Aufgaben:Exercise 2.2: Simple Two-Path Channel Model: Unterschied zwischen den Versionen
Javier (Diskussion | Beiträge) K (Javier verschob die Seite Exercises:Exercise 2.2: Simple Two-Path Channel Model nach Exercise 2.2: Simple Two-Path Channel Model) |
Javier (Diskussion | Beiträge) |
||
Zeile 3: | Zeile 3: | ||
[[Datei:P_ID2157__Mob_A_2_2.png|right|frame|Zwei äquivalente Modelle <br>für den Zweiwege-Kanal]] | [[Datei:P_ID2157__Mob_A_2_2.png|right|frame|Zwei äquivalente Modelle <br>für den Zweiwege-Kanal]] | ||
− | + | Here we consider a two-way–channel for mobile radio according to the adjacent graphic, characterized by the model parameters | |
− | :$$k_1 = 10^{-4}\hspace{0.05cm}, \hspace{0.2cm} \ | + | :$$k_1 = 10^{-4}\hspace{0.05cm}, \hspace{0.2cm} \dew_{1} = 10\,{\rm µ s}\hspace{0.05cm}, \hspace{0.2cm}\dew_{2} = 11\,{\rm µ s} \hspace{0.05cm}.$$ |
− | + | Two different numerical values are considered for the damping factor on the secondary path: | |
− | * $k_2 = 2 \cdot 10^{-5}$ ⇒ | + | * $k_2 = 2 \cdot 10^{-5}$ ⇒ subtasks '''(1)''' to '''(4)''', |
− | * $k_2 = 10^{-4}$ | + | * $k_2 = 10^{-4}$ ⇒ subtasks '''(5)'' and '''(6)'''. |
− | + | An equivalent channel model is shown below, with only the part highlighted in green being considered further. This means: | |
− | * | + | *The basic attenuation (path loss) and the basic propagation time are not taken into account here. |
− | * | + | *The frequency response of this $(k_0, \tau_0$)–model is designated $H_0(f)$ . |
− | + | An important descriptive parameter of any mobile radio system is the coherence bandwidth $B_{\rm K}$, which is defined in the chapter [[Mobile_Communications/The_GWSSUS%E2%80%93Channel Model| GWSSUS–Channel Model]] . With this it can be decided whether the system can be considered as non-frequency selective: | |
− | * | + | *This is justified if the signal bandwidth $B_{\rm S}$ is significantly smaller than the coherence bandwidth $B_{\rm K}$. |
− | * | + | *Otherwise, the mobile radio system is frequency selective, which requires a more complicated description. |
− | + | As a simple approximation for the coherence bandwidth, the reciprocal value of pulse broadening is often used in the literature (marked by an apostrophe in our learning tutorial): | |
− | :$$B_{\rm K}\hspace{0.01cm}' = \frac{1}{\ | + | :$$B_{\rm K}\hspace{0.01cm}' = \frac{1}{\frac_{\rm max} - \frac_{\rm min}} \hspace{0.05cm}.$$ |
Zeile 30: | Zeile 30: | ||
− | '' | + | ''Notes:'' |
− | * | + | * This task belongs to the topic of the chapter [[Mobile_Kommunikation/Mehrwegeempfang_beim_Mobilfunk| Mehrwegeempfang beim Mobilfunk]]. |
− | * | + | * For the solution you also need the speed of light $c = 3 \cdot 10^8 \ \rm m/s$. |
− | * | + | * For $k_2$ only positive values are used here You may remember: If the secondary path is created by reflection on a wall, a phase change by $\pi$ is actually to be considered, resulting in a negative $k_2$–value. |
− | === | + | ===Questionnaire=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {What length $d_1$ does the direct path have? |
|type="{}"} | |type="{}"} | ||
− | $d_1 \ = \ ${ 3 3% } $\ \rm km$ | + | $d_1 \ = \ ${ 3 3% } $\ \ \rm km$ |
− | { | + | {What are the parameters of the simplified model for $k_2 = 2 \cdot 10^{-5}$? |
|type="{}"} | |type="{}"} | ||
$k_0 \ = \ ${ 0.2 3% } | $k_0 \ = \ ${ 0.2 3% } | ||
− | $\tau_0 \ = \ ${ 1 3% } $\ \rm µ s$ | + | $\tau_0 \ = \ ${ 1 3% } $\ \ \rm µ s$ |
− | { | + | {Calculate the magnitude frequency response ⇒ $|H_0(f)|$ of the simplified model for the frequencies $f = 0$, $f = 250 \ \rm kHz$ and $f = 500 \ \rm kHz$ |
