Signaldarstellung/Fouriertransformation und -rücktransformation: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(78 dazwischenliegende Versionen von 6 Benutzern werden nicht angezeigt)
Zeile 5: Zeile 5:
 
}}
 
}}
  
 +
== # ÜBERBLICK ZUM DRITTEN HAUPTKAPITEL # ==
 +
<br>
 +
Im zweiten Kapitel wurden periodische Signale durch verschiedene harmonische Schwingungen (&bdquo;Fourierreihe&rdquo;) beschrieben.&nbsp; Verringert man &ndash; zumindest gedanklich &ndash; die Wiederholfrequenz eines periodischen Signals immer mehr, das heißt, die Periodendauer wird immer länger, so kommt man vom periodischen Signal&nbsp; (Puls)&nbsp; zum einmaligen&nbsp; '''aperiodischen Signal'''&nbsp; &ndash; häufig auch als&nbsp; '''Impuls'''&nbsp; bezeichnet.
  
==Eigenschaften aperiodischer Signale==
+
Im Folgenden werden solche aperiodischen, impulsförmigen Signale betrachtet und im Zeit&ndash; und Frequenzbereich mathematisch beschrieben.
  
Im letzten Kapitel haben wir ''periodische Signale'' betrachtet. Das wesentliche Charakteristikum dieser Signale ist, dass für sie eine ''Periodendauer'' $T_0$ angegeben werden kann. Ist eine solche Periodendauer nicht angebbar oder – was in der Praxis das gleiche ist – hat $T_0$ einen unendlich großen Wert, so spricht man von einem '''aperiodischen Signal'''.
+
Das Kapitel beinhaltet im Einzelnen:
Für das gesamte Kapitel 3 sollen folgende Voraussetzungen gelten:
+
* die Herleitung der beiden&nbsp; Fourierintegrale&nbsp; aus der Fourierreihe,
*Die betrachteten Signale $x(t)$ sind ''aperiodisch'' und ''energiebegrenzt'', das heißt, sie besitzen nur eine endliche Energie $E_x$ und eine vernachlässigbar kleine (mittlere) Leistung $P_x$.
+
* die Erweiterung des Fourierintegrals zur&nbsp; Fouriertransformation&nbsp; mittels Distributionen,
*Im Allgemeinen konzentriert sich die Energie dieser Signale auf einen relativ kurzen Zeitbereich, so dass man auch von ''impulsförmigen'' Signalen spricht.
+
* einige&nbsp; Sonderfälle&nbsp; impulsartiger Signale wie Rechteck&ndash;, Gauß&ndash; und Diracimpuls,  
 +
* die&nbsp; Gesetzmäßigkeiten&nbsp; der Fouriertransformation, und schließlich
 +
* die Bedeutung der&nbsp; Faltungsoperation&nbsp; und deren vielfältige Anwendungen.
  
  
{{Beispiel}}
+
Die Laplace&ndash; und die Hilberttransformation, die ausschließlich für kausale Signale bzw. Systeme anwendbar sind, werden erst im nächsten Buch &bdquo;Lineare zeitinvariante Systeme&rdquo; behandelt.
Das folgende Bild zeigt einen Rechteckimpuls $x_1(t)$ mit Amplitude $A$ und Dauer $T$ als Beispiel eines aperiodischen und zeitlich begrenzten Signals. Dieser besitzt eine endliche Signalenergie ($E_1=A^2 \cdot T$) und die Leistung $P_1$ = 0.
 
  
[[Datei:P_ID550__Sig_T_3_1_S1.png|250px|right|Energiebegrenztes und leistungsbegrenztes Signal]]
 
  
Ein leistungsbegrenztes Signal, z. B. das unten dargestellte Cosinussignal $x_1(t)$, besitzt dagegen
+
Weitere Informationen zum Thema sowie Aufgaben, Simulationen und Programmierübungen finden Sie im
*stets eine endliche Leistung ($P_2=A^2/2$), und
 
*eine unendlich große Signalenergie ($E_2 \to \infty$).
 
  
 +
*Kapitel 6:&nbsp;  Lineare zeitinvariante Systeme, Programm lzi
  
{{end}}
 
  
 +
des Praktikums &bdquo;Simulationsmethoden in der Nachrichtentechnik&rdquo;.&nbsp; Diese (ehemalige) LNT-Lehrveranstaltung an der TU München basiert auf
 +
*dem Lehrsoftwarepaket&nbsp; [http://www.lntwww.de/downloads/Sonstiges/Programme/LNTsim.zip LNTsim] &nbsp; &rArr; &nbsp; Link verweist auf die ZIP-Version des Programms und
 +
*der zugehörigen&nbsp; [http://www.lntwww.de/downloads/Sonstiges/Texte/Praktikum_LNTsim_Teil_A.pdf Praktikumsanleitung]  &nbsp; &rArr; &nbsp; Link verweist auf die PDF-Version;&nbsp; Kapitel 6:&nbsp; Seite 99-118.
  
==Genauere Betrachtung der Fourierkoeffizienten==
 
  
Wir gehen von einem periodischen Signal $x_P(t)$ mit der Periodendauer $T_0$ aus, das entprechend den Ausführungen im Kapitel 2.4 als (komplexe) Fourierreihe dargestellt werden kann:
+
==Eigenschaften aperiodischer Signale==
+
<br>
$$x_{\rm P}(t)=\sum^{+\infty}_{n=-\infty}D_{\it n}\cdot \rm e^{j  2 \pi \hspace{-0.05cm}{\it n} \it t / T_{\rm 0}}.$$
+
Im letzten Kapitel wurden&nbsp; periodische Signale&nbsp; betrachtet.&nbsp;  Das wesentliche Charakteristikum dieser Signale ist, dass man für sie eine&nbsp; Periodendauer&nbsp; $T_0$&nbsp; angeben kann.&nbsp;  Ist eine solche Periodendauer nicht angebbar oder – was in der Praxis das gleiche ist – hat&nbsp; $T_0$&nbsp; einen unendlich großen Wert, so spricht man von einem&nbsp; $\text{aperiodischen Signal}$.
  
Die Fourierkoeffizienten sind im Allgemeinen komplex, und es gilt $D_{-n}=D_n^\ast$:
+
Für das vorliegende  Kapitel &bdquo;Aperiodische Signale  &ndash; Impulse&rdquo; sollen folgende Voraussetzungen gelten:
+
*Die Signale&nbsp; $x(t)$&nbsp; sind&nbsp; '''aperiodisch'''&nbsp; und&nbsp; '''energiebegrenzt''': &nbsp; Sie besitzen eine endliche Energie&nbsp; $E_x$&nbsp; und eine vernachlässigbar kleine (mittlere) Leistung&nbsp; $P_x$.
$$D_n=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it  n} \it t / T_{\rm 0}}\, {\rm d}t.$$
+
*Oft konzentriert sich die Energie dieser Signale auf einen relativ kurzen Zeitbereich, so dass man auch von&nbsp; '''impulsförmigen Signalen'''&nbsp; spricht.
  
Wie bereits im Kapitel 2.4 gezeigt wurde, ist die dazugehörige Spektralfunktion $X_p(f)$ ein so genanntes Linienspektrum mit Spektrallinien im Abstand $f_0=1/T_0$:
 
 
$$X_{\rm P}(f)=\sum^{+\infty}_{n=-\infty}D_n\cdot\delta(f-n\cdot f_0).$$
 
  
Das Bild zeigt links das periodische Zeitsignal und rechts das zugehörige Betragsspektrum.
+
[[Datei:P_ID550__Sig_T_3_1_S1.png|right|frame|Energiebegrenztes Signal&nbsp; $x_1(t)$&nbsp; und leistungsbegrenztes Signal&nbsp; $x_2(t)$]]
 +
{{GraueBox|TEXT= 
 +
$\text{Beispiel 1:}$&nbsp;
 +
Die Grafik zeigt oben einen Rechteckimpuls&nbsp; $x_1(t)$&nbsp; mit Amplitude&nbsp; $A$&nbsp; und Dauer&nbsp; $T$&nbsp; als Beispiel eines aperiodischen und zeitlich begrenzten Signals.&nbsp;  Dieser Impuls besitzt
 +
*die endliche Signalenergie &nbsp; &rArr; &nbsp; hier: &nbsp; $E_1=A^2 \cdot T$,&nbsp;  und  
 +
*die Leistung&nbsp; $P_1$ = 0.
  
