Aufgaben:Exercise 2.2Z: Real Two-Path Channel: Unterschied zwischen den Versionen
Javier (Diskussion | Beiträge) K (Javier verschob die Seite Exercises:Exercise 2.2Z: Real Two-Path Channel nach Exercise 2.2Z: Real Two-Path Channel) |
Javier (Diskussion | Beiträge) |
||
Zeile 3: | Zeile 3: | ||
[[Datei:P_ID2159__Mob_Z_2_2.png|right|frame|Zweiwege–Szenario]] | [[Datei:P_ID2159__Mob_Z_2_2.png|right|frame|Zweiwege–Szenario]] | ||
− | + | The sketched scenario is considered in which the transmitted signal $s(t)$ reaches the antenna of the receiver via two paths: | |
− | + | $$r(t) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} r_1(t) + r_2(t) =k_1 \cdot s( t - \dew_1) + k_2 \cdot s( t - \dew_2) | |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | Note the following: | |
− | * | + | * The runtimes $\tau_1$ and $\tau_2$ on main– and secondary path can be calculated from the path lengths $d_1$ and $d_2$ using the speed of light $c = 3 \cdot 10^8 \ \rm m/s$ . |
− | * | + | * The amplitude factors $k_1$ and $k_2$ are to be assumed in a simplified way according to the path loss model with the path loss exponent $\gamma = 2$ (free space attenuation). |
− | * | + | * The height of the transmitting antenna is $h_{\rm S} = 500 \ \rm m$, that of the receiving antenna $h_{\rm E} = 30 \ \rm m$. The antennas are at a distance of $d = 10 \ \ \rm km$. |
− | * | + | * The reflection on the secondary path causes a phase change of $\pi$, so that the partial signals must be subtracted. This is taken into account by a negative $k_2$–value. |
Zeile 17: | Zeile 17: | ||
− | '' | + | ''Note:'' |
− | * | + | * This task belongs to the chapter [[Mobile_Kommunikation/Mehrwegeempfang_beim_Mobilfunk| Mehrwegeempfang beim Mobilfunk]]. |
− | === | + | ===Questionnaire=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Calculate the length $d_1$ of the direct path |
|type="{}"} | |type="{}"} | ||
− | $d_1 \ = \ ${ 10011 1% } $\ \rm m$ | + | $d_1 \ = \ ${ 10011 1% } $\ \ \rm m$ |
− | { | + | {Calculate the length $d_2$ of the detour path |
|type="{}"} | |type="{}"} | ||
− | $d_2 \ = \ ${ 10014 1% } $\ \rm m$ | + | $d_2 \ = \ ${ 10014 1% } $\ \ \rm m$ |
− | { | + | {Which differences $\Delta d = d_2 \ - d_1$ and $\Delta \tau = \tau_2 -\tau_1$ (term) result from exact calculation? |
|type="{}"} | |type="{}"} | ||
− | $\Delta d \ = \ ${ 2 | + | $\Delta d \ = \ ${ 2,996 3% } $\ \ \rm m$ |
− | $\Delta \tau \ = \ ${ 9 | + | $\ Delta \tau \ = \ ${ 9,987 3% } $\ \ \rm ns$ |
− | { | + | {What equation results for the transit time difference $\delta \tau$ with the approximation $\sqrt{(1 + \varepsilon)} \approx 1 + \varepsilon/2$ valid for small $\varepsilon$ ? |
|type="[]"} | |type="[]"} | ||
- $\Delta \tau = (h_{\rm S} \ - h_{\rm E})/d$, | - $\Delta \tau = (h_{\rm S} \ - h_{\rm E})/d$, | ||
Zeile 44: | Zeile 44: | ||
+ $\Delta \tau = 2 \cdot h_{\rm S} \cdot h_{\rm E}/(c \cdot d)$. | + $\Delta \tau = 2 \cdot h_{\rm S} \cdot h_{\rm E}/(c \cdot d)$. | ||
− | { | + | {Which statements apply for the amplitude coefficients $k_1$ and $k_2$ ? |
|type="[]"} | |type="[]"} | ||
− | + | + | + The coefficients $k_1$ and $k_2$ are almost equal in amount. |
− | - | + | - The amounts $|k_1|$ and $|k_2|$ differ significantly. |
− | + | + | + The coefficients $|k_1|$ and $|k_2|$ differ in sign. |
</quiz> | </quiz> | ||
− | === | + | ===Sample solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' According to „Pythagoras”: |
− | + | $$d_1 = \sqrt{d^2 + (h_{\rm S}- h_{\rm E})^2} = \sqrt{10^2 + (0.5- 0.03)^2} \,\,{\rm km} \hspace{0.1cm} \underline {=10011.039\,{\rm m}} | |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * | + | *Actually, specifying such a length with an accuracy of one millimeter is not very useful and contradicts the mentality of an engineer. |
− | * | + | *We have done this anyway to be able to check the accuracy of the approximation searched for in the subtask (4). |
− | '''(2)''' | + | '''(2)''' If you fold the reflected beam right vpn $x_{\rm R}$ downwards (reflection on the ground), you get again a right-angled triangle. From this follows: |
