(t)] = 2$ follows directly:
$${\rm Max} \left [ 20 \cdot {\rm lg}\hspace{0.15cm}a(t) \right ] = 20 \cdot {\rm lg}\hspace{0.15cm}(2) \hspace{0.15cm} \underline{\approx 6\,\,{\rm dB}}
 \hspace{0.05cm}.$$


'''(2)'''  The maximum value of the square $p(t) = a(t)^2$ is
$$${\rm Max} \left [ p(t) \right ] = {\rm Max} \left [ a(t)^2 \right ] \hspace{0.15cm} \underline{\4}
  \hspace{0.05cm}.'"`UNIQ-MathJax21-QINU`"'10 \cdot {\rm lg}\hspace{0.15cm} p(t) = 10 \cdot {\rm lg}\hspace{0.15cm}a(t)^2 = 20 \cdot {\rm lg}\hspace{0.15cm} a(t)
  \hspace{0.05cm}.'"`UNIQ-MathJax22-QINU`"'f_p(p) = \frac{1}{2\sigma^2} \cdot {\rm exp} [ -\frac{p}{2\sigma^2}] 
 \hspace{0.05cm}.'"`UNIQ-MathJax23-QINU`"'{\rm Pr}(p(t) \le 1) = \frac{1}{2\sigma^2} \cdot \int_{0}^{1}{\rm exp} [ -\frac{p}{2\sigma^2}] \hspace{0.15cm}{\rm d}p = 
 1 - {\rm exp} [ -\frac{1}{2\sigma^2}] = 0.394'"`UNIQ-MathJax24-QINU`"'\Rightarrow \hspace{0.3cm} {\rm exp} [ -\frac{1}{2\sigma^2}] = 0.606 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}
 \sigma^2 = \frac{1}{2 \cdot {\rm ln}\hspace{0.1cm}(0.606)} = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 
 \underline{\sigma = 1} \hspace{0.05cm}.'"`UNIQ-MathJax25-QINU`"'{\rm Pr}(-3\,\,{\rm dB}\le 10 \cdot {\rm lg}\hspace{0.15cm}p(t) \le +3\,\,{\rm dB}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}   \int_{0.5}^{2}f_p(p)\hspace{0.15cm}{\rm d}p = 
  \left [ - {\rm e}^{ -{p}/(2\sigma^2)}\hspace{0.15cm} \right ]_{0.5}^{2} ={\rm e}^{-0.25}- {\rm e}^{-1} \approx 0.779 - 0.368 \hspace{0.15cm} \underline{ = 0.411} \hspace{0.05cm}.$$