[[Datei:P_ID396__Sig_T_3_1_S2_rah.png|250px|right|Periodisches Signal und Linienspektrum (1)]]
 
  
Anzumerken ist, dass es sich hierbei lediglich um eine schematische Skizze handelt. Ist $x_P(t)$ eine reelle und gerade Funktion, so ist $X_P(f)$ ebenfalls reell und gerade. Die Gleichung $X_P(f) = |X_P(f)|$ gilt allerdings nur dann, wenn alle Spektrallinien zudem auch positiv sind.
+
Ein leistungsbegrenztes Signal, zum Beispiel das unten dargestellte Cosinussignal&nbsp; $x_2(t)$, besitzt dagegen
 +
*stets eine endliche Leistung &nbsp; &rArr; &nbsp; hier: &nbsp; $P_2=A^2/2$,&nbsp;  und
 +
*damit auch eine unendlich große Signalenergie: &nbsp; $E_2 \to \infty$.}}
  
Im unteren Bild ist ein weiteres periodisches Signal $x_P'(t)$ mit doppelter Periodendauer $T_0' = 2 \cdot T_0$ dargestellt. Bezüglich dieses Signals gilt:
 
 
$${x_{\rm P}}'(t)=\sum^{+\infty}_{n=-\infty}{\it D_n}'\cdot {\rm e}^{{\rm j}  2 \pi \hspace{-0.05cm}{\it n t / T}_{\rm 0}'} \hspace{0.3cm}{\rm mit}\hspace{0.3cm}{\it D_n}'=\frac{1}{{T_0}'}\cdot \int^{{+T_0}'/2}_{-{T_0}'/2}{x_{\rm P}}'(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it n t / T}_{\rm 0}'}\, {\rm d}\it t.$$
 
  
Im Bereich von $-T_0/2$ bis $+t_0/2$ sind die beiden Signale identisch.
+
==Genauere Betrachtung der Fourierkoeffizienten==
 +
<br>
 +
Wir gehen von einem periodischen Signal&nbsp; $x_{\rm P}(t)$&nbsp; mit der Periodendauer&nbsp; $T_0$&nbsp; aus, das entprechend den Ausführungen auf der Seite&nbsp; [[Signaldarstellung/Fourierreihe#Komplexe_Fourierreihe|Komplexe Fourierreihe]]&nbsp; wie folgt dargestellt werden kann:
  
[[Datei:P_ID538__Sig_T_3_1_S2b_rah.png|250px|right|Periodisches Signal und Linienspektrum (2)]]
+
[[Datei:P_ID538__Sig_T_3_1_S2b_rah.png|right|frame|Periodische Signale&nbsp; $x_{\rm P}(t)$&nbsp; und&nbsp; $x_{\rm P}\hspace{0.01cm}'(t)$&nbsp; sowie zugehörige Linienspektren]]
  
Betrachten wir auch hier die Spektralfunktion $X_P'(f)$:
+
:$$x_{\rm P}(t)=\sum^{+\infty}_{n=-\infty}D_{\it n}\cdot \rm e^{j 2 \pi \hspace{0.01cm}{\it n} \hspace{0.01cm}\it t / T_{\rm 0}}.$$
Aufgrund der doppelten Periodendauer ($T_0' = 2 \cdot T_0$) liegen nun die Spektrallinien enger beisammen ($f_0' = f_0/2$).
 
Die beiden Koeffizienten $D_n$ und $D_{2n}'$ – im Bild rot hervorgehoben – gehören zur gleichen physikalischen Frequenz $f = n \cdot  f_0 = 2n \cdot f_0'$.
 
  
Durch Analyse der Koeffizienten
+
*Die Fourierkoeffizienten sind im Allgemeinen komplex <br>$($es gilt&nbsp; $D_{-n}={D_n}^\ast)$:
 
   
 
   
$${D_{2n}}'=\frac{1}{{T_0}'}\cdot \int^{+{T_0}'/2}_{-{T_0}'/2}{x_{\rm P}}'(t) \cdot{\rm e}^{-\rm j   2 \pi \hspace{-0.05cm}{\it n} \it t / {T_{\rm 0}}'}\, {\rm d}t$$
+
:$$D_n=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{0.01cm}{\it n} \it t / T_{\rm 0}}\, {\rm d}t.$$
  
erkennen wir:
+
*Die dazugehörige Spektralfunktion&nbsp; $X_{\rm P}(f)$&nbsp; ist ein so genanntes&nbsp; &bdquo;Linienspektrum&rdquo;&nbsp; mit Spektrallinien im Abstand&nbsp; $f_0=1/T_0$:
*Zwischen $T_0/2$ und $T_0'/2$ ist $x_P'(t)$ identisch 0, ebenso im dazu symmetrischen Intervall bei negativen Zeiten. Deshalb können die Integrationsgrenzen auf $\pm T_0/2$ eingeschränkt werden.
 
*Innerhalb der neuen Integrationsgrenzen kann $x_P'(t)$ durch $x_P(t)$ ersetzt werden.
 
 
 
Setzen wir nun in obiger Gleichung noch $T_0' = 2T_0$, so erhalten wir:
 
 
   
 
   
$${D_{2n}}'=\frac{1}{2T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it n} t / T_{\rm 0}}\, {\rm d}t = \frac{D_n}{2}  .$$
+
:$$X_{\rm P}(f)=\sum^{+\infty}_{n=-\infty}D_n\cdot\delta(f-n\cdot f_0).$$
  
Fassen wir dieses Ergebnis kurz zusammen:
+
Die obere Grafik zeigt links das periodische Zeitsignal&nbsp; $x_{\rm P}(t)$&nbsp; und rechts das zugehörige Betragsspektrum&nbsp; $|X_{\rm P}(f)|$.&nbsp;
*Die Spektrallinie des Signals $x_P'(t)$ bei der Frequenz $f = n \cdot f_0'$ wird mit $D_{2n}'$ bezeichnet (untere Grafik). Diese Linie ist genau halb so groß wie die Spektrallinie $D_n$ des Signals $x_P(t)$ bei der gleichen physikalischen Frequenz $f$ (obere Grafik).
 
*Die Spektralfunktion $X_P'(f)$ weist gegenüber $X_P(f)$ zusätzliche Spektrallinien bei $(n + 1/2) \cdot f_0$ auf. Diese führen dazu, dass im Zeitbereich jeder zweite Impuls von $x_P(t)$ um $n \cdot T_0$ gelegen ($n$ ungeradzahlig) ausgelöscht wird.
 
  
 +
Es handelt sich hierbei lediglich um schematische Skizzen:
  
 +
*Ist&nbsp; $x_{\rm P}(t)$&nbsp; eine reelle und gerade Funktion, so ist&nbsp; $X_{\rm P}(f)$&nbsp; ebenfalls reell und gerade.
 +
*Die Gleichung&nbsp; $X_{\rm P}(f) = |X_{\rm P}(f)|$&nbsp; gilt allerdings nur dann, wenn alle Spektrallinien zudem auch positiv sind.
  
==Vom periodischen zum aperiodischen Signal==
 
Greifen wir nun die Überlegungen der vorherigen Seite auf und wählen die Periodendauer $T_0'$ von $x_P'(t)$ allgemein um einen ganzzahligen Faktor $k$ größer als die Periodendauer $T_0$ von $x_P(t)$. Dann können die bisherigen Aussagen verallgemeinert werden:
 
*Der Linienabstand ist bei $X_P'(f)$ um den Faktor $k$ geringer als beim Spektrum $X_P(f)$.
 
*Um diesen Sachverhalt hervorzuheben, bezeichnen wir die Frequenz-Laufvariable der Funktion $X_P'(f)$ mit $v$ anstelle von $n$. Es gilt: $v=k \cdot n$.
 
*Für die Spektrallinie des Signals $X_P'(f)$ bei der Frequenz $f=n \cdot f_0 = v \cdot f_0'$ gilt:
 
 
$${D_\nu}' = \frac{1}{k} \cdot D_n, \hspace{0.5cm} {\rm wobei} \hspace{0.5cm} \nu = k \cdot n .$$
 
  
[[Datei:P_ID398__Sig_T_3_1_S3_rah.png|250px|right|Vom periodischen zum aperiodischen Signal]]
 
  
Wählt man nun – wie im Bild schematisch dargestellt – den Faktor $k$ und damit die Periodendauer $T_0'$ immer größer und lässt sie schließlich nach unendlich gehen, so
+
In der unteren Grafik ist links ein weiteres periodisches Signal&nbsp; ${x_{\rm P}}\hspace{0.01cm}'(t)$&nbsp; mit doppelter Periodendauer&nbsp; ${T_0}\hspace{0.01cm}' = 2 \cdot T_0$&nbsp; dargestellt.&nbsp; Für dieses Signals gilt:
*geht das periodische Signal $x_P(t)$ in das aperiodische Signal $x(t)$ über,
+
*kann man das Linienspektrum $X_P(f)$ durch das kontinuierliche Spektrum $X(f)$ ersetzen.
+
:$${x_{\rm P}}'(t)=\sum^{+\infty}_{n=-\infty}{\it D_n}'\cdot {\rm e}^{{\rm j}  2 \pi \hspace{-0.05cm}{\it n t / T}_{\rm 0}\hspace{0.01cm}'} \hspace{0.3cm}{\rm mit}\hspace{0.3cm}{\it D_n}'=\frac{1}{{T_0}\hspace{0.01cm}'}\cdot \int^{{+T_0}'/2}_{-{T_0}'/2}{x_{\rm P}}'(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it n t / T}_{\rm 0}\hspace{0.01cm}'}\, {\rm d}\it t.$$
  
 +
Im Bereich von&nbsp; $-T_0/2$&nbsp; bis&nbsp; $+T_0/2$&nbsp; sind die beiden Signale identisch.&nbsp;
 +
Wir betrachten auch hier die Spektralfunktion&nbsp; ${X_{\rm P} }'(f)$&nbsp; entsprechend der rechten Skizze:
 +
*Aufgrund der doppelten Periodendauer&nbsp; $({T_0}' = 2 \cdot T_0)$&nbsp; liegen nun die Spektrallinien enger beisammen&nbsp; $({f_0}' = f_0/2)$.
 +
*Die beiden Koeffizienten&nbsp; $D_n$&nbsp; und&nbsp; ${D_{2n}}'$ &nbsp; – &nbsp; im Bild rot hervorgehoben &nbsp; – &nbsp; gehören zur gleichen physikalischen Frequenz&nbsp; $f = n \cdot  f_0 = 2n \cdot {f_0}'$.
  
