Aufgaben:Aufgabe 3.8: OVSF–Codes: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(12 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID2261__Mod_Z_5_4.png|right|frame|Baumstruktur zur Konstruktion eines OVSF–Codes]]
+
[[Datei:P_ID2261__Mod_Z_5_4.png|right|frame|Baumstruktur zur Konstruktion <br>eines OVSF–Codes]]
 
Die Spreizcodes für UMTS sollten
 
Die Spreizcodes für UMTS sollten
 
*orthogonal sein, um dadurch eine gegenseitige Beeinflussung der Teilnehmer zu vermeiden,
 
*orthogonal sein, um dadurch eine gegenseitige Beeinflussung der Teilnehmer zu vermeiden,
*gleichzeitig auch eine flexible Realisierung unterschiedlicher Spreizfaktoren $J$ ermöglichen.
+
*gleichzeitig auch eine flexible Realisierung unterschiedlicher Spreizfaktoren&nbsp; $J$&nbsp; ermöglichen.
  
  
Ein Beispiel hierfür sind die ''Codes mit variablem Spreizfaktor'' (englisch: ''Orthogonal Variable Spreading Factor'', OVSF), die Spreizcodes der Längen von $J = 4$ bis $J = 512$ bereitstellen.
+
Ein Beispiel hierfür sind die&nbsp; &bdquo;Codes mit variablem Spreizfaktor&rdquo;&nbsp; (englisch: &nbsp;''Orthogonal Variable Spreading Factor'', OVSF), die Spreizcodes der Längen von&nbsp; $J = 4$&nbsp; bis&nbsp; $J = 512$&nbsp; bereitstellen.
  
Diese können, wie in der Grafik zu sehen ist, mit Hilfe eines Codebaums erstellt werden. Dabei entstehen bei jeder Verzweigung aus einem Code $C$ zwei neue Codes $(+C +C)$ und $(+C –C)$.
+
Diese können, wie in der Grafik zu sehen ist, mit Hilfe eines Codebaums erstellt werden.&nbsp; Dabei entstehen bei jeder Verzweigung aus einem Code&nbsp; $\mathcal{C}$&nbsp; zwei neue Codes&nbsp; $(+\mathcal{C}\  +\mathcal{C})$&nbsp; und&nbsp; $(+\mathcal{C} \ –\mathcal{C})$.
  
Die Grafik verdeutlicht das hier angegebene Prinzip am Beispiel $J = 4$. Nummeriert man die Spreizfolgen von $0$ bis $J –1$ durch, so ergeben sich hier die Spreizfolgen
+
Die Grafik verdeutlicht das hier angegebene Prinzip am Beispiel&nbsp; $J = 4$.&nbsp; Nummeriert man die Spreizfolgen von&nbsp; $0$&nbsp; bis&nbsp; $J –1$&nbsp; durch, so ergeben sich hier die Spreizfolgen
:$$\langle c_\nu^{(0)}\rangle = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$  
+
:$$\langle c_\nu^{(0)}\rangle = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},$$
:$$\langle c_\nu^{(2)}\rangle = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$
+
:$$ \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$  
 +
:$$\langle c_\nu^{(2)}\rangle = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$
 +
:$$ \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$
  
Gemäß dieser Nomenklatur gibt es für den Spreizfaktor $J = 8$ die Spreizfolgen $\langle c_\nu^{(0)}\rangle, ... ,\langle c_\nu^{(7)}\rangle.$
+
Gemäß dieser Nomenklatur gibt es für den Spreizfaktor&nbsp; $J = 8$&nbsp; die Spreizfolgen&nbsp; $\langle c_\nu^{(0)}\rangle, \text{...} ,\langle c_\nu^{(7)}\rangle.$
  
Anzumerken ist, dass kein Vorgänger und Nachfolger eines Codes von anderen Teilnehmern benutzt werden darf. Im Beispiel könnten also vier Spreizcodes mit Spreizfaktor $J = 4$ verwendet werden oder die drei gelb hinterlegten Codes – einmal mit $J = 2$ und zweimal mit $J = 4$.
+
Anzumerken ist, dass kein Vorgänger und Nachfolger eines Codes von anderen Teilnehmern benutzt werden darf.  
 +
*Im Beispiel könnten also vier Spreizcodes mit Spreizfaktor&nbsp; $J = 4$&nbsp; verwendet werden, oder  
 +
*die drei gelb hinterlegten Codes – einmal mit&nbsp; $J = 2$&nbsp; und zweimal mit&nbsp; $J = 4$.
  
