Applets:Frequenzgang und Impulsantwort: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 1: Zeile 1:
{{LntAppletLink|frequImpResp}}  
+
{{LntAppletLink|frequImpResp}}        
 +
[https://en.lntwww.de/Applets:Frequency_%26_Impulse_Responses '''English Version''']
 +
 
  
 
==Programmbeschreibung==
 
==Programmbeschreibung==
Zeile 241: Zeile 243:
  
 
==Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster==
 
==Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster==
{{LntAppletLink|frequImpResp}}
+
{{LntAppletLink|frequImpResp}}        
 +
[https://en.lntwww.de/Applets:Frequency_%26_Impulse_Responses '''English Version''']

Version vom 19. August 2020, 12:44 Uhr

Applet in neuem Tab öffnen       English Version


Programmbeschreibung


Dargestellt werden reelle und symmetrische Tiefpässe  $H(f)$  und die dazugehörigen Impulsantworten  $h(t)$, nämlich

  • Gauß–Tiefpass  (englisch:  Gaussian low–pass),
  • Rechteck–Tiefpass   (englisch:  Rectangular low–pass),
  • Dreieck–Tiefpass  (englisch:  Triangular low–pass),
  • Trapez–Tiefpass  (englisch:  Trapezoidal low–pass),
  • Cosinus–Rolloff–Tiefpass  (englisch:  Cosine-rolloff low–pass),
  • Cosinus-Quadrat-Tiefpass  (englisch:  Cosine-rolloff -squared Low–pass).


Es ist zu beachten:

  • Die Funktionen  $H(f)$  bzw.  $h(t)$  werden für bis zu zwei Parametersätzen in jeweils einem Diagramm dargestellt.
  • Die roten Kurven und Zahlenangaben gelten für den linken Parametersatz, die blauen für den rechten Parametersatz.
  • Die Abszissen  $t$  (Zeit) und  $f$  (Frequenz) sowie die Ordinaten  $H(f)$  und  $h(t)$  sind jeweils normiert.


Theoretischer Hintergrund


Frequenzgang  $H(f)$  und Impulsantwort  $h(t)$

  • Der  Frequenzgang  (oder auch die  Übertragungsfunktion)  $H(f)$  eines linearen zeitinvarianten Übertragungssystems gibt das Verhältnis zwischen dem Ausgangsspektrum  $Y(f)$  und dem dem Eingangsspektrum  $X(f)$  an:
$$H(f) = \frac{Y(f)}{X(f)}.$$
  • Ist das Übertragungsverhalten bei tiefen Frequenzen besser als bei höheren, so spricht man von einem  Tiefpass  (englisch:  Low-pass).
  • Die Eigenschaften von  $H(f)$  werden im Zeitbereich durch die  Impulsantwort  $h(t)$  ausgedrückt.  Entsprechend dem  zweiten Fourierintegral  gilt:
$$h(t)={\rm IFT} [H(f)] = \int_{-\infty}^{+\infty}H(f)\cdot {\rm e}^{+{\rm j}2\pi f t}\hspace{0.15cm} {\rm d}f\hspace{1cm} {\rm IFT}\hspace{-0.1cm}: \rm Inverse \ Fouriertransformation.$$
$$H(f)={\rm FT} [h(t)] = \int_{-\infty}^{+\infty}h(t)\cdot {\rm e}^{-{\rm j}2\pi f t}\hspace{0.15cm} {\rm d}t\hspace{1cm} \rm FT\hspace{-0.1cm}: \ Fouriertransformation.$$
  • In allen Beispielen verwenden wir reelle und gerade Funktionen.  Somit gilt:
$$h(t)=\int_{-\infty}^{+\infty}H(f)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}f \ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\ \ \ H(f)=\int_{-\infty}^{+\infty}h(t)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}t .$$
  • Bei einem Vierpol  $[$das bedeutet:  $X(f)$  und  $Y(f)$  haben gleiche Einheiten$]$   ist  $Y(f)$  dimensionslos. 
  • Die Einheit der Impulsantwort ist  $\rm 1/s$.  Es gilt zwar $\rm 1/s = 1 \ Hz$, aber die Einheit „Hertz” ist in diesem Zusammenhang unüblich.
  • Der Zusammenhang zwischen diesem Applet und dem ähnlich aufgebauten Applet  Impulse und Spektren  basiert auf dem  Vertauschungssatz.
  • Alle Zeiten sind auf eine Normierungszeit  $T$  normiert und alle Frequenzen auf  $1/T  \ \Rightarrow$  die Zahlenwerte von   $h(t)$  müssen noch durch  $T$  dividiert werden.