==Das erste Fourierintegral==
 
  
Bezüglich den Spektralfunktion $X_P(f)$ und $X(f)$ lassen sich somit folgende Aussagen machen:
+
Durch den Vergleich dieser beiden Koeffizienten erkennen wir:
*Die einzelnen Spektrallinien liegen nun beliebig eng beieinander ($f_0'=1/T_0' \to 0$).
 
*In der Spektralfunktion $X(f)$ treten nun innerhalb bestimmter Intervalle alle möglichen (nicht nur diskrete) Frequenzen auf; $X(f)$ stellt also kein Linienspektrum mehr dar.
 
*Der Beitrag einer jeden einzelnen Frequenz $f$ zum Signal ist nur verschwindend gering ($k \to \infty, D_v' \to 0$). Aufgrund der unendlich vielen Frequenzen ergibt sich jedoch insgesamt ein endliches Resultat.
 
*Anstatt die Fourierkoeffizienten $D_v'$ zu berechnen, wird nun stattdessen eine spektrale Dichte $X(f)$ ermittelt. Bei der Frequenz $f=v \cdot f_0'$ gilt dann:
 
 
   
 
   
: $$X(f = {\rm \nu} {f_{\rm 0}}') = \lim_{{f_{\rm 0}}' \hspace{0.05cm}\to \hspace{0.05cm} 0} ({{D_{\rm \nu}}'}/{{f_{\rm 0}}'}) = \lim_{{T_{\rm 0}}' \to \infty} ({D_{\rm \nu}}' \cdot {T_{\rm 0}}')$$ .
+
:$$D_n=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it  n} \it t / T_{\rm 0}}\, {\rm d}t \hspace{0.5cm}\text{und} \hspace{0.5cm} {D_{2n}}'=\frac{1}{{T_0}'}\cdot \int^{+{T_0}'/2}_{-{T_0}'/2}{x_{\rm P}}'(t) \cdot{\rm e}^{-\rm j  4 \pi \hspace{-0.05cm}{\it n} \it t / {T_{\rm 0}}'}\, {\rm d}t  \text{:} $$
*Die Spektralfunktion (Dichte) $X(f)$ des aperiodischen Signals $x(t)$ ist im Spektrum $X_P(f)$ des vergleichbaren periodischen Signals $x_P(t)$ als Einhüllende erkennbar (siehe Grafiken).
+
 
*In der unteren Grafik entspricht $D_v'$ der rot hinterlegten Fläche des Frequenzintervalls um $v \cdot f_0'$ mit der Breite $f_0'$.
+
*Zwischen&nbsp; $T_0/2$&nbsp; und&nbsp; ${T_0}'/2$&nbsp; ist&nbsp; ${x_{\rm P}}'(t) \equiv 0$, ebenso im dazu symmetrischen Intervall bei negativen Zeiten.  
 +
*Deshalb können die Integrationsgrenzen auf&nbsp; $\pm T_0/2$&nbsp; eingeschränkt werden.
 +
*Innerhalb der neuen Integrationsgrenzen kann&nbsp; ${x_{\rm P}}'(t)$&nbsp; durch&nbsp; $x_{\rm P}(t)$&nbsp; ersetzt werden.
  
[[Datei:P_ID397__Sig_T_3_1_S3_b_rah.png|250px|right|Vom periodischen zum aperiodischen Signal]]
 
  
Verwendet man die auf der letzten Seite angegebenen Gleichungen, so erhält man:
+
Setzen wir nun in obiger Gleichung noch&nbsp; ${T_0}' = 2T_0$, so erhalten wir:
 
   
 
   
$$X(f = {\rm \nu} \cdot {f_{\rm 0}}') = \lim_{{T_{\rm 0}'} \to \infty} \int ^{{T_{\rm 0}}'/2} _{-{T_{\rm 0}}'/2} x_{\rm P}(t) \, \cdot \, { \rm e}^{-\rm j 2\pi\nu \it {f_{\rm 0}}' t} \,{\rm d}t.$$
+
:$${D_{2n}}'=\frac{1}{2T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it n} t / T_{\rm 0}}\, {\rm d}t = {D_n}/{2}  .$$
  
Durch den gemeinsamen Grenzübergang ($T_0' \to \infty, f_0' \to 0$) wird nun
+
{{BlaueBox|TEXT= 
*aus dem periodischen Signal $x_P(t)$ das aperiodische Signal $x(t)$, und
+
$\text{Wir fassen dieses Ergebnis kurz zusammen:}$&nbsp;
*aus der diskreten Frequenz $v \cdot f_0'$ die kontinuierliche Frequenzvariable $f$.
+
*Die Spektrallinie des Signals&nbsp; ${x_{\rm P} }'(t)$&nbsp; bei der Frequenz&nbsp; $f = n \cdot {f_0}'$&nbsp; wird mit&nbsp; ${D_{2n} }'$&nbsp; bezeichnet (untere Grafik).
 +
*Diese Linie ist genau halb so groß wie die Spektrallinie&nbsp; $D_n$&nbsp; des Signals&nbsp; $x_{\rm P}(t)$&nbsp; bei der gleichen physikalischen Frequenz&nbsp; $f$&nbsp; (obere Grafik).
 +
*Die Spektralfunktion&nbsp; ${X_{\rm P} }'(f)$&nbsp; weist gegenüber&nbsp; $X_{\rm P}(f)$&nbsp; zusätzliche Spektrallinien bei&nbsp; $(n + 1/2) \cdot f_0$&nbsp; auf.
 +
*Diese führen dazu, dass im Zeitbereich jeder zweite &bdquo;Impuls&rdquo; von&nbsp; $x_{\rm P}(t)$&nbsp; um&nbsp; $n \cdot T_0$&nbsp; gelegen&nbsp; $(n$ ungeradzahlig$)$&nbsp; ausgelöscht wird.}}
  
  
Damit erhält man eine fundamentale Definition, welche die Berechnung der Spektralfunktion einer aperiodischen Zeitfunktion ermöglicht. Der Name dieser Spektraltransformation geht auf den französischen Physiker Jean-Baptiste-Joseph Fourier zurück.
 
  
{{Definition}}
+
==Vom periodischen zum aperiodischen Signal==
Die Spektralfunktion (oder kurz: das Spektrum) eines aperiodischen und gleichzeitig energiebegrenzten Signals $x(t)$ ist wie folgt zu berechnen:
+
<br>
 +
Wir greifen nun die Überlegungen der vorherigen Seite auf und wählen die Periodendauer&nbsp; ${T_0}'$&nbsp; von&nbsp; ${x_{\rm P}}'(t)$&nbsp; allgemein um einen ganzzahligen Faktor&nbsp; $k$&nbsp; größer als die Periodendauer&nbsp; $T_0$&nbsp; von&nbsp; ${x_{\rm P}}(t)$.&nbsp; Dann können die bisherigen Aussagen verallgemeinert werden:
  
$$X(f)= \hspace{0.05cm}\int \limits_{-\infty} ^{{+}\infty} x(t) \, \cdot \, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t$$
+
[[Datei:P_ID398__Sig_T_3_1_S3_rah.png|right|frame|Vom periodischen zum aperiodischen Signal]]
 +
*Der Linienabstand ist bei&nbsp; ${X_{\rm P}}'(f)$&nbsp; um den Faktor&nbsp; $k$&nbsp; geringer als beim Spektrum&nbsp; ${X_{\rm P}}(f)$.
  