  
''Hinweis:''
 
  
Die Aufgabe bezieht sich auf [[Modulationsverfahren/Spreizfolgen_für_CDMA#Codes_mit_variablem_Spreizfaktor_.28OVSF.E2.80.93Code.29|Codes mit variablem Spreizfaktor (OVSF–Code)]] von [[Modulationsverfahren/Spreizfolgen_für_CDMA|Spreizfolgen für CDMA]] im Buch „Modulationsverfahren”.
+
 
 +
 
 +
 
 +
 
 +
 
 +
''Hinweise:''
 +
*Die Aufgabe gehört zum Kapitel&nbsp; [[Modulationsverfahren/Spreizfolgen_für_CDMA|Spreizfolgen für CDMA]].
 +
*Insbesondere Bezug genommen wird auf die Seite&nbsp; [[Modulationsverfahren/Spreizfolgen_für_CDMA#Codes_mit_variablem_Spreizfaktor_.28OVSF.E2.80.93Code.29|Codes mit variablem Spreizfaktor (OVSF–Code)]].
 +
 +
 
 +
 
 
===Fragebogen===
 
===Fragebogen===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
 
 +
{Konstruieren Sie das Baumdiagramm für&nbsp; $J = 8$.&nbsp; Welche OVSF–Codes ergeben sich daraus?
 
|type="[]"}
 
|type="[]"}
- Falsch
+
+ $\langle c_\nu^{(1)}\rangle = +\hspace{-0.05cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1$,
+ Richtig
+
- $\langle c_\nu^{(3)}\rangle  = +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1$,
 +
+ $\langle c_\nu^{(5)}\rangle = +\hspace{-0.05cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1$,
 +
+ $\langle c_\nu^{(7)}\rangle = +\hspace{-0.05cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1$.
  
 +
{Wieviele UMTS–Teilnehmer können mit&nbsp; $J = 8$&nbsp; maximal bedient werden?
 +
|type="{}"}
 +
$K_{\rm max} \ = \ $ { 8 }
  
{Input-Box Frage
+
{Wieviele Teilnehmer können  mit&nbsp; $J = 8$&nbsp; versorgt werden, wenn drei von ihnen einen Spreizcode mit&nbsp; $J = 4$&nbsp; verwenden sollen?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$K \ = \ $ { 5 }
 
 
  
 +
{Die Baumstruktur gelte für&nbsp; $J = 32$. &nbsp;Ist dann folgende Zuweisung machbar: &nbsp; Zweimal&nbsp; $J = 4$, einmal&nbsp; $J = 8$, eimal&nbsp; $J = 164$&nbsp; und achtmal&nbsp; $J = 32$?
 +
|type="()"}
 +
+ Ja.
 +
- Nein.
  
 
</quiz>
 
</quiz>
Zeile 45: Zeile 67:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp;
+
[[Datei:P_ID2263__Bei_A_4_6a.png|right|frame|OVSF–Baumstruktur für&nbsp; $J = 8$]]
'''(2)'''&nbsp;
+
'''(1)'''&nbsp; Die folgende Grafik zeigt die OVSF–Baumstruktur für&nbsp; $J = 8$&nbsp; Nutzer.
'''(3)'''&nbsp;
+
 
'''(4)'''&nbsp;
+
*Daraus ist ersichtlich, dass die <u>Lösungsvorschläge 1, 3 und 4</u> zutreffen, nicht jedoch der zweite.
'''(5)'''&nbsp;
+
 