$\text{Beispiel:}$  Stellt man einen Rechteck–Tiefpass mit Höhe  $K_1 = 1$  und äquivalenter Bandbreite  $\Delta f_1 = 1$  ein,

  • so ist der Frequenzgang  $H_1(f)$  im Bereich  $-1 < f < 1$  gleich  $1$  und außerhalb dieses Bereichs gleich Null. 
  • Die Impulsantwort  $h_1(t)$  verläuft  $\rm si$–förmig mit  $h_1(t= 0) = 1$  und der ersten Nullstelle bei  $t=1$.


Mit dieser Einstellung soll nun ein Rechteck–Tiefpass mit  $K = 1.5$  und  $\Delta f = 2 \ \rm kHz$  nachgebildet werden, wobei die Normierungszeit  $T= 1 \ \rm ms$  betrage. 

  • Dann liegt die erste Nullstelle bei  $t=0.5\ \rm ms$  und das Impulsantwortmaximum ist dann  $h(t= 0) = 3 \cdot 10^3 \ \rm 1/s$.


Gauß–Tiefpass   $\Rightarrow$   Gaussian Low–pass

  • Der Gauß–Tiefpass lautet mit der Höhe  $K$  und der (äquivalenten) Bandbreite  $\Delta f$:
$$H(f)=K\cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot\hspace{0.05cm}(f/\Delta f)^2}.$$
  • Die äquivalente Bandbreite  $\Delta f$  ergibt sich aus dem flächengleichen Rechteck.
  • Der Wert bei  $f = \Delta f/2$  ist um den Faktor  $0.456$  kleiner als der Wert bei  $f=0$.
  • Für die Impulsantwort erhält man gemäß der Fourierrücktransformation:
$$h(t)=K\cdot \Delta f \cdot {\rm e}^{-\pi(t\hspace{0.05cm}\cdot\hspace{0.05cm} \Delta f)^2} .$$
  • Je kleiner  $\Delta f$  ist, um so breiter und niedriger ist die Impulsantwort   ⇒   Reziprozitätsgesetz von Bandbreite und Impulsdauer.
  • Sowohl  $H(f)$  als auch  $h(t)$  sind zu keinem  $f$– bzw.  $t$–Wert exakt gleich Null.
  • Für praktische Anwendungen kann der Gaußimpuls jedoch in Zeit und Frequenz als begrenzt angenommen werden. 
  • Zum Beispiel ist  $h(t)$  bereits bei  $t=1.5 \cdot \Delta t$  auf weniger als  $0.1\% $  des Maximums abgefallen.


Idealer (rechteckförmiger) Tiefpass   $\Rightarrow$   Rectangular Low–pass

  • Der Rechteck–Tiefpass lautet mit der Höhe  $K$  und der (äquivalenten) Bandbreite  $\Delta f$:
$$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}K \\ K /2 \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} f\hspace{0.05cm} \right| < \Delta f/2,} \\ {\left| \hspace{0.05cm}f\hspace{0.05cm} \right| = \Delta f/2,} \\ {\left|\hspace{0.05cm} f \hspace{0.05cm} \right| > \Delta f/2.} \\ \end{array}$$
  • Der  $\pm \Delta f/2$–Wert liegt mittig zwischen links- und rechtsseitigem Grenzwert.
  • Für die Impulsantwort  $h(t)$  erhält man entsprechend den Gesetzmäßigkeiten der Fourierrücktransformation (2. Fourierintegral):
$$h(t)=K\cdot \Delta f \cdot {\rm si}(\pi\cdot \Delta f \cdot t) \quad \text{mit} \quad {\rm si}(x)={\sin(x)}/{x}.$$
  • Der  $h(t)$–Wert bei  $t=0$  ist gleich der Rechteckfläche des Frequenzgangs.
  • Die Impulsantwort besitzt Nullstellen in äquidistanten Abständen  $1/\Delta f$.
  • Das Integral über die Impulsantwort  $h(t)$  ist gleich dem Frequenzgang  $H(f)$  bei der Frequenz  $f=0$, ist also gleich  $K$.