⇒    Erstes Fourierintegral.
+
*Um dies hervorzuheben, bezeichnen wir die Frequenz&ndash;Laufvariable der Funktion&nbsp; ${X_{\rm P}}'(f)$&nbsp; mit&nbsp; $\nu$&nbsp; anstelle von&nbsp; $n$.&nbsp; Es gilt: &nbsp; $\nu=k \cdot n$.
 +
*Für die Spektrallinie des Signals&nbsp; ${x_{\rm P}}'(t)$&nbsp; bei der Frequenz&nbsp; $f=n \cdot f_0 =\nu \cdot {f_0}'$&nbsp; gilt:
 +
:$${D_\nu}' = {1}/{k} \cdot D_n, \hspace{0.5cm} {\rm wobei} \hspace{0.5cm} \nu = k \cdot n.$$
 +
<br><br><br><br>
 +
Wählt man nun – wie im unteren Bild schematisch dargestellt – den Faktor&nbsp; $k$&nbsp; und damit die Periodendauer&nbsp; ${T_0}'$&nbsp; immer größer und lässt sie schließlich nach unendlich gehen, so
 +
*geht das periodische Signal&nbsp; ${x_{\rm P}}(t)$&nbsp; in das aperiodische Signal&nbsp; $x(t)$&nbsp; über,
 +
*kann man das Linienspektrum&nbsp; ${X_{\rm P}}(f)$&nbsp; durch das kontinuierliche Spektrum&nbsp; $X(f)$&nbsp; ersetzen.
 +
<br clear=all>
 +
==Das erste Fourierintegral==
 +
<br>
 +
Bezüglich den Spektralfunktion&nbsp; $X_{\rm P}(f)$&nbsp; und&nbsp; $X(f)$&nbsp; lassen sich somit folgende Aussagen machen:
 +
*Die einzelnen Spektrallinien liegen nun beliebig eng beieinander&nbsp; $({f_0}'=1/{T_0}' \to 0)$.
 +
*In der Spektralfunktion&nbsp; $X(f)$&nbsp; treten nun innerhalb bestimmter Intervalle alle möglichen (nicht nur diskrete) Frequenzen auf &nbsp; &rArr; &nbsp; $X(f)$&nbsp; ist kein Linienspektrum mehr.
 +
*Der Beitrag einer jeden einzelnen Frequenz&nbsp; $f$&nbsp; zum Signal ist nur verschwindend gering&nbsp; $(k \to \infty, {D_{\nu}}' \to 0)$.
 +
*Aufgrund der unendlich vielen Frequenzen ergibt sich jedoch insgesamt ein endliches Resultat.
 +
*Anstatt die Fourierkoeffizienten&nbsp; ${D_{\nu}}'$&nbsp; zu berechnen, wird nun eine spektrale Dichte&nbsp; $X(f)$&nbsp; ermittelt. Bei der Frequenz&nbsp; $f=\nu\cdot {f_0}'$&nbsp; gilt dann:
 +
 +
: $$X(f = {\rm \nu} {f_{\rm 0}}') = \lim_{{f_{\rm 0}}' \hspace{0.05cm}\to \hspace{0.05cm} 0} ({{D_{\rm \nu}}'}/{{f_{\rm 0}}'}) = \lim_{{T_{\rm 0}}' \to \infty} ({D_{\rm \nu}}' \cdot {T_{\rm 0}}').$$
 +
*Die Spektralfunktion&nbsp; $X(f)$&nbsp; des aperiodischen Signals&nbsp; $x(t)$&nbsp; ist im Spektrum&nbsp; $X_{\rm P}(f)$&nbsp; des periodischen Signals&nbsp; $x_{\rm P}(t)$ als Einhüllende erkennbar&nbsp; (siehe Grafiken).
 +
*In der unteren Grafik auf der letzten Seite entspricht&nbsp; ${D_{\nu}}'$&nbsp; der rot hinterlegten Fläche des Frequenzintervalls um&nbsp; $\nu \cdot {f_0}'$&nbsp; mit der Breite&nbsp; ${f_0}'$.
  
{{end}}
 
  
 +
Verwendet man die auf der letzten Seite angegebenen Gleichungen, so erhält man:
 +
 +
:$$X(f = {\rm \nu} \cdot {f_{\rm 0}}') = \lim_{{T_{\rm 0}'} \to \infty} \int ^{{T_{\rm 0}}'/2} _{-{T_{\rm 0}}'/2} x_{\rm P}(t) \, \cdot \, { \rm e}^{-\rm j 2\pi\nu \it {f_{\rm 0}}' t} \,{\rm d}t.$$
  
Das nachfolgende Lernvideo soll Ihnen die Aussagen der letzten Seiten nochmals verdeutlichen:
+
Durch den gemeinsamen Grenzübergang&nbsp; $({T_0}' \to \infty, \ {f_0}' \to 0)$&nbsp; wird nun
Unterschiede und Gemeinsamkeiten von kontinuierlichen und diskreten Spektren
+
*aus dem periodischen Signal&nbsp; $x_{\rm P}(t)$&nbsp; das aperiodische Signal&nbsp; $x(t)$, und
(Dauer Teil 1: 6:20 – Teil 2: 5:15)
+
*aus der diskreten Frequenz&nbsp; $\nu \cdot {f_0}'$&nbsp; die kontinuierliche Frequenzvariable&nbsp; $f$.
  
  
==Beispiel zum ersten Fourierintegral==
+
Damit erhält man eine fundamentale Definition, welche die Berechnung der Spektralfunktion einer aperiodischen Zeitfunktion ermöglicht.&nbsp; Der Name dieser Spektraltransformation geht auf den französischen Physiker&nbsp; [https://de.wikipedia.org/wiki/Joseph_Fourier Jean-Baptiste-Joseph Fourier]&nbsp; zurück.
  
{{Beispiel}}
+
{{BlaueBox|TEXT= 
Gegeben ist der skizzierte Zeitverlauf $x(t)$. Gesucht ist das zugehörige Spektrum $X(f)$.
+
$\text{Erstes Fourierintegral:}$&nbsp;
  
[[Datei:P_ID330__Sig_T_3_1_S5_neu.png|250px|right|Rechteckimpuls]]
+
Die&nbsp; $\text{Spektralfunktion}$&nbsp; (oder kurz:&nbsp; das&nbsp; $\text{Spektrum})$&nbsp; eines aperiodischen und gleichzeitig energiebegrenzten Signals&nbsp; $x(t)$&nbsp; ist wie folgt zu berechnen:
  
Wir wenden dazu das erste Fourierintegral an. Aus obiger Darstellung ist zu erkennen, dass das Signal $x(t)$ für $|t| > T/2$ gleich 0 ist. Das bedeutet, dass das Integrationsintervall auf den Bereich $\pm T/2$ begrenzt werden kann. Damit erhält man den Ansatz:
+
:$$X(f)= \hspace{0.05cm}\int_{-\infty} ^{ {+}\infty} x(t) \, \cdot \, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$}}
 
$$ \begin{align*} X(f) & = A \int_{-T/2}^{+T/2} {\rm e}^{-{\rm j2\pi} ft}\,{\rm d}t \frac{ A}{-\rm j2\pi f}\left[ {\rm e}^{-{\rm j}2\pi ft}\right]_{-T/2}^{+T/2} \\ & =  \frac{\it A}{-\rm j 2\pi f}\left[\cos({\rm \pi} f T)-{\rm j} \cdot \sin({\rm \pi} fT)-\cos({\rm \pi} fT)-{\rm j} \cdot \sin({\rm \pi} fT)\right]. \end{align*}$$
 
  
{{end}}
 
  
 +
Das Lernvideo&nbsp; [[Kontinuierliche_und_diskrete_Spektren_(Lernvideo)|Kontinuierliche und diskrete Spektren]]&nbsp; soll die Aussagen der letzten Seiten nochmals verdeutlichen.
 +
 +
[[Datei:P_ID330__Sig_T_3_1_S5_neu.png|right|frame|Betrachteter Rechteckimpuls&nbsp; $x(t)$]]
 +
{{GraueBox|TEXT= 
 +
$\text{Beispiel 2:}$&nbsp;
 +
Gegeben ist der skizzierte Zeitverlauf&nbsp; $x(t)$.&nbsp; Gesucht ist das zugehörige Spektrum&nbsp; $X(f)$.
  
 +
Wir wenden dazu das erste Fourierintegral an.
 +
*Aus obiger Darstellung ist zu erkennen, dass für&nbsp; $\vert t \vert > T/2$&nbsp; das Signal&nbsp; $x(t) = 0$&nbsp;  ist.
 +
*Das bedeutet, dass das Integrationsintervall auf den Bereich&nbsp; $\pm T/2$&nbsp; begrenzt werden kann.
 +
*Damit erhält man den Ansatz:
 +
 +
:$$ \begin{align*} X(f) & =  A \cdot  \int_{- T/2}^{+T/2} {\rm e}^{- {\rm j2\pi} ft}\,{\rm d}t  = \frac{ A}{- \rm j2\pi f}\left[ {\rm e}^{- {\rm j}2\pi ft}\right]_{-T/2}^{+T/2}  \\ & =  \frac{\it A} {- \rm j 2\pi f}\cdot \big[\cos({\rm \pi} f T) - {\rm j} \cdot \sin({\rm \pi} fT) - \cos({\rm \pi} fT) - {\rm j} \cdot \sin({\rm \pi} fT)\big] \end{align*}$$
  
$$\Rightarrow X(f)=A\cdot \frac{\sin({\rm \pi} fT)}{{\rm \pi} f}.$$
+
:$$\Rightarrow \hspace{0.5cm}X(f)=A\cdot \frac{\sin({\rm \pi} fT)}{ {\rm \pi} f}.$$
  
Erweitert man Zähler und Nenner mit $T$, so erhält man:
+
*Erweitert man Zähler und Nenner mit&nbsp; $T$, so erhält man:
 
   
 
   
$$X(f)=A\cdot T \cdot \frac{\sin(\pi fT)}{\pi fT} = A\cdot T \cdot{\rm si }(\pi fT) .$$
+
:$$X(f)=A\cdot T \cdot\frac{\sin(\pi fT)}{\pi fT} = A\cdot T \cdot{\rm si }(\pi fT).$$
 
 
Die Funktion si($x$) = sin($x$)/$x$ wird auf der Seite Rechteckimpuls im Kapitel 3.2 noch eingehend analysiert. Man nennt sie ''si–Funktion'' oder auch ''Spaltfunktion''.
 