|type="{}"} | |type="{}"} | ||
$|H_0(f = 0)| \ = \ ${ 1.2 3% } | $|H_0(f = 0)| \ = \ ${ 1.2 3% } | ||
Zeile 55: | Zeile 55: | ||
$|H_0(f = 500 \ \rm kHz)| \ = \ ${ 0.8 3% } | $|H_0(f = 500 \ \rm kHz)| \ = \ ${ 0.8 3% } | ||
− | { | + | {Which signal frequencies $f_{\rm S}$ do destructive superimpositions occur here? |
|type="[]"} | |type="[]"} | ||
+ $f_{\rm S} = 500 \ \rm kHz$, | + $f_{\rm S} = 500 \ \rm kHz$, | ||
Zeile 61: | Zeile 61: | ||
- $f_{\rm S} = 1 \ \rm MHz$. | - $f_{\rm S} = 1 \ \rm MHz$. | ||
− | { | + | {Which coherence bandwidth results for $k_2 = 2 \cdot 10^{-5}$ or. $k_2 = 10^{-4}$ after the simple approximation? |
|type="{}"} | |type="{}"} | ||
− | $k_2 = 2 \cdot 10^{-5} \text | + | $k_2 = 2 \cdot 10^{-5} \text \ \hspace{0.4cm} B_{\rm K}\hspace{0.01cm}' = \ ${ 1 3% } $\ \rm MHz |
− | $k_2 = 10^{-4} \text | + | $k_2 = 10^{-4} \text \ \hspace{0.4cm} B_{\rm K}\hspace{0.01cm}' = \ ${ 1 3% } $\ \rm MHz |
− | { | + | {Which statements are correct regarding frequency selectivity when $B_{\rm S}$ denotes the signal bandwidth? |
|type="[]"} | |type="[]"} | ||
− | - | + | - For GSM: $(B_{\rm S} = 200 \ \rm kHz)$ the channel is frequency selective. |
− | + | + | + For UMTS: $(B_{\rm S} = 5 \ \rm MHz)$ the channel is frequency selective. |
</quiz> | </quiz> | ||
− | === | + | ===Sample solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' The following applies $\tau_1 = d_1/c$ ⇒ $ d_1 = \tau_1 \cdot c = 10^{-5} \rm s \cdot 3 \cdot 10^8 \ m/s \ \ \underline {= 3 \ km}$. |
− | '''(2)''' | + | '''(2)''' The damping factor is $k_0 = k_2/k_1 \ \ \underline {= 0.2}$ and the delay time $\tau_0 = \tau_2 \ – \tau_1 \ \underline {= 1 \ \ \rm µ s}$. |
− | * | + | *The path loss effective for both paths is thus $k_1 = 10^{-4}$ and the basic delay time is $\tau_1 = 10 \ \ \rm µ s$. |
+ | '''(3)''' The impulse location is | ||
+ | $$h_{\rm 0}(\dew) = \delta(\dew) + k_0 \cdot \delta(\dew - \dew_0) \hspace{0.05cm}.$ | ||
− | + | By Fourier transformation you get the frequency response | |
− | + | :$$H_{\rm 0}(f) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1 + k_0 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \dew_0}=1 + k_0 \cdot {\cos}( 2 \pi f \dew_0) + {\rm j}\cdot k_0 \cdot {\sin | |
− | |||
− | |||
− | :$$H_{\rm 0}(f) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1 + k_0 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \ | ||
}( 2 \pi f \tau_0) | }( 2 \pi f \tau_0) | ||
\hspace{0.05cm},$$ | \hspace{0.05cm},$$ | ||
− | + | and thus to the following magnitude frequency response: | |
− | + | $$|H_{\rm 0}(f)| = \sqrt{ \left [ 1 + k_0 \cdot {\cos}( 2 \pi f \tau_0)\right ]^2 + k_0^2 \cdot {\sin^2 }( 2 \pi f \tau_0)}\hspace{0.3cm} | |
− | \Rightarrow \hspace{0.3cm}|H_{\rm 0}(f = 0)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} | + | \Rightarrow \hspace{0.3cm}|H_{\rm 0}(f = 0)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1+ k_0 \hspace{0.1cm} \underline {=1.2} \hspace{0.05cm},$$ |
− | + | $$|H_{\rm 0}(f = 250\,{\rm kHz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{ \left [ 1 + k_0 \cdot {\cos}( \pi/2)\right ]^2 + k_0^2 \cdot {\sin^2 }( \pi/2)} = \sqrt{1+ k_0^2} \hspace{0.1cm} \underline {\approx 1.02} \hspace{0.05cm},$$ | |
− | + | $$|H_{\rm 0}(f = 500\,{\rm kHz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{ \left [ 1 + k_0 \cdot {\cos}( \pi)\right ]^2 + k_0^2 \cdot {\sin^2 }( \pi)} = {1- k_0} \hspace{0.1cm} \underline {= 0.8} \hspace{0.05cm}.$$ | |