Dreieck–Tiefpass $\Rightarrow$ Triangular Low–pass

  • Der Dreieck–Tiefpass lautet mit der Höhe  $K$  und der (äquivalenten) Bandbreite  $\Delta f$:
$$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot \Big(1-\frac{|f|}{\Delta f}\Big) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} f\hspace{0.05cm} \right| < \Delta f,} \\ {\left| \hspace{0.05cm}f\hspace{0.05cm} \right| \ge \Delta f.} \\ \end{array}$$
  • Die absolute physikalische Bandbreite  $B$   ⇒   [nur positive Frequenzen]   ist ebenfalls gleich  $\Delta f$, ist also so groß wie beim Rechteck–Tiefpass.
  • Für die Impulsantwort  $h(t)$  erhält man gemäß der Fouriertransformation:
$$h(t)=K\cdot \Delta f \cdot {\rm si}^2(\pi\cdot \Delta f \cdot t) \quad \text{mit} \quad {\rm si}(x)={\sin(x)}/{x}.$$
  • $H(f)$  kann man als Faltung zweier Rechteckfunktionen  $($jeweils mit Breite  $\Delta f)$  darstellen.
  • Daraus folgt:  $h(t)$  beinhaltet anstelle der  ${\rm si}$-Funktion die  ${\rm si}^2$-Funktion.
  • $h(t)$  weist somit ebenfalls Nullstellen im äquidistanten Abständen  $1/\Delta f$  auf.
  • Der asymptotische Abfall von  $h(t)$  erfolgt hier mit  $1/t^2$, während zum Vergleich beim Rechteck–Tiefpass  $h(t)$  mit  $1/t$  abfällt.


Trapez–Tiefpass   $\Rightarrow$   Trapezoidal Low–pass

Der Trapez–Tiefpass lautet mit der Höhe  $K$  und den beiden Eckfrequenzen  $f_1$  und  $f_2$:

$$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}K \\ K\cdot \frac{f_2-|f|}{f_2-f_1} \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} f\hspace{0.05cm} \right| \le f_1,} \\ {f_1\le \left| \hspace{0.05cm}f\hspace{0.05cm} \right| \le f_2,} \\ {\left|\hspace{0.05cm} f \hspace{0.05cm} \right| \ge f_2.} \\ \end{array}$$
  • Für die äquivalente Bandbreite  (flächengleiches Rechteck)  gilt:  $\Delta f = f_1+f_2$.
  • Der Rolloff-Faktor (im Frequenzbereich) kennzeichnet die Flankensteilheit:
$$r=\frac{f_2-f_1}{f_2+f_1}.$$
  • Der Sonderfall  $r=0$  entspricht dem Rechteck–Tiefpass und der Sonderfall  $r=1$  dem Dreieck–Tiefpass.
  • Für die Impulsantwort erhält man gemäß der Fourierrücktransformation:
$$h(t)=K\cdot \Delta f \cdot {\rm si}(\pi\cdot \Delta f \cdot t)\cdot {\rm si}(\pi \cdot r \cdot \Delta f \cdot t) \quad \text{mit} \quad {\rm si}(x)={\sin(x)}/{x}.$$
  • Der asymptotische Abfall von  $h(t)$  liegt zwischen  $1/t$  $($für Rechteck–Tiefpass oder  $r=0)$  und  $1/t^2$  $($für Dreieck–Tiefpass oder  $r=1)$.


Cosinus-Rolloff-Tiefpass   $\Rightarrow$   Cosine-rolloff Low–pass

Der Cosinus–Rolloff–Tiefpass lautet mit der Höhe  $K$  und den beiden Eckfrequenzen  $f_1$  und  $f_2$:

$$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}K \\ K\cdot \cos^2\Big(\frac{|f|-f_1}{f_2-f_1}\cdot {\pi}/{2}\Big) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} f\hspace{0.05cm} \right| \le f_1,} \\ {f_1\le \left| \hspace{0.05cm}f\hspace{0.05cm} \right| \le f_2,} \\ {\left|\hspace{0.05cm} f \hspace{0.05cm} \right| \ge f_2.} \\ \end{array}$$
  • Für die äquivalente Bandbreite  (flächengleiches Rechteck)  gilt:  $\Delta f = f_1+f_2$.
  • Der Rolloff-Faktor (im Frequenzbereich) kennzeichnet die Flankensteilheit:
$$r=\frac{f_2-f_1}{f_2+f_1}.$$
  • Der Sonderfall  $r=0$  entspricht dem Rechteck–Tiefpass und der Sonderfall  $r=1$  dem Cosinus-Quadrat-Tiefpass.
  • Für die Impulsantwort erhält man gemäß der Fourierrücktransformation:
$$h(t)=K\cdot \Delta f \cdot \frac{\cos(\pi \cdot r\cdot \Delta f \cdot t)}{1-(2\cdot r\cdot \Delta f \cdot t)^2} \cdot {\rm si}(\pi \cdot \Delta f \cdot t).$$
  • Je größer der Rolloff-Faktor  $r$  ist, desto schneller nimmt  $h(t)$  asymptotisch mit  $t$  ab.