'''(6)'''&nbsp;
+
 
'''(7)'''&nbsp;
+
'''(2)'''&nbsp; Wird jedem Nutzer ein Spreizcode mit dem Spreizgrad&nbsp; $J = 8$&nbsp; zugewiesen, so können&nbsp; $K_{\rm max} \ \underline{= 8}$&nbsp; Teilnehmer versorgt werden.
 +
 
 +
 
 +
'''(3)'''&nbsp; Wenn drei Teilnehmer mit&nbsp; $J = 4$&nbsp; versorgt werden, können nur mehr zwei Teilnehmer durch eine Spreizfolge mit&nbsp; $J = 8$&nbsp; bedient werden&nbsp; (siehe beispielhafte gelbe Hinterlegung in der Grafik)&nbsp;  $\  \Rightarrow \ \ \underline{K = 5}$.
 +
 
 +
 
 +
'''(4)'''&nbsp; Wir bezeichnen mit
 +
*$K_{4} = 2$&nbsp; die Anzahl der Spreizfolgen mit&nbsp; $J = 4$,
 +
*$K_{8} = 1$&nbsp; die Anzahl der Spreizfolgen mit&nbsp; $J = 8$,
 +
*$K_{16} = 2$&nbsp; die Anzahl der Spreizfolgen mit&nbsp; $J = 16$,
 +
*$K_{32} = 8$&nbsp; die Anzahl der Spreizfolgen mit&nbsp; $J = 32$,
 +
 
 +
 
 +
Dann muss folgende Bedingung erfüllt sein:
 +
:$$K_4 \cdot \frac{32}{4} + K_8 \cdot \frac{32}{8} +K_{16} \cdot \frac{32}{16} +K_{32} \cdot \frac{32}{32} \le 32\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} K_4 \cdot8 + K_8 \cdot 4 +K_{16} \cdot 2 +K_{32} \cdot1 \le 32 \hspace{0.05cm}.$$
 +
*Wegen&nbsp; $2 \cdot 8 + 1 \cdot 4 + 2 \cdot 2 + 8 = 32$&nbsp; ist die gewünschte Belegung gerade noch erlaubt  &nbsp; &rArr; &nbsp; <u>Antwort JA</u>.
 +
*Die zweimalige Bereitstellung des Spreizgrads&nbsp; $J = 4$&nbsp; blockiert zum Beispiel die obere Hälfte des Baums, nach der Bereitstellung eines Spreizcodes mit&nbsp; $J = 8$&nbsp; bleiben auf der&nbsp; $J = 8$–Ebene noch drei der acht Äste zu belegen, und so weiter und so fort.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Aktuelle Version vom 17. August 2020, 16:42 Uhr

Baumstruktur zur Konstruktion
eines OVSF–Codes

Die Spreizcodes für UMTS sollten

  • orthogonal sein, um dadurch eine gegenseitige Beeinflussung der Teilnehmer zu vermeiden,
  • gleichzeitig auch eine flexible Realisierung unterschiedlicher Spreizfaktoren  $J$  ermöglichen.


Ein Beispiel hierfür sind die  „Codes mit variablem Spreizfaktor”  (englisch:  Orthogonal Variable Spreading Factor, OVSF), die Spreizcodes der Längen von  $J = 4$  bis  $J = 512$  bereitstellen.

Diese können, wie in der Grafik zu sehen ist, mit Hilfe eines Codebaums erstellt werden.  Dabei entstehen bei jeder Verzweigung aus einem Code  $\mathcal{C}$  zwei neue Codes  $(+\mathcal{C}\ +\mathcal{C})$  und  $(+\mathcal{C} \ –\mathcal{C})$.

Die Grafik verdeutlicht das hier angegebene Prinzip am Beispiel  $J = 4$.  Nummeriert man die Spreizfolgen von  $0$  bis  $J –1$  durch, so ergeben sich hier die Spreizfolgen

$$\langle c_\nu^{(0)}\rangle = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},$$
$$ \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$
$$\langle c_\nu^{(2)}\rangle = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$
$$ \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$

Gemäß dieser Nomenklatur gibt es für den Spreizfaktor  $J = 8$  die Spreizfolgen  $\langle c_\nu^{(0)}\rangle, \text{...} ,\langle c_\nu^{(7)}\rangle.$

Anzumerken ist, dass kein Vorgänger und Nachfolger eines Codes von anderen Teilnehmern benutzt werden darf.

