Aufgaben:Aufgabe 5.2Z: Zur PN–Modulation: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 4: Zeile 4:
  
 
[[Datei:P_ID1871__Mod_Z_5_2.png|right|frame|Modelle von PN–Modulation (oben) und BPSK (unten)]]
 
[[Datei:P_ID1871__Mod_Z_5_2.png|right|frame|Modelle von PN–Modulation (oben) und BPSK (unten)]]
Die Grafik zeigt das Ersatzschaltbild der PN–Modulation (englisch:   ''Direct Sequence Spread Spectrum'', abgekürzt DS–SS) im äquivalenten Tiefpassbereich, wobei AWGN–Rauschen  $n(t)$  zugrunde liegt. Darunter dargestellt ist das TP–Modell der binären Phasenmodulation (BPSK).  
+
Die Grafik zeigt das Ersatzschaltbild der  $\rm PN$–Modulation  $($englisch:   ''Direct Sequence Spread Spectrum'', abgekürzt  $\rm DS–SS)$  im äquivalenten Tiefpassbereich, wobei AWGN–Rauschen  $n(t)$  zugrunde liegt.  Darunter dargestellt ist das Tiefpass–Modell der binären Phasenmodulation  $\rm (BPSK)$.  
  
 
Das Tiefpass–Sendesignal  $s(t)$  ist aus Gründen einheitlicher Darstellung gleich dem rechteckförmigen Quellensignal  $q(t) ∈ \{+1, –1\}$  mit Rechteckdauer  $T$  gesetzt.  
 
Das Tiefpass–Sendesignal  $s(t)$  ist aus Gründen einheitlicher Darstellung gleich dem rechteckförmigen Quellensignal  $q(t) ∈ \{+1, –1\}$  mit Rechteckdauer  $T$  gesetzt.  
Zeile 16: Zeile 16:
 
:$$p_{\rm B} = {\rm Q} \left( \hspace{-0.05cm} \sqrt { {2 \cdot E_{\rm B}}/{N_{\rm 0}} } \hspace{0.05cm} \right )$$
 
:$$p_{\rm B} = {\rm Q} \left( \hspace{-0.05cm} \sqrt { {2 \cdot E_{\rm B}}/{N_{\rm 0}} } \hspace{0.05cm} \right )$$
 
auch für die PN–Modulation gültig ist, bzw. wie die angegebene Gleichung zu modifizieren ist.
 
auch für die PN–Modulation gültig ist, bzw. wie die angegebene Gleichung zu modifizieren ist.
 +
 +
 +
  
  
Zeile 23: Zeile 26:
 
''Hinweise:''  
 
''Hinweise:''  
 
*Die Aufgabe gehört zum  Kapitel  [[Modulationsverfahren/PN–Modulation|PN–Modulation]].
 
*Die Aufgabe gehört zum  Kapitel  [[Modulationsverfahren/PN–Modulation|PN–Modulation]].
*Für die Lösung dieser Aufgabe ist die Angabe der spezifischen Spreizfolge (M–Sequenz oder Walsh–Funktion) nicht von Bedeutung.
+
*Für die Lösung dieser Aufgabe ist die Angabe der spezifischen Spreizfolge  $($M–Sequenz oder Walsh–Funktion$)$  nicht von Bedeutung.
 
   
 
   
  
Zeile 47: Zeile 50:
 
- Die Rauschleistung  $σ_n^2$  muss um den Faktor  $J$  vermindert werden.
 
- Die Rauschleistung  $σ_n^2$  muss um den Faktor  $J$  vermindert werden.
  
{Welche Bitfehlerwahrscheinlichkeit &nbsp;$p_{\rm B}$&nbsp; ergibt sich für &nbsp;$10 \lg \  (E_{\rm B}/N_0) = 6\ \rm  dB$&nbsp; bei PN–Modulation? <br>''Hinweis:'' Bei BPSK gilt in diesem Fall: &nbsp; $p_{\rm B} ≈ 2.3 · 10^{–3}$.
+
{Welche Bitfehlerwahrscheinlichkeit &nbsp;$p_{\rm B}$&nbsp; ergibt sich für &nbsp;$10 \lg \  (E_{\rm B}/N_0) = 6\ \rm  dB$&nbsp; bei PN–Modulation?&nbsp; ''Hinweis:'' &nbsp; Bei BPSK gilt in diesem Fall: &nbsp; $p_{\rm B} ≈ 2.3 · 10^{–3}$.
 
|type="[]"}
 
|type="[]"}
 
- Je größer &nbsp;$J$&nbsp; gewählt wird, desto kleiner ist &nbsp;$p_{\rm B}$.
 
- Je größer &nbsp;$J$&nbsp; gewählt wird, desto kleiner ist &nbsp;$p_{\rm B}$.

Version vom 27. April 2020, 14:03 Uhr

Modelle von PN–Modulation (oben) und BPSK (unten)

Die Grafik zeigt das Ersatzschaltbild der  $\rm PN$–Modulation  $($englisch:   Direct Sequence Spread Spectrum, abgekürzt  $\rm DS–SS)$  im äquivalenten Tiefpassbereich, wobei AWGN–Rauschen  $n(t)$  zugrunde liegt.  Darunter dargestellt ist das Tiefpass–Modell der binären Phasenmodulation  $\rm (BPSK)$.

Das Tiefpass–Sendesignal  $s(t)$  ist aus Gründen einheitlicher Darstellung gleich dem rechteckförmigen Quellensignal  $q(t) ∈ \{+1, –1\}$  mit Rechteckdauer  $T$  gesetzt.