 
 
  
 +
Die Funktion&nbsp; $\text{si}(x) = \sin(x)/x$&nbsp; wird auf der Seite&nbsp; [[Signaldarstellung/Einige_Sonderf%C3%A4lle_impulsartiger_Signale#Rechteckimpuls|Rechteckimpuls]]&nbsp; eingehend analysiert. Man bezeichnet diese &bdquo;si–Funktion&rdquo; manchmal  auch als &bdquo;Spaltfunktion&rdquo;.}}
  
  
 
Betrachten wir noch die Einheiten der beiden Funktionen im Zeit- und Frequenzbereich:
 
Betrachten wir noch die Einheiten der beiden Funktionen im Zeit- und Frequenzbereich:
*Ist $x(t)$ beispielsweise eine Spannung, so hat die Impulsamplitude $A$ die Einheit „Volt”.
+
*Ist&nbsp; $x(t)$&nbsp; beispielsweise eine Spannung, so hat die Impulsamplitude&nbsp; $A$&nbsp; die Einheit „Volt”.
*Die Dimension der Größe $T$ ist häufig die Zeit, z. B. mit der Einheit „Sekunde”.
+
*Die Dimension der Größe&nbsp; $T$&nbsp; ist häufig die Zeit, zum Beispiel mit der Einheit „Sekunde”.
 
*Der Kehrwert der Zeit entspricht der Frequenz mit der Einheit „Hertz”.
 
*Der Kehrwert der Zeit entspricht der Frequenz mit der Einheit „Hertz”.
*Das Argument $f \cdot T$ ist dimensionslos.
+
*Das Argument&nbsp; $f \cdot T$&nbsp; ist dimensionslos.
*Die Spektralfunktion hat somit beispielsweise die Einheit „V/Hz”.
+
*Die Spektralfunktion&nbsp; $X(f)$&nbsp; hat somit beispielsweise die Einheit „V/Hz”.
 
 
 
 
  
  
 
==Fouriertransformation==
 
==Fouriertransformation==
 
+
<br>
Das Spektrum $X(f)$ eines Signals $x(t)$ lautet gemäß dem „Ersten Fourierintegral”:
+
Das Spektrum&nbsp; $X(f)$&nbsp; eines Signals&nbsp; $x(t)$&nbsp; lautet gemäß dem „Ersten Fourierintegral”:
 
   
 
   
$$X(f)= \hspace{0.05cm}\int _{-\infty} ^{{+}\infty} x(t) \, \cdot \, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$
+
:$$X(f)= \hspace{0.05cm}\int _{-\infty} ^{{+}\infty} x(t) \, \cdot \, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$
  
Wie auf der letzten Seite an einem einfachen Beispiel gezeigt wurde, ist dieses Integral bei einem energiebegrenzten Signal $x(t)$ problemlos lösbar.
+
Wie auf der letzten Seite an einem einfachen Beispiel gezeigt wurde, ist dieses Integral bei einem energiebegrenzten Signal&nbsp; $x(t)$&nbsp; problemlos lösbar.&nbsp; Bei nicht energiebegrenzten Signalen, zum Beispiel
Bei nicht energiebegrenzten Signalen, zum Beispiel
+
*einem&nbsp; [[Signaldarstellung/Gleichsignal_-_Grenzfall_eines_periodischen_Signals|Gleichsignal]] ,
*einem Gleichsignal (vgl. Kapitel 2.2),
+
*einer&nbsp; [[Signaldarstellung/Harmonische_Schwingung|harmonischen Schwingung]], oder
*einer harmonischen Schwingung (vgl. Kapitel 2.3),
 
 
*einem anklingenden Signal,
 
*einem anklingenden Signal,
  
divergiert aber das Fourierintegral. Unter Einbeziehung einer beidseitig abfallenden Hilfsfunkion $\epsilon (t)$ kann allerdings die Konvergenz erzwungen werden:
+
 
 +
divergiert aber das Fourierintegral.&nbsp; Unter Einbeziehung einer beidseitig abfallenden Hilfsfunkion&nbsp; $\varepsilon (t)$&nbsp; kann allerdings die Konvergenz erzwungen werden:
 
   
 
   
$$X(f) = \lim_{\varepsilon \to 0} \int _{-\infty} ^{{+}\infty} x(t) \cdot {\rm e}^{\it -\varepsilon  | \hspace{0.01cm} t \hspace{0.01cm} |} \cdot {\rm e}^{{-\rm j 2  \pi}\it  ft} \,{\rm d}t.$$
+
:$$X(f) = \lim_{\varepsilon \to 0} \int _{-\infty} ^{{+}\infty} x(t) \cdot {\rm e}^{\it -\varepsilon  | \hspace{0.01cm} t \hspace{0.01cm} |} \cdot {\rm e}^{{-\rm j 2  \pi}\it  ft} \,{\rm d}t.$$
 +
 
 +
Solche nicht energiebegrenzten Signale führen im Spektrum zu so genannten&nbsp; &bdquo;Diracfunktionen&rdquo;, manchmal auch&nbsp; „Distributionen”&nbsp; genannt.
  
Solche nicht energiebegrenzten Signale führen im Spektrum zu Diracfunktionen, manchmal auch „Distributionen” genannt. Man bezeichnet diesen allgemeinen Funktionalzusammenhang $X(f) = F[x(t)]$ als '''Fouriertransformation''' und verwendet hierfür die Kurzschreibweise:
+
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
 +
Man bezeichnet den allgemein gültigen Funktionalzusammenhang&nbsp; $X(f) = F\big [x(t) \big ]$&nbsp; als&nbsp; $\text{Fouriertransformation}$.&nbsp; Für die Kurzschreibweise verwenden wir (mit dem &bdquo;weißen&rdquo; Punkt für den Zeitbereich und dem ausgefüllten Punkt für den Spektralbereich):
 
   
 
   
$$X(f)\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,x(t).$$
+
:$$X(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ x(t).$$
  
Bei einem anklingenden Signal wird die Konvergenz allerdings nur dann erreicht, solange die Zeitfunktion weniger als exponentiell ansteigt.
+
Bei einem anklingenden Signal wird die Konvergenz allerdings nur dann erreicht, solange die Zeitfunktion weniger als exponentiell ansteigt.}}
  
  
{{Beispiel}}
+
[[Datei:P_ID655__Sig_T_3_1_S6.png|right|frame| Sprungfunktion und zugehöriges Spektrum]]
Wir betrachten eine akausale Sprungfunktion $x(t)$ = sign($t$) mit $x(t)$ = –1 für negative sowie $x(t)$ = +1 für positive Zeiten. Dieses Signal ist in nachfolgender Skizze links in blauer Farbe dargestellt.
+
{{GraueBox|TEXT= 
 +
$\text{Beispiel 3:}$&nbsp;
 +
Wir betrachten eine akausale Sprungfunktion
 +
:$$x (t) = \left\{ {\begin{array}{*{20}c}  { +1 } & { {\rm{f\ddot{u}r} }\quad t > 0,}  \\  {-1 } & { {\rm{f\ddot{u}r} }\quad t < 0.}  \\\end{array} } \right.$$  
 +
Dieses Signal ist in der linken Skizze in blauer Farbe dargestellt.
 
   
 
   
[[Datei:P_ID655__Sig_T_3_1_S6.png|250px|right| Sprungfunktion und Spektrum]]
+
Da das Signal&nbsp; $x(t)$&nbsp; nach beiden Seiten bis ins Unendliche reicht, muss zur Berechnung der Fouriertransformierten für beide Abschnitte zunächst ein geeigneter Konvergenzfaktor&nbsp; $\text{e}^{-\varepsilon \hspace{0.05cm} \cdot \hspace{0.05cm}\vert \hspace{0.05cm} t \hspace{0.05cm} \vert}$&nbsp; hinzugefügt werden $($es gelte&nbsp; $\varepsilon > 0)$.&nbsp; Die resultierende Zeitfunktion lautet dann:
 
 
Da das Signal $x(t)$ nach beiden Seiten bis ins Unendliche reicht, muss zur Berechnung der Fouriertransformierten für beide Abschnitte zunächst ein geeigneter Konvergenzfaktor $\text{e}^{-\epsilon |t|}$ hinzugefügt werden (es gelte $\epsilon > 0$). Die resultierende Zeitfunktion lautet dann:
 
 
   
 
   
$$x_\varepsilon  (t) = \left\{ {\begin{array}{*{20}c}  {{\rm{e}}^{ - \varepsilon t} } & {{\rm{f\ddot{u}r}}\quad t > 0,}  \\  {{\rm{ - e}}^{\varepsilon t} } & {{\rm{f\ddot{u}r}}\quad t < 0.}  \\\end{array}} \right.$$
+
:$$x_\varepsilon  (t) = \left\{ {\begin{array}{*{20}c}  { {\rm{e} }^{ - \varepsilon \hspace{0.05cm} \cdot \hspace{0.05cm}t} } & { {\rm{f\ddot{u}r} }\quad t > 0,}  \\  { {\rm{ - e} }^{\hspace{0.05cm}\varepsilon\hspace{0.05cm} \cdot \hspace{0.05cm}  t} } & { {\rm{f\ddot{u}r} }\quad t < 0.}  \\\end{array} } \right.$$
  