− | + | $$d_2 = \sqrt{d^2 + (h_{\rm S}+ h_{\rm E})^2} = \sqrt{10^2 + (0.5+ 0.03)^2} \,\,{\rm km} \hspace{0.1cm} \underline {=10014.035\,{\rm m}} | |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | '''(3)''' | + | '''(3)''' With the results from '''(1)''' and '''(2)''' you get for the lengths– and the runtime difference: |
− | :$$\Delta d = d_2 - d_1 = \hspace{0.1cm} \underline {=2 | + | :$$\Delta d = d_2 - d_1 = \hspace{0.1cm} \underline {=2,996\,{\rm m} |
\hspace{0.05cm},\hspace{1cm} | \hspace{0.05cm},\hspace{1cm} | ||
− | \ | + | \delta \tau = \frac{\delta d}{c} = \frac{2,996\,{\rm m}}}{3 \cdot 10^8 \,{\rm m/s}} \hspace{0.1cm} \underline {=9,987\,{\rm ns} |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | '''(4)''' With $h_{\rm S} + h_{\rm E} \ll d$ the above equation can be expressed as follows: | |
− | '''(4)''' | + | $$d_1 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} d \cdot \sqrt{1 + \frac{(h_{\rm S}- h_{\rm E})^2}{d^2} \approx d \cdot \left [ 1 + \frac{(h_{\rm S}- h_{\rm E})^2}{2d^2} \right ] \hspace{0.05cm},\hspace{1cm} |
− | + | d_2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} d \cdot \sqrt{1 + \frac{(h_{\rm S}+ h_{\rm E})^2}{d^2} \approx d \cdot \left [ 1 + \frac{(h_{\rm S}+ h_{\rm E})^2}{2d^2} \right ] $$ | |
− | d_2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} d \cdot \sqrt{1 + \frac{(h_{\rm S}+ h_{\rm E})^2}{d^2 | + | $$\Rightarrow \hspace{0.3cm} \delta d = d_2 - d_1 \approx \frac {1}{2d} \cdot \left [ (h_{\rm S}+ h_{\rm E})^2 - (h_{\rm S}- h_{\rm E})^2 \right ] |
− | + | = \frac {2 \cdot h_{\rm S}\cdot h_{\rm E}}{d}\hspace{0.3cm} | |
− | = | + | \Rightarrow \hspace{0.3cm} \delta \tau = \frac{\delta d}{c} \approx \frac {2 \cdot h_{\rm S}\cdot h_{\rm E}}{c \cdot d} |
− | \Rightarrow \hspace{0.3cm} \ | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * | + | *So the correct solution is the <u>solution 3</u>. With the given numerical values you get for this: |
− | + | $$\Delta \tau \approx \frac {2 \cdot 500\,{\rm m}\cdot 30\,{\rm m}}{3 \cdot 10^8 \,{\rm m/s} \cdot 10000\,{\rm m}} = 10^{-8}\,{\rm s} = 10\,{\rm ns} | |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * | + | *The relative falsification to the actual value according to the subtask '''(3)'' is only $0.13\%$. |
− | * | + | *In solution 1 the unit is already wrong. |
− | * | + | *In solution 2, there would be no propagation delay if both antennas were the same height. This is certainly not true. |
− | '''(5)''' | + | '''(5)''' The path loss exponent $\gamma = 2$ says that the reception power $P_{\rm E}$ decreases quadratically with distance. |
− | * | + | *The signal amplitude thus decreases with $1/d$, and with a constant $K$ applies: |
− | :$$k_1 = | + | :$$k_1 = \frac {K}{d_1} \hspace{0.05cm},\hspace{0.2cm}|k_2| = \frac {K}{d_2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} |
− | \frac {|k_2|}{k_1} = \frac {d_1}{d_2}= \frac {10011 | + | \frac {|k_2|}{k_1} = \frac {d_1}{d_2}= \frac {10011,039\,{\rm m}}{10014,035\,{\rm m}} \approx 0.99 \hspace{0.05cm}.$$ |
− | * | + | *The two path weights thus only differ in amount by about $1\%$. |
− | * | + | *However, the coefficients $k_1$ and $k_2$ have different signs ⇒ Correct are the <u>answers 1 and 3</u>. |
{{ML-Fuß}} | {{ML-Fuß}} | ||
− | |||
− | |||
[[Category:Exercises for Mobile Communications|^2.2 Multi-Path Reception in Wireless Systems^]] | [[Category:Exercises for Mobile Communications|^2.2 Multi-Path Reception in Wireless Systems^]] |
Version vom 15. April 2020, 14:05 Uhr
The sketched scenario is considered in which the transmitted signal $s(t)$ reaches the antenna of the receiver via two paths: $$r(t) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} r_1(t) + r_2(t) =k_1 \cdot s( t - \dew_1) + k_2 \cdot s( t - \dew_2) \hspace{0.05cm}.$$
Note the following:
- The runtimes $\tau_1$ and $\tau_2$ on main– and secondary path can be calculated from the path lengths $d_1$ and $d_2$ using the speed of light $c = 3 \cdot 10^8 \ \rm m/s$ .