Die Funktion des Integrators kann wie folgt beschrieben werden:

$$d (\nu T) = \frac{1}{T} \cdot \hspace{-0.1cm} \int_{(\nu -1 )T }^{\nu T} \hspace{-0.3cm} b (t )\hspace{0.1cm} {\rm d}t \hspace{0.05cm}.$$

Die beiden Modelle unterscheiden sich durch die Multiplikation mit dem  $±1$–Spreizsignal  $c(t)$  bei Sender und Empfänger, wobei von  $c(t)$  lediglich der Spreizgrad  $J$  bekannt ist.

Zu untersuchen ist, ob sich das untere BPSK–Modell auch bei PN–Modulation anwenden lässt und ob die BPSK–Fehlerwahrscheinlichkeit

$$p_{\rm B} = {\rm Q} \left( \hspace{-0.05cm} \sqrt { {2 \cdot E_{\rm B}}/{N_{\rm 0}} } \hspace{0.05cm} \right )$$

auch für die PN–Modulation gültig ist, bzw. wie die angegebene Gleichung zu modifizieren ist.





Hinweise:

  • Die Aufgabe gehört zum Kapitel  PN–Modulation.
  • Für die Lösung dieser Aufgabe ist die Angabe der spezifischen Spreizfolge  $($M–Sequenz oder Walsh–Funktion$)$  nicht von Bedeutung.


Fragebogen

1

Welche Detektionssignalwerte sind bei BPSK (im rauschfreien Fall) möglich?

$d(νT)$  kann gaußverteilt sein.
$d(νT)$  kann die Werte  $+1$,  $0$  und  $-1$  annehmen.
Es sind nur die Werte  $d(νT) = +1$  und  $d(νT) = -1$  möglich.

2

Welche Werte sind bei PN–Modulation (im rauschfreien) Fall möglich?

$d(νT)$  kann gaußverteilt sein.
$d(νT)$  kann die Werte  $+1$,  $0$  und  $-1$  annehmen.
Es sind nur die Werte  $d(νT) = +1$  und  $d(νT) = -1$  möglich.

3

Welche Modifikation muss am BPSK–Modell vorgenommen werden, damit es auch für die PN–Modulation anwendbar ist?

Das Rauschen  $n(t)$  muss durch  $n'(t) = n(t) · c(t)$  ersetzt werden.
Die Integration muss nun über  $J · T$  erfolgen.
Die Rauschleistung  $σ_n^2$  muss um den Faktor  $J$  vermindert werden.

4

Welche Bitfehlerwahrscheinlichkeit  $p_{\rm B}$  ergibt sich für  $10 \lg \ (E_{\rm B}/N_0) = 6\ \rm dB$  bei PN–Modulation?  Hinweis:   Bei BPSK gilt in diesem Fall:   $p_{\rm B} ≈ 2.3 · 10^{–3}$.

Je größer  $J$  gewählt wird, desto kleiner ist  $p_{\rm B}$.
Je größer  $J$  gewählt wird, desto größer ist  $p_{\rm B}$.
Es ergibt sich unabhängig von  $J$  stets der Wert  $p_{\rm B} ≈ 2.3 · 10^{–3}$.


Musterlösung

(1)  Richtig ist der letzte Lösungsvorschlag:

  • Es handelt sich hier um einen optimalen Empfänger.
  • Ohne Rauschen ist Signal $b(t)$ innerhalb eines jeden Bits konstant gleich $+1$ oder $-1$.
  • Aus der angegebenen Gleichung für den Integrator
$$d (\nu T) = \frac{1}{T} \cdot \hspace{-0.1cm} \int_{(\nu -1 )T }^{\nu T} \hspace{-0.3cm} b (t )\hspace{0.1cm} {\rm d}t $$
folgt, dass $d(νT)$ nur die Werte $+1$ und $-1$ annehmen kann.


(2)  Richtig ist wieder der letzte Lösungsvorschlag:

  • Im rausch– und störungsfreien Fall ⇒ $n(t) = 0$ kann auf die zweifache Multiplikation mit $c(t) ∈ \{+1, –1\}$ verzichtet werden, so dass das obere Modell mit dem unteren Modell identisch ist.


(3)  Richtig ist der Lösungsvorschlag 1:

  • Da beide Modelle im rauschfreien Fall identisch sind, muss nur das Rauschsignal angepasst werden:   $n'(t) = n(t) · c(t)$.
  • Die beiden anderen Lösungsvorschläge sind dagegen nicht zutreffend:
  • Die Integration muss weiterhin über $T = J · T_c$ erfolgen und die PN–Modulation verringert das AWGN–Rauschen nicht.


(4)  Richtig ist der letzte Lösungsvorschlag:

  • Multipliziert man das AWGN–Rauschen mit dem hochfrequenten $±1$–Signal $c(t)$, so ist auch das Produkt gaußförmig und weiß.
  • Wegen  ${\rm E}\big[c^2(t)\big] = 1$  wird auch die Rauschvarianz nicht verändert.
  • Die für BPSK gültige Gleichung $p_{\rm B} = {\rm Q} \left( \hspace{-0.05cm} \sqrt {{2 E_{\rm B}}/{N_{\rm 0}} } \hspace{0.05cm} \right )$ ist somit auch bei der PN–Modulation anwendbar und zwar unabhängig vom Spreizfaktor $J$ und von der spezifischen Spreizfolge.
  • Ergo:   Bei AWGN–Rauschen wird die Fehlerwahrscheinlichkeit durch Bandspreizung weder vergrößert noch verkleinert.