Ähnlich wie auf der Seite Diracfunktion ergibt sich für die zugehörige Spektralfunktion
+
Nach ähnlicher Vorgehensweise wie auf der Seite&nbsp; [[Signaldarstellung/Gleichsignal_-_Grenzfall_eines_periodischen_Signals#Diracfunktion_im_Frequenzbereich|Diracfunktion im Frequenzbereich]]&nbsp; ergibt sich für die zugehörige Spektralfunktion:
 
   
 
   
$$X_\varepsilon  (f) = \frac{1}{{\varepsilon  + {\rm{j}}2{\rm{\pi }}f}} - \frac{1}{{\varepsilon  - {\rm{j}}2{\rm{\pi }}f}} = \frac{{ - {\rm{j4\pi }}f}}{{\varepsilon ^2  + \left( {2{\rm{\pi }}f} \right)^2 }}.$$
+
:$$X_\varepsilon  (f) = \frac{1}{ {\varepsilon  + {\rm{j} }2{\rm{\pi } }f} } - \frac{1}{ {\varepsilon  - {\rm{j} }2{\rm{\pi } }f} } = \frac{ { - {\rm{j4\pi } }f} }{ {\varepsilon ^2  + \left( {2{\rm{\pi } }f} \right)^2 } }.$$
  
Eigentlich interessieren wir uns aber für das Spektrum der Sprungfunktion. Für diese gilt:
+
Eigentlich interessieren wir uns aber für das Spektrum der tatsächlichen Sprungfunktion
 
   
 
   
$$x(t) = \mathop {\lim }\limits_{\varepsilon  \hspace{0.05cm}\to \hspace{0.05cm}0 } x_\varepsilon  (t).$$
+
:$$x(t) = \mathop {\lim }\limits_{\varepsilon  \hspace{0.05cm}\to \hspace{0.05cm}0 } x_\varepsilon  (t).$$
  
Deshalb ist auch die Spektralfunktion $X(f)$ =F[$x(t)$] als Grenzwert von $X_\epsilon (f)$ für$\epsilon \to 0$ zu bestimmen:
+
Deshalb ist auch die Spektralfunktion&nbsp; $X(f) =\text{F}\big[x(t)\big]$&nbsp; als Grenzwert von&nbsp; $X_\varepsilon(f)$&nbsp; für&nbsp; $\varepsilon \to 0$&nbsp; zu bestimmen:
 
   
 
   
$$X(f) = \mathop {\lim }\limits_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm}0 } X_\varepsilon  (f) = \frac{{ - {\rm{j}}}}{{{\rm{\pi }}f}} = \frac{1}{{{\rm{j\pi }}f}}.$$
+
:$$X(f) = \mathop {\lim }\limits_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm}0 } X_\varepsilon  (f) = \frac{ { - {\rm{j} } } }{ { {\rm{\pi } }f} } = \frac{1}{ { {\rm{j\pi } }f} }.$$
  
In der rechten Grafik ist die rein imaginäre Spektralfunktion $X(f)$ als blaue Kurve dargestellt. Man erkennt, dass mit zunehmender Frequenz $|X(f)|$ kontinuierlich abnimmt.
+
In der rechten Grafik ist die imaginäre Spektralfunktion&nbsp; $X(f)$&nbsp; als blaue Kurve dargestellt.&nbsp; Man erkennt, dass&nbsp; $\vert X(f) \vert$&nbsp; mit steigender Frequenz kontinuierlich abnimmt.
Der grüne Kurvenzug in der linken Grafik zeigt das Signal $y(t)$, das sich von $x(t)$ nur bei den negativen Zeiten unterscheidet. In diesem Bereich gilt $y(t)$ = 0. Die zugehörige Spektralfunktion $Y(f)$ ist im gesamten Bereich nur halb so groß wie $X(f)$. Dies zeigt die nachfolgende Rechnung:
 
  
$$Y(f) = \mathop {\lim }\limits_{\varepsilon  \to 0 } Y_\varepsilon  (f) = \mathop {\lim }\limits_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm}0 }\frac{1}{{\varepsilon  + {\rm{j}}2{\rm{\pi }}f}} = \frac{1}{{{\rm{j2\pi }}f}}.$$
+
Der grüne Kurvenzug in der linken Grafik zeigt das Signal&nbsp; $y(t)$, das sich von&nbsp; $x(t)$&nbsp; nur bei den negativen Zeiten unterscheidet.  
 
Zudem ergibt sich auf Grund des Gleichanteils nun noch eine Diracfunktion bei $f$ = 0 mit dem Gewicht 1/2. Hierauf wird im Beispiel zum Abschnitt Zuordnungssatz (Kapitel 3.3) noch im Detail eingegangen.
 
  
{{end}}
+
*In diesem Bereich gilt&nbsp; $y(t) = 0$.&nbsp; Die zugehörige Spektralfunktion&nbsp; $Y(f)$&nbsp; ist im gesamten Bereich nur halb so groß wie&nbsp; $X(f)$.&nbsp; Dies zeigt die folgende Rechnung:
  
 +
:$$Y(f) = \mathop {\lim }\limits_{\varepsilon  \to 0 } Y_\varepsilon  (f) = \mathop {\lim }\limits_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm}0 }\frac{1}{ {\varepsilon  + {\rm{j} }2{\rm{\pi } }f} } = \frac{1}{ { {\rm{j2\pi } }f} }.$$
 +
 +
*Zudem ergibt sich auf Grund des Gleichanteils nun noch eine Diracfunktion bei&nbsp; $f = 0$&nbsp; mit dem Gewicht&nbsp; $1/2$.&nbsp; Hierauf wird im Beispiel zum Abschnitt&nbsp; [[Signaldarstellung/Gesetzm%C3%A4%C3%9Figkeiten_der_Fouriertransformation#Zuordnungssatz|Zuordnungssatz]]&nbsp; noch im Detail eingegangen.}}
  
==Das zweiter Fourierintegral==
 
  
Bisher haben wir lediglich gezeigt, wie man für ein aperiodisches, impulsförmiges Signal $x(t)$ die zugehörige Spektralfunktion $X(f)$ berechnet. Nun wenden wir uns der umgekehrten Aufgabe zu, aus der Spektralfunktion $X(f)$ die Zeitfunktion $x(t)$ zu ermitteln.
+
==Das zweite Fourierintegral==
 +
<br>
 +
Bisher wurde lediglich gezeigt, wie man für ein aperiodisches, impulsförmiges Signal&nbsp; $x(t)$&nbsp; die zugehörige Spektralfunktion&nbsp; $X(f)$&nbsp; berechnet.&nbsp; Nun wenden wir uns der umgekehrten Aufgabenstellung zu, nämlich: &nbsp; Wie ermittelt man die Zeitfunktion&nbsp; $x(t)$&nbsp; aus der Spektralfunktion&nbsp; $X(f)$?
  
[[Datei:P_ID399__Sig_T_3_1_S7_rah.png|250px|right|Zum zweiten Fourierintegral]]
+
[[Datei:P_ID399__Sig_T_3_1_S7_rah.png|right|frame|Zum zweiten Fourierintegral]]
  
Mit den gleichen Bezeichnungen wie auf den ersten Seiten dieses Kapitels kann man das Signal $x(t)$ als Fourierreihe schreiben, wobei nun der Grenzübergang $f_0' \to 0$ zu berücksichtigen ist:
+
Mit den gleichen Bezeichnungen wie auf den ersten Seiten dieses Kapitels kann man das Signal&nbsp; $x(t)$&nbsp; als Fourierreihe schreiben, wobei nun der Grenzübergang&nbsp; ${f_0}' \to 0$&nbsp; zu berücksichtigen ist:
 
   
 
   
$$x(t)=\lim_{{f_{\rm 0}}'  \hspace{0.05cm}\to  \hspace{0.05cm}0} \sum^{+\infty}_{\nu = -\infty}{D_{\it \nu}}' \cdot \rm e^{j 2  \pi  \it\nu {f_{\rm 0}}' t}.$$
+
:$$x(t)=\lim_{{f_{\rm 0}}'  \hspace{0.05cm}\to  \hspace{0.05cm}0} \sum^{+\infty}_{\nu = -\infty}{D_{\it \nu}}' \cdot \rm e^{j\hspace{0.03cm} \hspace{0.03cm}\pi  \hspace{0.03cm}\it\nu \hspace{0.03cm} {f_{\rm 0}}' t}.$$
  
Erweitert man nun sowohl den Zähler als auch den Nenner um $f_0'$, so erhält man:
+
Erweitert man nun den Zähler und den Nenner um&nbsp; ${f_0}'$,&nbsp; so erhält man:
 
   
 
   
$$x(t)=\lim_{{f_{\rm 0}}'  \hspace{0.05cm}\to  \hspace{0.05cm}0} \sum^{+\infty}_{\nu = -\infty}  ({{D_{\it \nu}}'}/{{f_{\rm 0}}'}) \cdot \rm e^{j 2 \pi  \it \nu {f_{\rm 0}}' t} \cdot {\it f_{\rm 0}}'.$$
+
:$$x(t)=\lim_{{f_{\rm 0}}'  \hspace{0.05cm}\to  \hspace{0.05cm}0} \sum^{+\infty}_{\nu = -\infty}  ({{D_{\it \nu}}'}/{{f_{\rm 0}}'}) \cdot \rm e^{j \hspace{0.03cm}2\hspace{0.03cm} \pi  \hspace{0.03cm} \it \nu \hspace{0.03cm}{f_{\rm 0}}' t} \cdot {\it f_{\rm 0}}'.$$
 
 
Der Grenzübergang  $f_0' \to 0$ hat nun folgende Auswirkungen:
 
*Die (unendliche) Summe wird zu einem Integral, wobei  $f_0'$ formal durch die differenzielle Größe d$f$ (Integrationsvariable) zu ersetzen ist.
 