  • Im Beispiel könnten also vier Spreizcodes mit Spreizfaktor  $J = 4$  verwendet werden, oder
  • die drei gelb hinterlegten Codes – einmal mit  $J = 2$  und zweimal mit  $J = 4$.





Hinweise:


Fragebogen

1

Konstruieren Sie das Baumdiagramm für  $J = 8$.  Welche OVSF–Codes ergeben sich daraus?

$\langle c_\nu^{(1)}\rangle = +\hspace{-0.05cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1$,
$\langle c_\nu^{(3)}\rangle = +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1$,
$\langle c_\nu^{(5)}\rangle = +\hspace{-0.05cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1$,
$\langle c_\nu^{(7)}\rangle = +\hspace{-0.05cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1$.

2

Wieviele UMTS–Teilnehmer können mit  $J = 8$  maximal bedient werden?

$K_{\rm max} \ = \ $

3

Wieviele Teilnehmer können mit  $J = 8$  versorgt werden, wenn drei von ihnen einen Spreizcode mit  $J = 4$  verwenden sollen?

$K \ = \ $

4

Die Baumstruktur gelte für  $J = 32$.  Ist dann folgende Zuweisung machbar:   Zweimal  $J = 4$, einmal  $J = 8$, eimal  $J = 164$  und achtmal  $J = 32$?

Ja.
Nein.


Musterlösung

OVSF–Baumstruktur für  $J = 8$

(1)  Die folgende Grafik zeigt die OVSF–Baumstruktur für  $J = 8$  Nutzer.

  • Daraus ist ersichtlich, dass die Lösungsvorschläge 1, 3 und 4 zutreffen, nicht jedoch der zweite.


(2)  Wird jedem Nutzer ein Spreizcode mit dem Spreizgrad  $J = 8$  zugewiesen, so können  $K_{\rm max} \ \underline{= 8}$  Teilnehmer versorgt werden.


(3)  Wenn drei Teilnehmer mit  $J = 4$  versorgt werden, können nur mehr zwei Teilnehmer durch eine Spreizfolge mit  $J = 8$  bedient werden  (siehe beispielhafte gelbe Hinterlegung in der Grafik)  $\ \Rightarrow \ \ \underline{K = 5}$.


(4)  Wir bezeichnen mit

  • $K_{4} = 2$  die Anzahl der Spreizfolgen mit  $J = 4$,
  • $K_{8} = 1$  die Anzahl der Spreizfolgen mit  $J = 8$,
  • $K_{16} = 2$  die Anzahl der Spreizfolgen mit  $J = 16$,
  • $K_{32} = 8$  die Anzahl der Spreizfolgen mit  $J = 32$,


Dann muss folgende Bedingung erfüllt sein:

$$K_4 \cdot \frac{32}{4} + K_8 \cdot \frac{32}{8} +K_{16} \cdot \frac{32}{16} +K_{32} \cdot \frac{32}{32} \le 32\hspace{0.3cm} \Rightarrow \hspace{0.3cm} K_4 \cdot8 + K_8 \cdot 4 +K_{16} \cdot 2 +K_{32} \cdot1 \le 32 \hspace{0.05cm}.$$
  • Wegen  $2 \cdot 8 + 1 \cdot 4 + 2 \cdot 2 + 8 = 32$  ist die gewünschte Belegung gerade noch erlaubt   ⇒   Antwort JA.
  • Die zweimalige Bereitstellung des Spreizgrads  $J = 4$  blockiert zum Beispiel die obere Hälfte des Baums, nach der Bereitstellung eines Spreizcodes mit  $J = 8$  bleiben auf der  $J = 8$–Ebene noch drei der acht Äste zu belegen, und so weiter und so fort.