− | [[ | + | [[File:P_ID2158__Mob_A_2_2c.png|right|frame|Amount frequency response of a two-way channel]] |
− | + | The graphic (red curve) shows the function $|H_0(f)|$. | |
− | * | + | *The values you are looking for are marked by the yellow dots. |
− | * | + | *The blue curve refers to the subtask (5) with $k_0 = 1 \ \Rightarrow \ k_2 = k_0 \cdot k_1 = 10^{–4}$. |
− | '''(4)''' | + | '''(4)''' Correct is the <u>solution 1</u>: |
− | * | + | *Destructive overlays exist for $|H_0(f)| < 1$, for example for $f = 500 \ \rm kHz$. |
− | * | + | *On the other hand: |
:$$|H_{\rm 0}(f = 750\,{\rm kHz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} |H_{\rm 0}(f = 250\,{\rm kHz})| \approx 1.02 > 1\hspace{0.05cm},$$ | :$$|H_{\rm 0}(f = 750\,{\rm kHz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} |H_{\rm 0}(f = 250\,{\rm kHz})| \approx 1.02 > 1\hspace{0.05cm},$$ | ||
− | :$$|H_{\rm 0}(f = 1\,{\rm MHz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} |H_{\rm 0}(f = 0)| = 1.2 | + | :$$|H_{\rm 0}(f = 1\,{\rm MHz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} |H_{\rm 0}(f = 0)| = 1.2 > 1 \hspace{0.05cm}.$ |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | '''(5)''' The difference $\tau_{\rm max} \ – \tau_{\rm min}$ of the delay times in the two paths is equal to $\tau_0 = 1 \ \ \rm µ s$. | ||
+ | *So the coherence bandwidth | ||
+ | :$$B_{\rm K}\hspace{0.01cm}' = {1}/{\dew_{\rm 0} \hspace{0.1cm} \underline {=1\,{\rm MHz} \hspace{0.05cm}.$$ | ||
− | + | *The result is independent from $k_2$. It applies to $k_2 = 2 \cdot 10^{-5} \Rightarrow k_0 = 0.2$ and $k_2 = 10^{-4} \Rightarrow k_0 = $1 in the same way. | |
− | * | + | *In the graph this approximation $B_{\rm K}\hspace{0.01cm}'$ is drawn for the coherence bandwidth. |
− | |||
− | |||
+ | '''(6)''' Correct is the <u>solution 2</u>: | ||
+ | *The channel is not frequency selective if the coherence bandwidth $B_{\rm K}$ is significantly larger than the signal bandwidth $B_{\rm S}$. | ||
+ | *For the given channel, this is true for GSM, but not for UMTS. For UMTS there is a frequency-selective channel. | ||
+ | {{{ML-Fuß}} | ||
[[Category:Exercises for Mobile Communications|^2.2 Multi-Path Reception in Wireless Systems^]] | [[Category:Exercises for Mobile Communications|^2.2 Multi-Path Reception in Wireless Systems^]] |
Version vom 15. April 2020, 13:46 Uhr
Here we consider a two-way–channel for mobile radio according to the adjacent graphic, characterized by the model parameters
- $$k_1 = 10^{-4}\hspace{0.05cm}, \hspace{0.2cm} \dew_{1} = 10\,{\rm µ s}\hspace{0.05cm}, \hspace{0.2cm}\dew_{2} = 11\,{\rm µ s} \hspace{0.05cm}.$$
Two different numerical values are considered for the damping factor on the secondary path:
- $k_2 = 2 \cdot 10^{-5}$ ⇒ subtasks (1) to (4),
- $k_2 = 10^{-4}$ ⇒ subtasks (5) and (6)'.
An equivalent channel model is shown below, with only the part highlighted in green being considered further. This means:
- The basic attenuation (path loss) and the basic propagation time are not taken into account here.
- The frequency response of this $(k_0, \tau_0$)–model is designated $H_0(f)$ .
An important descriptive parameter of any mobile radio system is the coherence bandwidth $B_{\rm K}$, which is defined in the chapter GWSSUS–Channel Model . With this it can be decided whether the system can be considered as non-frequency selective:
- This is justified if the signal bandwidth $B_{\rm S}$ is significantly smaller than the coherence bandwidth $B_{\rm K}$.
- Otherwise, the mobile radio system is frequency selective, which requires a more complicated description.