Cosinus-Quadrat-Tiefpass   $\Rightarrow$   Cosine-rolloff -squared Low–pass

  • Dies ist ein Sonderfall des Cosinus–Rolloff–Tiefpasses und ergibt sich aus diesem für  $r=1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}f_1=0,\ f_2= \Delta f$:
$$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot \cos^2\Big(\frac{|f|\hspace{0.05cm}\cdot\hspace{0.05cm} \pi}{2\hspace{0.05cm}\cdot\hspace{0.05cm} \Delta f}\Big) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} f\hspace{0.05cm} \right| < \Delta f,} \\ {\left| \hspace{0.05cm}f\hspace{0.05cm} \right| \ge \Delta f.} \\ \end{array}$$
  • Für die Impulsantwort erhält man gemäß der Fourierrücktransformation:
$$h(t)=K\cdot \Delta f \cdot {\pi}/{4}\cdot \big [{\rm si}(\pi(\Delta f\cdot t +0.5))+{\rm si}(\pi(\Delta f\cdot t -0.5))\big ]\cdot {\rm si}(\pi \cdot \Delta f \cdot t).$$
  • Wegen der letzten  ${\rm si}$-Funktion ist  $h(t)=0$  für alle Vielfachen von  $T=1/\Delta f$   ⇒   Die äquidistanten Nulldurchgänge des Cosinus–Rolloff–Tiefpasses bleiben erhalten.
  • Aufgrund des Klammerausdrucks weist  $h(t)$  nun weitere Nulldurchgänge bei  $t=\pm1.5 T$,  $\pm2.5 T$,  $\pm3.5 T$, ...  auf.
  • Für  $t=\pm T/2$  hat die Impulsanwort den Wert  $K\cdot \Delta f/2$.
  • Der asymptotische Abfall von  $h(t)$  verläuft in diesem Sonderfall mit  $1/t^3$.

Versuchsdurchführung


Aufgaben 2D-Gauss.png
  • Wählen Sie zunächst die Nummer  $(1,\ 2$, ... $)$  der zu bearbeitenden Aufgabe.
  • Eine Aufgabenbeschreibung wird angezeigt.  Die Parameterwerte sind angepasst.
  • Lösung nach Drücken von „Musterlösung”.
  • Die Nummer  $0$  entspricht einem „Reset”:  Einstellung wie beim Programmstart.
  • „Rot” bezieht sich auf den ersten Parametersatz   ⇒   $H_1(f) \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\ h_1(t)$.
  • „Blau” bezieht sich auf den zweiten Parametersatz   ⇒   $H_2(f) \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\ h_2(t)$.
  • Werte betragsmäßig kleiner  $0.0005$  werden im Programm zu Null gesetzt.


(1)   Vergleichen Sie den  roten Gauß–Tiefpass  $(K_1 = 1, \ \Delta f_1 = 1)$  mit dem  blauen Rechteck–Tiefpass  $(K_2 = 1,\ \Delta f_2 = 1)$.  Fragen:
          (a)  Welche Ausgangssignale  $y(t)$  ergeben sich, wenn am Eingang das Signal  $x(t) = 2 \cdot \cos (2\pi f_0 t -\varphi_0)$  mit  $f_0 = 0.5$  anliegt?
          (b)  Welche Unterschiede ergeben sich bei beiden Tiefpässen mit  $f_0 = 0.5 \pm f_\varepsilon$  und  $f_\varepsilon \ne 0, \ f_\varepsilon \to 0$?