- The amplitude factors $k_1$ and $k_2$ are to be assumed in a simplified way according to the path loss model with the path loss exponent $\gamma = 2$ (free space attenuation).
- The height of the transmitting antenna is $h_{\rm S} = 500 \ \rm m$, that of the receiving antenna $h_{\rm E} = 30 \ \rm m$. The antennas are at a distance of $d = 10 \ \ \rm km$.
- The reflection on the secondary path causes a phase change of $\pi$, so that the partial signals must be subtracted. This is taken into account by a negative $k_2$–value.
Note:
- This task belongs to the chapter Mehrwegeempfang beim Mobilfunk.
Questionnaire
Sample solution
- Actually, specifying such a length with an accuracy of one millimeter is not very useful and contradicts the mentality of an engineer.
- We have done this anyway to be able to check the accuracy of the approximation searched for in the subtask (4).
(2) If you fold the reflected beam right vpn $x_{\rm R}$ downwards (reflection on the ground), you get again a right-angled triangle. From this follows: $$d_2 = \sqrt{d^2 + (h_{\rm S}+ h_{\rm E})^2} = \sqrt{10^2 + (0.5+ 0.03)^2} \,\,{\rm km} \hspace{0.1cm} \underline {=10014.035\,{\rm m}} \hspace{0.05cm}.$$
(3) With the results from (1) and (2) you get for the lengths– and the runtime difference:
- $$\Delta d = d_2 - d_1 = \hspace{0.1cm} \underline {=2,996\,{\rm m} \hspace{0.05cm},\hspace{1cm} \delta \tau = \frac{\delta d}{c} = \frac{2,996\,{\rm m}}}{3 \cdot 10^8 \,{\rm m/s}} \hspace{0.1cm} \underline {=9,987\,{\rm ns} \hspace{0.05cm}.$$
(4) With $h_{\rm S} + h_{\rm E} \ll d$ the above equation can be expressed as follows: $$d_1 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} d \cdot \sqrt{1 + \frac{(h_{\rm S}- h_{\rm E})^2}{d^2} \approx d \cdot \left [ 1 + \frac{(h_{\rm S}- h_{\rm E})^2}{2d^2} \right ] \hspace{0.05cm},\hspace{1cm} d_2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} d \cdot \sqrt{1 + \frac{(h_{\rm S}+ h_{\rm E})^2}{d^2} \approx d \cdot \left [ 1 + \frac{(h_{\rm S}+ h_{\rm E})^2}{2d^2} \right ] $$ $$\Rightarrow \hspace{0.3cm} \delta d = d_2 - d_1 \approx \frac {1}{2d} \cdot \left [ (h_{\rm S}+ h_{\rm E})^2 - (h_{\rm S}- h_{\rm E})^2 \right ] = \frac {2 \cdot h_{\rm S}\cdot h_{\rm E}}{d}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \delta \tau = \frac{\delta d}{c} \approx \frac {2 \cdot h_{\rm S}\cdot h_{\rm E}}{c \cdot d} \hspace{0.05cm}.$$
- So the correct solution is the solution 3. With the given numerical values you get for this:
$$\Delta \tau \approx \frac {2 \cdot 500\,{\rm m}\cdot 30\,{\rm m}}{3 \cdot 10^8 \,{\rm m/s} \cdot 10000\,{\rm m}} = 10^{-8}\,{\rm s} = 10\,{\rm ns} \hspace{0.05cm}.$$
- The relative falsification to the actual value according to the subtask '(3) is only $0.13\%$.
- In solution 1 the unit is already wrong.
- In solution 2, there would be no propagation delay if both antennas were the same height. This is certainly not true.
(5) The path loss exponent $\gamma = 2$ says that the reception power $P_{\rm E}$ decreases quadratically with distance.
- The signal amplitude thus decreases with $1/d$, and with a constant $K$ applies:
- $$k_1 = \frac {K}{d_1} \hspace{0.05cm},\hspace{0.2cm}|k_2| = \frac {K}{d_2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac {|k_2|}{k_1} = \frac {d_1}{d_2}= \frac {10011,039\,{\rm m}}{10014,035\,{\rm m}} \approx 0.99 \hspace{0.05cm}.$$
- The two path weights thus only differ in amount by about $1\%$.
- However, the coefficients $k_1$ and $k_2$ have different signs ⇒ Correct are the answers 1 and 3.