*Die Größe  $v \cdot f_0'$ im Exponenten beschreibt die physikalische Frequenz $f$.
 
*Der Quotient $D_v'/f_0'$ ergibt die Spektralfunktion $X(f)$ bei der Frequenz $f$.
 
  
Unter Berücksichtigung dieser Eigenschaften kommt man zum ''zweiten Fourierintegral''.
+
Der Grenzübergang&nbsp;  ${f_0}' \to 0$&nbsp; hat folgende Auswirkungen:
 +
*Die (unendliche) Summe wird zum Integral, wobei&nbsp;  ${f_0}'$&nbsp; formal durch die differenzielle Größe&nbsp; $\text{d}f$&nbsp; (Integrationsvariable) zu ersetzen ist.
 +
*Die Größe&nbsp;  $\nu \cdot{f_0}'$&nbsp; im Exponenten beschreibt die physikalische Frequenz&nbsp; $f$.
 +
*Der Quotient&nbsp; ${D_{\nu}}'/{f_0}'$&nbsp; ergibt die Spektralfunktion&nbsp; $X(f)$&nbsp; bei der Frequenz&nbsp; $f$.
  
{{Definition}}
 
Ist die Spektralfunktion $X(f)$ eines aperiodischen und energiebegrenzten Signals gegeben, so lautet die dazugehörige '''Zeitfunktion''':
 
  
$$x(t) = \hspace{0.01cm}\int_{-\infty} ^{{+}\infty} X(f) \, \cdot \, { \rm e}^{\rm j 2\pi \it ft} \,{\rm d}f$$
+
Unter Berücksichtigung dieser Eigenschaften kommt man zum &bdquo;zweiten Fourierintegral&rdquo;.
  
⇒    '''Zweites Fourierintegral'''.
+
{{BlaueBox|TEXT= 
 +
$\text{Zweites Fourierintegral:}$&nbsp;
 +
Ist die Spektralfunktion&nbsp; $X(f)$&nbsp; eines aperiodischen und energiebegrenzten Signals gegeben, so lautet die dazugehörige&nbsp; $\text{Zeitfunktion}$:
  
{{end}}
+
:$$x(t) = \hspace{0.01cm}\int_{-\infty} ^{ {+}\infty} X(f) \, \cdot \, { \rm e}^{\rm j 2\pi \it ft} \,{\rm d}f.$$}}
  
  
==Aufgaben zu Kapitel 3.1==
 
  
 +
==Aufgaben zum Kapitel==
 +
<br>
 +
[[Aufgaben:3.1 Spektrum des Exponentialimpulses|Aufgabe 3.1: Spektrum des Exponentialimpulses]]
  
 +
[[Aufgaben: 3.1Z Spektrum des Dreieckimpulses|Aufgabe 3.1Z: Spektrum des Dreieckimpulses]]
  
 +
[[Aufgaben:3.2 Vom Spektrum zum Signal|Aufgabe 3.2: Vom Spektrum zum Signal]]
  
 +
[[Aufgaben:Aufgabe_3.2Z:_si-Quadrat-Spektrum_mit_Diracs|Aufgabe 3.2Z: si&ndash;Quadrat&ndash;Spektrum mit Diracs]]
  
  
 
{{Display}}
 
{{Display}}

Aktuelle Version vom 19. April 2021, 17:24 Uhr

# ÜBERBLICK ZUM DRITTEN HAUPTKAPITEL #


Im zweiten Kapitel wurden periodische Signale durch verschiedene harmonische Schwingungen („Fourierreihe”) beschrieben.  Verringert man – zumindest gedanklich – die Wiederholfrequenz eines periodischen Signals immer mehr, das heißt, die Periodendauer wird immer länger, so kommt man vom periodischen Signal  (Puls)  zum einmaligen  aperiodischen Signal  – häufig auch als  Impuls  bezeichnet.

Im Folgenden werden solche aperiodischen, impulsförmigen Signale betrachtet und im Zeit– und Frequenzbereich mathematisch beschrieben.

Das Kapitel beinhaltet im Einzelnen:

  • die Herleitung der beiden  Fourierintegrale  aus der Fourierreihe,
  • die Erweiterung des Fourierintegrals zur  Fouriertransformation  mittels Distributionen,
  • einige  Sonderfälle  impulsartiger Signale wie Rechteck–, Gauß– und Diracimpuls,
  • die  Gesetzmäßigkeiten  der Fouriertransformation, und schließlich
  • die Bedeutung der  Faltungsoperation  und deren vielfältige Anwendungen.


Die Laplace– und die Hilberttransformation, die ausschließlich für kausale Signale bzw. Systeme anwendbar sind, werden erst im nächsten Buch „Lineare zeitinvariante Systeme” behandelt.


Weitere Informationen zum Thema sowie Aufgaben, Simulationen und Programmierübungen finden Sie im

  • Kapitel 6:  Lineare zeitinvariante Systeme, Programm lzi


des Praktikums „Simulationsmethoden in der Nachrichtentechnik”.  Diese (ehemalige) LNT-Lehrveranstaltung an der TU München basiert auf

  • dem Lehrsoftwarepaket  LNTsim   ⇒   Link verweist auf die ZIP-Version des Programms und
  • der zugehörigen  Praktikumsanleitung   ⇒   Link verweist auf die PDF-Version;  Kapitel 6:  Seite 99-118.


Eigenschaften aperiodischer Signale


Im letzten Kapitel wurden  periodische Signale  betrachtet.  Das wesentliche Charakteristikum dieser Signale ist, dass man für sie eine  Periodendauer  $T_0$  angeben kann.  Ist eine solche Periodendauer nicht angebbar oder – was in der Praxis das gleiche ist – hat  $T_0$  einen unendlich großen Wert, so spricht man von einem  $\text{aperiodischen Signal}$.

Für das vorliegende Kapitel „Aperiodische Signale – Impulse” sollen folgende Voraussetzungen gelten:

  • Die Signale  $x(t)$  sind  aperiodisch  und  energiebegrenzt:   Sie besitzen eine endliche Energie  $E_x$  und eine vernachlässigbar kleine (mittlere) Leistung  $P_x$.
  • Oft konzentriert sich die Energie dieser Signale auf einen relativ kurzen Zeitbereich, so dass man auch von  impulsförmigen Signalen  spricht.


Energiebegrenztes Signal  $x_1(t)$  und leistungsbegrenztes Signal  $x_2(t)$

$\text{Beispiel 1:}$  Die Grafik zeigt oben einen Rechteckimpuls  $x_1(t)$  mit Amplitude  $A$  und Dauer  $T$  als Beispiel eines aperiodischen und zeitlich begrenzten Signals.  Dieser Impuls besitzt

  • die endliche Signalenergie   ⇒   hier:   $E_1=A^2 \cdot T$,  und
  • die Leistung  $P_1$ = 0.


Ein leistungsbegrenztes Signal, zum Beispiel das unten dargestellte Cosinussignal  $x_2(t)$, besitzt dagegen

  • stets eine endliche Leistung   ⇒   hier:   $P_2=A^2/2$,  und
  • damit auch eine unendlich große Signalenergie:   $E_2 \to \infty$.


Genauere Betrachtung der Fourierkoeffizienten


Wir gehen von einem periodischen Signal  $x_{\rm P}(t)$  mit der Periodendauer  $T_0$  aus, das entprechend den Ausführungen auf der Seite  Komplexe Fourierreihe  wie folgt dargestellt werden kann:

Periodische Signale  $x_{\rm P}(t)$  und  $x_{\rm P}\hspace{0.01cm}'(t)$  sowie zugehörige Linienspektren
$$x_{\rm P}(t)=\sum^{+\infty}_{n=-\infty}D_{\it n}\cdot \rm e^{j 2 \pi \hspace{0.01cm}{\it n} \hspace{0.01cm}\it t / T_{\rm 0}}.$$
  • Die Fourierkoeffizienten sind im Allgemeinen komplex
    $($es gilt  $D_{-n}={D_n}^\ast)$:
$$D_n=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{0.01cm}{\it n} \it t / T_{\rm 0}}\, {\rm d}t.$$
  • Die dazugehörige Spektralfunktion  $X_{\rm P}(f)$  ist ein so genanntes  „Linienspektrum”  mit Spektrallinien im Abstand  $f_0=1/T_0$:
$$X_{\rm P}(f)=\sum^{+\infty}_{n=-\infty}D_n\cdot\delta(f-n\cdot f_0).$$

Die obere Grafik zeigt links das periodische Zeitsignal  $x_{\rm P}(t)$  und rechts das zugehörige Betragsspektrum  $|X_{\rm P}(f)|$. 