(a)  Es gilt  $y(t) = A \cdot \cos (2\pi f_0 t -\varphi_0)$  mit  $A = 2 \cdot H(f = f_0) \ \Rightarrow \ A_1 = 0.912, \ A_2 = 1.000$.  Die Phase  $\varphi_0$  bleibt erhalten.
(b)  Bei  Rot  gilt weiterhin  $ A_1 = 0.912$.  Bei  Blau  ist  $A_2 = 0$  für  $f_0 = 0.5000\text{...}001$  und  $A_2 = 2$  für  $f_0 = 0.4999\text{...}999$.


(2)   Lassen Sie die Einstellungen unverändert.  Welcher Tiefpass  $H(f)$  kann das erste oder das zweite Nyquistkriterium erfüllen?
        Hierbei bezeichnet  $H(f)$  den Gesamtfrequenzgang von Sender, Kanal und Empfangsfilter.

  • Erstes Nyquistkriterium:  Die Impulsantwort  $h(t)$  muss äquidistante Nulldurchgänge zu den (normierten) Zeiten  $t = 1,\ 2$, ...  aufweisen.
  • Die Impulsantwort  $h(t) = {\rm si}(\pi \cdot \Delta f \cdot t)$  des Rechteck–Tiefpasses erfüllt dieses Kriterium mit  $\Delta f = 1$.
  • Dagegen wird beim Gauß–Tiefpass das erste Nyquistkriterium nie erfüllt und es kommt immer zu Impulsinterferenzen.
  • Das zweite Nyquistkriterium erfüllt weder der Rechteck–Tiefpass noch der Gauß–Tiefpass.


(3)   Vergleichen Sie den  roten Rechteck–Tiefpass  $(K_1 = 0.5, \ \Delta f_1 = 2)$  mit dem  blauen Rechteck–Tiefpass  $(K_2 = 1, \ \Delta f_2 = 1)$.
        Variieren Sie anschließend  $\Delta f_1$  zwischen  $2$  und  $0.5$.

  • Mit  $\Delta f_1 = 2$  liegen die Nullstellen von  $h_1(t)$  bei Vielfachen von  $0.5$   ⇒   $h_1(t)$  klingt doppelt so schnell ab wie  $h_2(t)$.
  • Mit der vorliegenden Einstellung gilt  $h_1(t = 0) = h_2(t = 0)$, da die Rechteckflächen von  $H_1(f)$  und  $H_2(f)$  gleich sind.
  • Verringert man man  $\Delta f_1$, so wird die Impulsantwort  $h_1(t)$  immer breiter und niedriger.
  • Mit  $\Delta f_1 = 0.5$  ist  $h_1(t)$  doppelt so breit wie  $h_2(t)$, gleichzeitig aber um den Faktor  $4$  niedriger.


(4)   Vergleichen Sie den  roten Trapez–Tiefpass  $(K_1 = 1, \ \Delta f_1 = 1, \ r_1 = 0.5)$  mit dem  blauen Rechteck–Tiefpass  $(K_2 = 1, \ \Delta f_2 = 1)$.
        Variieren Sie anschließend  $r_1$  zwischen  $0$  und  $1$.

  • Mit  $r_1 = 0.5$  sind die Unterschwinger von  $h_1(t)$  beim „Trapez” wegen des flacheren Flankenabfalls geringer als beim „Rechteck”.
  • Mit kleinerem  $r_1$  nehmen die Unterschwinger zu.  Mit  $r_1= 0$  ist der Trapez– gleich dem Rechteck–Tiefpass   ⇒   $h(t)= {\rm si}(\pi \cdot t/T)$.
  • Mit größerem  $r_1$  werden die Unterschwinger kleiner. Mit  $r_1= 1$  ist der Trapez– gleich dem Dreieck–Tiefpass   ⇒   $h(t)= {\rm si}^2(\pi \cdot t/T)$.


(5)   Vergleichen Sie den  Trapez–Tiefpass  $(K_1 = 1, \ \Delta f_1 = 1, \ r_1 = 0.5)$  mit dem  Cosinus-Rolloff-Tiefpass  $(K_2 = 1,\ \Delta f_2 = 1, \ r_2 = 0.5)$.
        Variieren Sie  $r_2$  zwischen  $0$  und  $1$.  Interpretieren Sie die Impulsantwort für  $r_2 = 0.75$.  Welcher Tiefpass erfüllt das erste Nyquistkriterium?

