Aufgaben:Aufgabe 5.4Z: OVSF–Codes: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 65: Zeile 65:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
 
[[Datei:P_ID1892__Mod_Z_5_4a.png|right|frame|OVSF–Baumstruktur für  $J = 8$]]
 
[[Datei:P_ID1892__Mod_Z_5_4a.png|right|frame|OVSF–Baumstruktur für  $J = 8$]]
'''(1)'''&nbsp; Die Grafik zeigt die OVSF–Baumstruktur für &nbsp;$J = 8$ Nutzer. Daraus ist ersichtlich, dass die<u> Lösungsvorschläge 1, 3 und 4</u> zutreffen, nicht jedoch der zweite.
+
'''(1)'''&nbsp; Die Grafik zeigt die OVSF–Baumstruktur für &nbsp;$J = 8$ Nutzer.&nbsp; Daraus ist ersichtlich, dass die<u> Lösungsvorschläge 1, 3 und 4</u> zutreffen, nicht jedoch der zweite.
  
  
'''(2)'''&nbsp; Wird jedem Nutzer ein Spreizcode mit $J = 8$ zugewiesen, so können $K_{\rm max}\hspace{0.15cm}\underline{ = 8}$ Teilnehmer versorgt werden.
 
  
 +
'''(2)'''&nbsp; Wird jedem Nutzer ein Spreizcode mit&nbsp; $J = 8$&nbsp; zugewiesen, so können&nbsp; $K_{\rm max}\hspace{0.15cm}\underline{ = 8}$&nbsp; Teilnehmer versorgt werden.
 +
 +
 +
 +
'''(3)'''&nbsp; Wenn drei Teilnehmer mit&nbsp; $J = 4$&nbsp; versorgt werden, können nur mehr zwei Teilnehmer durch eine Spreizfolge mit&nbsp; $J = 8$&nbsp; bedient werden&nbsp; (siehe beispielhafte gelbe Hinterlegung in obiger Grafik) &nbsp; ⇒ &nbsp; $K\hspace{0.15cm}\underline{ = 5}$.
  
'''(3)'''&nbsp; Wenn drei Teilnehmer mit $J = 4$ versorgt werden, können nur mehr zwei Teilnehmer durch eine Spreizfolge mit $J = 8$ bedient werden (siehe beispielhafte gelbe Hinterlegung in obiger Grafik) &nbsp; ⇒ &nbsp; $K\hspace{0.15cm}\underline{ = 5}$.
 
  
  
 
'''(4)'''&nbsp; Wir bezeichnen mit
 
'''(4)'''&nbsp; Wir bezeichnen mit
* $K_4 = 2$ die Anzahl der Spreizfolgen mit $J = 4$,
+
* $K_4 = 2$&nbsp; die Anzahl der Spreizfolgen mit&nbsp; $J = 4$,
* $K_8 = 1$ die Anzahl der Spreizfolgen mit $J = 8$,
+
* $K_8 = 1$&nbsp; die Anzahl der Spreizfolgen mit&nbsp; $J = 8$,
* $K_{16} = 2$ die Anzahl der Spreizfolgen mit $J = 16$,
+
* $K_{16} = 2$&nbsp; die Anzahl der Spreizfolgen mit&nbsp; $J = 16$,
* $K_{32} = 8$ die Anzahl der Spreizfolgen mit $J = 32$.
+
* $K_{32} = 8$&nbsp; die Anzahl der Spreizfolgen mit&nbsp; $J = 32$.
  
  
Zeile 86: Zeile 89:
  
 
*Wegen &nbsp;$2 · 8 + 1 · 4 + 2 · 2 + 8 = 32$&nbsp; ist die gewünschte Belegung gerade noch erlaubt &nbsp; ⇒ &nbsp; <u>Antwort JA</u>.  
 
*Wegen &nbsp;$2 · 8 + 1 · 4 + 2 · 2 + 8 = 32$&nbsp; ist die gewünschte Belegung gerade noch erlaubt &nbsp; ⇒ &nbsp; <u>Antwort JA</u>.  
*Die zweimalige Bereitstellung des Spreizgrads &nbsp;$J = 4$&nbsp; blockiert zum Beispiel die obere Hälfte des Baums.
+
*Die zweimalige Bereitstellung des Spreizgrads &nbsp;$J = 4$&nbsp; blockiert zum Beispiel die obere Hälfte des Baumes.
 
*Nach der Versorgung der einen Spreizung mit &nbsp;$J = 8$, bleiben auf der &nbsp;$J = 8$–Ebene noch drei der acht Äste zu belegen, usw. und so fort.
 
*Nach der Versorgung der einen Spreizung mit &nbsp;$J = 8$, bleiben auf der &nbsp;$J = 8$–Ebene noch drei der acht Äste zu belegen, usw. und so fort.
  

Version vom 30. April 2020, 17:08 Uhr

Baumstruktur zur Konstruktion
eines OVSF–Codes

Die Spreizcodes für  UMTS  sollen

  • alle zueinander orthogonal sein, um eine gegenseitige Beeinflussung der Teilnehmer zu vermeiden,
  • zusätzlich eine flexible Realisierung unterschiedlicher Spreizfaktoren  $J$  ermöglichen.