As a simple approximation for the coherence bandwidth, the reciprocal value of pulse broadening is often used in the literature (marked by an apostrophe in our learning tutorial):
- $$B_{\rm K}\hspace{0.01cm}' = \frac{1}{\frac_{\rm max} - \frac_{\rm min}} \hspace{0.05cm}.$$
Notes:
- This task belongs to the topic of the chapter Mehrwegeempfang beim Mobilfunk.
- For the solution you also need the speed of light $c = 3 \cdot 10^8 \ \rm m/s$.
- For $k_2$ only positive values are used here You may remember: If the secondary path is created by reflection on a wall, a phase change by $\pi$ is actually to be considered, resulting in a negative $k_2$–value.
Questionnaire
Sample solution
(2) The damping factor is $k_0 = k_2/k_1 \ \ \underline {= 0.2}$ and the delay time $\tau_0 = \tau_2 \ – \tau_1 \ \underline {= 1 \ \ \rm µ s}$.
- The path loss effective for both paths is thus $k_1 = 10^{-4}$ and the basic delay time is $\tau_1 = 10 \ \ \rm µ s$.
(3) The impulse location is $$h_{\rm 0}(\dew) = \delta(\dew) + k_0 \cdot \delta(\dew - \dew_0) \hspace{0.05cm}.$ By Fourier transformation you get the frequency response :$$H_{\rm 0}(f) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1 + k_0 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \dew_0}=1 + k_0 \cdot {\cos}( 2 \pi f \dew_0) + {\rm j}\cdot k_0 \cdot {\sin
}( 2 \pi f \tau_0) \hspace{0.05cm},$$ and thus to the following magnitude frequency response: $$|H_{\rm 0}(f)| = \sqrt{ \left [ 1 + k_0 \cdot {\cos}( 2 \pi f \tau_0)\right ]^2 + k_0^2 \cdot {\sin^2 }( 2 \pi f \tau_0)}\hspace{0.3cm}
\Rightarrow \hspace{0.3cm}|H_{\rm 0}(f = 0)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1+ k_0 \hspace{0.1cm} \underline {=1.2} \hspace{0.05cm},$$ $$|H_{\rm 0}(f = 250\,{\rm kHz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{ \left [ 1 + k_0 \cdot {\cos}( \pi/2)\right ]^2 + k_0^2 \cdot {\sin^2 }( \pi/2)} = \sqrt{1+ k_0^2} \hspace{0.1cm} \underline {\approx 1.02} \hspace{0.05cm},$$ $$|H_{\rm 0}(f = 500\,{\rm kHz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{ \left [ 1 + k_0 \cdot {\cos}( \pi)\right ]^2 + k_0^2 \cdot {\sin^2 }( \pi)} = {1- k_0} \hspace{0.1cm} \underline {= 0.8} \hspace{0.05cm}.$$ [[File:P_ID2158__Mob_A_2_2c.png|right|frame|Amount frequency response of a two-way channel]] The graphic (red curve) shows the function $|H_0(f)|$. *The values you are looking for are marked by the yellow dots. *The blue curve refers to the subtask (5) with $k_0 = 1 \ \Rightarrow \ k_2 = k_0 \cdot k_1 = 10^{–4}$. '''(4)''' Correct is the <u>solution 1</u>: *Destructive overlays exist for $|H_0(f)| < 1$, for example for $f = 500 \ \rm kHz$. *On the other hand: :$$|H_{\rm 0}(f = 750\,{\rm kHz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} |H_{\rm 0}(f = 250\,{\rm kHz})| \approx 1.02 > 1\hspace{0.05cm},$$ :$$|H_{\rm 0}(f = 1\,{\rm MHz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} |H_{\rm 0}(f = 0)| = 1.2 > 1 \hspace{0.05cm}.$ '''(5)''' The difference $\tau_{\rm max} \ – \tau_{\rm min}$ of the delay times in the two paths is equal to $\tau_0 = 1 \ \ \rm µ s$. *So the coherence bandwidth :'"`UNIQ-MathJax34-QINU`"' *The result is independent from $k_2$. It applies to $k_2 = 2 \cdot 10^{-5} \Rightarrow k_0 = 0.2$ and $k_2 = 10^{-4} \Rightarrow k_0 = $1 in the same way. *In the graph this approximation $B_{\rm K}\hspace{0.01cm}'$ is drawn for the coherence bandwidth. '''(6)''' Correct is the <u>solution 2</u>: *The channel is not frequency selective if the coherence bandwidth $B_{\rm K}$ is significantly larger than the signal bandwidth $B_{\rm S}$.
- For the given channel, this is true for GSM, but not for UMTS. For UMTS there is a frequency-selective channel.
{