  • Bei  $r_1 = r_2= 0.5$  verläuft der Flankenabfall von  $H_2(f)$  um die Frequenz  $f = 0.5$  steiler als der Flankenabfall von  $H_1(f)$.
  • Bei gleichem Rolloff  $r= 0.5$  hat die Impulsantwort  $h_2(t)$  für  $t > 1$  betragsmäßig größere Anteile als  $h_1(t)$.
  • Mit  $r_1 = 0.5$  und  $r_2 = 0.75$  gilt  $H_1(f) \approx H_2(f)$  und damit auch  $h_1(t) \approx h_2(t)$.
  • $H_1(f)$  und  $H_2(f)$  erfüllen beide das erste Nyquistkriterium:  Beide Funktionen sind punktsymmetrisch um den „Nyquistpunkt”.
  • Wegen  $\Delta f = 1$  besitzen sowohl  $h_1(t)$  als auch  $h_2(t)$  Nulldurchgänge bei  $\pm 1$,  $\pm 2$, ...   ⇒   jeweils maximale vertikale Augenöffnung.


(6)   Vergleichen Sie den  Cosinus–Quadrat–Tiefpass  $(K_1 = 1, \ \Delta f_1 = 1)$  mit dem  Cosinus-Rolloff-Tiefpass  $(K_2 = 1, \ \Delta f_2 = 1,\ r_2 = 0.5)$.
        Variieren Sie  $r_2$  zwischen  $0$  und  $1$.  Interpretieren Sie die Ergebnisse.  Welcher Tiefpass erfüllt das zweite Nyquistkriterium]]?

  • $H_1(f)$  ist ein Sonderfall des Cosinus–Rolloff–Tiefpasses mit Rolloff  $r_2 =1$.  Das erste Nyquistkriterium wird auch mit  $r_2 \ne 1$  erfüllt.
  • Nach dem zweiten Nyquistkriterium muss  $h(t)$  auch Nulldurchgänge bei  $t=\pm 1.5$,  $\pm 2.5$,  $\pm 3.5$, ... besitzen  $($nicht jedoch bei  $t = \pm 0.5)$.
  • Für den Cosinus–Quadrat–TP gilt also  $h_1(t=\pm 0.5) = 0.5$,  $h_1(t=\pm 1) = h_1(t=\pm 1.5) = h_1(t=\pm 2)= h_1(t=\pm 2.5) = \text{...} =0$.
  • Nur der Cosinus–Quadrat–TP erfüllt das erste und zweite Nyquistkriterium gleichzeitig:  Maximale vertikale und horizontale Augenöffnung.


Zur Handhabung des Programms

Frequenzgang fertig version1.png

    (A)     Bereich der graphischen Darstellung für $H(f)$

    (B)     Bereich der graphischen Darstellung für $h(t)$

    (C)     Variationsmöglichkeit für die graphischen Darstellungen

    (D)     Parametereingabe per Slider
                      links (rot): „Low–pass 1”,         rechts (blau): „Low–pass 2”

    (E)     Parameter entsprechend der Voreinstellung   ⇒   „Reset”

    (F)     Einstellung von $t_*$ und $f_*$ für Numerikausgabe

    (G)     Numerikausgabe von $H(f_*)$ und $h(t_*)$
                      links (rot): „Low–pass 1”,         rechts (blau): „Low–pass 2”

Details zum obigen Punkt (C)

    (*)   Zoom–Funktionen „$+$” (Vergrößern), „$-$” (Verkleinern)
                     und $\rm o$ (Zurücksetzen)

    (*)   Verschiebe–Funktionen „$\leftarrow$” (Bildausschnitt nach links,
                     Ordinate nach rechts) sowie „$\uparrow$” „$\downarrow$” „$\rightarrow$”


Andere Möglichkeiten:

  • Bei gedrückter Shifttaste und Scrollen kann im Koordinatensystem gezoomt werden.
  • Bei gedrückter Shifttaste und gedrückter linker Maustaste kann das Koordinatensystem verschoben werden.



Über die Autoren

Dieses interaktive Berechnungstool wurde am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.

  • Die erste Version wurde 2005 von Ji Li im Rahmen ihrer Diplomarbeit mit „FlashMX–Actionscript” erstellt (Betreuer: Günter Söder und Klaus Eichin).
  • 2017 wurde „Impulse & Spektren” von David Jobst im Rahmen seiner Ingenieurspraxis (Betreuer: Tasnád Kernetzky) auf „HTML5” umgesetzt und neu gestaltet.

Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster

Applet in neuem Tab öffnen       English Version