Ein Beispiel hierfür sind die so genannten  Codes mit variablem Spreizfaktor  $($englisch:  Orthogonal Variable Spreading Factor,  $\rm OVSF)$, die Spreizcodes der Längen von  $J = 4$  bis  $J = 512$  bereitstellen.

Diese können, wie in der Grafik zu sehen ist, mit Hilfe eines Codebaums erstellt werden.  Dabei entstehen bei jeder Verzweigung aus einem Code  $C$  zwei neue Codes  $+C \ +C$  und  $+C \ -C$.

Die Grafik verdeutlicht das hier angegebene Prinzip am Beispiel  $J = 4$: 

  • Nummeriert man die Spreizfolgen von  $0$  bis  $J -1$  durch, so ergeben sich hier die Spreizfolgen
$$\langle c_\nu^{(0)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$
$$\langle c_\nu^{(2)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$
  • Entsprechend dieser Nomenklatur gibt es für den Spreizfaktor  $J = 8$  die Spreizfolgen  $\langle c_\nu^{(0)}\rangle $, ... , $\langle c_\nu^{(7)}\rangle $.
  • Anzumerken ist, dass kein Vorgänger und Nachfolger eines Codes für einen anderen Teilnehmer benutzt werden darf.
  • Im Beispiel könnten also vier Spreizcodes mit Spreizfaktor  $J = 4$  verwendet werden oder die drei gelb hinterlegten Codes – einmal mit  $J = 2$  und zweimal mit  $J = 4$.





Hinweise:


Fragebogen

1

Konstruieren Sie das Baumdiagramm für  $J = 8$.  Welche OVSF–Codes ergeben sich daraus?

Codewort 1:   $ \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm}{-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm}{-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$
Codewort 3:   $ \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm}{+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm}{-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1}$ ,
Codewort 5:   $ \langle c_\nu^{(5)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm}{+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm}{+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm}$,
Codewort 7:   $ \langle c_\nu^{(7)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm}{-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm}{+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm}$.

2

Wieviele UMTS–Teilnehmer  $(K_{\rm max})$  können mit  $J = 8$  maximal bedient werden?

$K_{\rm max} \ = \ $

3

Wieviele Teilnehmer  $(K)$  können versorgt werden, wenn drei dieser Teilnehmer einen Spreizcode mit  $J = 4$  verwenden sollen?

$K \ = \ $

4

Gehen Sie von einer Baumstruktur für  $J = 32$  aus.  Ist die folgende Zuweisung machbar:
Zweimal  $J = 4$, einmal  $J = 8$, zweimal  $J = 16$  und achtmal  $J = 32$?

Ja.
Nein.


Musterlösung

OVSF–Baumstruktur für  $J = 8$

(1)  Die Grafik zeigt die OVSF–Baumstruktur für  $J = 8$ Nutzer.  Daraus ist ersichtlich, dass die Lösungsvorschläge 1, 3 und 4 zutreffen, nicht jedoch der zweite.


(2)  Wird jedem Nutzer ein Spreizcode mit  $J = 8$  zugewiesen, so können  $K_{\rm max}\hspace{0.15cm}\underline{ = 8}$  Teilnehmer versorgt werden.


(3)  Wenn drei Teilnehmer mit  $J = 4$  versorgt werden, können nur mehr zwei Teilnehmer durch eine Spreizfolge mit  $J = 8$  bedient werden  (siehe beispielhafte gelbe Hinterlegung in obiger Grafik)   ⇒   $K\hspace{0.15cm}\underline{ = 5}$.


(4)  Wir bezeichnen mit

  • $K_4 = 2$  die Anzahl der Spreizfolgen mit  $J = 4$,
  • $K_8 = 1$  die Anzahl der Spreizfolgen mit  $J = 8$,
  • $K_{16} = 2$  die Anzahl der Spreizfolgen mit  $J = 16$,
  • $K_{32} = 8$  die Anzahl der Spreizfolgen mit  $J = 32$.


Dann muss folgende Bedingung erfüllt sein:

$$K_4 \cdot \frac{32}{4} + K_8 \cdot \frac{32}{8} +K_{16} \cdot \frac{32}{16} +K_{32} \cdot \frac{32}{32} \le 32 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} K_4 \cdot8 + K_8 \cdot 4 +K_{16} \cdot 2 +K_{32} \cdot1 \le 32 \hspace{0.05cm}.$$
  • Wegen  $2 · 8 + 1 · 4 + 2 · 2 + 8 = 32$  ist die gewünschte Belegung gerade noch erlaubt   ⇒   Antwort JA.
  • Die zweimalige Bereitstellung des Spreizgrads  $J = 4$  blockiert zum Beispiel die obere Hälfte des Baumes.
  • Nach der Versorgung der einen Spreizung mit  $J = 8$, bleiben auf der  $J = 8$–Ebene noch drei der acht Äste zu belegen, usw. und so fort.