Es handelt sich hierbei lediglich um schematische Skizzen:

  • Ist  $x_{\rm P}(t)$  eine reelle und gerade Funktion, so ist  $X_{\rm P}(f)$  ebenfalls reell und gerade.
  • Die Gleichung  $X_{\rm P}(f) = |X_{\rm P}(f)|$  gilt allerdings nur dann, wenn alle Spektrallinien zudem auch positiv sind.


In der unteren Grafik ist links ein weiteres periodisches Signal  ${x_{\rm P}}\hspace{0.01cm}'(t)$  mit doppelter Periodendauer  ${T_0}\hspace{0.01cm}' = 2 \cdot T_0$  dargestellt.  Für dieses Signals gilt:

$${x_{\rm P}}'(t)=\sum^{+\infty}_{n=-\infty}{\it D_n}'\cdot {\rm e}^{{\rm j} 2 \pi \hspace{-0.05cm}{\it n t / T}_{\rm 0}\hspace{0.01cm}'} \hspace{0.3cm}{\rm mit}\hspace{0.3cm}{\it D_n}'=\frac{1}{{T_0}\hspace{0.01cm}'}\cdot \int^{{+T_0}'/2}_{-{T_0}'/2}{x_{\rm P}}'(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it n t / T}_{\rm 0}\hspace{0.01cm}'}\, {\rm d}\it t.$$

Im Bereich von  $-T_0/2$  bis  $+T_0/2$  sind die beiden Signale identisch.  Wir betrachten auch hier die Spektralfunktion  ${X_{\rm P} }'(f)$  entsprechend der rechten Skizze:

  • Aufgrund der doppelten Periodendauer  $({T_0}' = 2 \cdot T_0)$  liegen nun die Spektrallinien enger beisammen  $({f_0}' = f_0/2)$.
  • Die beiden Koeffizienten  $D_n$  und  ${D_{2n}}'$   –   im Bild rot hervorgehoben   –   gehören zur gleichen physikalischen Frequenz  $f = n \cdot f_0 = 2n \cdot {f_0}'$.


Durch den Vergleich dieser beiden Koeffizienten erkennen wir:

$$D_n=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it n} \it t / T_{\rm 0}}\, {\rm d}t \hspace{0.5cm}\text{und} \hspace{0.5cm} {D_{2n}}'=\frac{1}{{T_0}'}\cdot \int^{+{T_0}'/2}_{-{T_0}'/2}{x_{\rm P}}'(t) \cdot{\rm e}^{-\rm j 4 \pi \hspace{-0.05cm}{\it n} \it t / {T_{\rm 0}}'}\, {\rm d}t \text{:} $$
  • Zwischen  $T_0/2$  und  ${T_0}'/2$  ist  ${x_{\rm P}}'(t) \equiv 0$, ebenso im dazu symmetrischen Intervall bei negativen Zeiten.
  • Deshalb können die Integrationsgrenzen auf  $\pm T_0/2$  eingeschränkt werden.
  • Innerhalb der neuen Integrationsgrenzen kann  ${x_{\rm P}}'(t)$  durch  $x_{\rm P}(t)$  ersetzt werden.


Setzen wir nun in obiger Gleichung noch  ${T_0}' = 2T_0$, so erhalten wir:

$${D_{2n}}'=\frac{1}{2T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it n} t / T_{\rm 0}}\, {\rm d}t = {D_n}/{2} .$$

$\text{Wir fassen dieses Ergebnis kurz zusammen:}$ 

  • Die Spektrallinie des Signals  ${x_{\rm P} }'(t)$  bei der Frequenz  $f = n \cdot {f_0}'$  wird mit  ${D_{2n} }'$  bezeichnet (untere Grafik).
  • Diese Linie ist genau halb so groß wie die Spektrallinie  $D_n$  des Signals  $x_{\rm P}(t)$  bei der gleichen physikalischen Frequenz  $f$  (obere Grafik).
  • Die Spektralfunktion  ${X_{\rm P} }'(f)$  weist gegenüber  $X_{\rm P}(f)$  zusätzliche Spektrallinien bei  $(n + 1/2) \cdot f_0$  auf.
  • Diese führen dazu, dass im Zeitbereich jeder zweite „Impuls” von  $x_{\rm P}(t)$  um  $n \cdot T_0$  gelegen  $(n$ ungeradzahlig$)$  ausgelöscht wird.


Vom periodischen zum aperiodischen Signal


Wir greifen nun die Überlegungen der vorherigen Seite auf und wählen die Periodendauer  ${T_0}'$  von  ${x_{\rm P}}'(t)$  allgemein um einen ganzzahligen Faktor  $k$  größer als die Periodendauer  $T_0$  von  ${x_{\rm P}}(t)$.  Dann können die bisherigen Aussagen verallgemeinert werden:

Vom periodischen zum aperiodischen Signal
  • Der Linienabstand ist bei  ${X_{\rm P}}'(f)$  um den Faktor  $k$  geringer als beim Spektrum  ${X_{\rm P}}(f)$.
  • Um dies hervorzuheben, bezeichnen wir die Frequenz–Laufvariable der Funktion  ${X_{\rm P}}'(f)$  mit  $\nu$  anstelle von  $n$.  Es gilt:   $\nu=k \cdot n$.
  • Für die Spektrallinie des Signals  ${x_{\rm P}}'(t)$  bei der Frequenz  $f=n \cdot f_0 =\nu \cdot {f_0}'$  gilt:
$${D_\nu}' = {1}/{k} \cdot D_n, \hspace{0.5cm} {\rm wobei} \hspace{0.5cm} \nu = k \cdot n.$$





Wählt man nun – wie im unteren Bild schematisch dargestellt – den Faktor  $k$  und damit die Periodendauer  ${T_0}'$  immer größer und lässt sie schließlich nach unendlich gehen, so

  • geht das periodische Signal  ${x_{\rm P}}(t)$  in das aperiodische Signal  $x(t)$  über,
  • kann man das Linienspektrum  ${X_{\rm P}}(f)$  durch das kontinuierliche Spektrum  $X(f)$  ersetzen.


Das erste Fourierintegral


Bezüglich den Spektralfunktion  $X_{\rm P}(f)$  und  $X(f)$  lassen sich somit folgende Aussagen machen:

  • Die einzelnen Spektrallinien liegen nun beliebig eng beieinander  $({f_0}'=1/{T_0}' \to 0)$.
  • In der Spektralfunktion  $X(f)$  treten nun innerhalb bestimmter Intervalle alle möglichen (nicht nur diskrete) Frequenzen auf   ⇒   $X(f)$  ist kein Linienspektrum mehr.
  • Der Beitrag einer jeden einzelnen Frequenz  $f$  zum Signal ist nur verschwindend gering  $(k \to \infty, {D_{\nu}}' \to 0)$.
  • Aufgrund der unendlich vielen Frequenzen ergibt sich jedoch insgesamt ein endliches Resultat.
  • Anstatt die Fourierkoeffizienten  ${D_{\nu}}'$  zu berechnen, wird nun eine spektrale Dichte  $X(f)$  ermittelt. Bei der Frequenz  $f=\nu\cdot {f_0}'$  gilt dann:
$$X(f = {\rm \nu} {f_{\rm 0}}') = \lim_{{f_{\rm 0}}' \hspace{0.05cm}\to \hspace{0.05cm} 0} ({{D_{\rm \nu}}'}/{{f_{\rm 0}}'}) = \lim_{{T_{\rm 0}}' \to \infty} ({D_{\rm \nu}}' \cdot {T_{\rm 0}}').$$
  • Die Spektralfunktion  $X(f)$  des aperiodischen Signals  $x(t)$  ist im Spektrum  $X_{\rm P}(f)$  des periodischen Signals  $x_{\rm P}(t)$ als Einhüllende erkennbar  (siehe Grafiken).
  • In der unteren Grafik auf der letzten Seite entspricht  ${D_{\nu}}'$  der rot hinterlegten Fläche des Frequenzintervalls um  $\nu \cdot {f_0}'$  mit der Breite  ${f_0}'$.


Verwendet man die auf der letzten Seite angegebenen Gleichungen, so erhält man:

$$X(f = {\rm \nu} \cdot {f_{\rm 0}}') = \lim_{{T_{\rm 0}'} \to \infty} \int ^{{T_{\rm 0}}'/2} _{-{T_{\rm 0}}'/2} x_{\rm P}(t) \, \cdot \, { \rm e}^{-\rm j 2\pi\nu \it {f_{\rm 0}}' t} \,{\rm d}t.$$

Durch den gemeinsamen Grenzübergang  $({T_0}' \to \infty, \ {f_0}' \to 0)$  wird nun

  • aus dem periodischen Signal  $x_{\rm P}(t)$  das aperiodische Signal  $x(t)$, und
  • aus der diskreten Frequenz  $\nu \cdot {f_0}'$  die kontinuierliche Frequenzvariable  $f$.


Damit erhält man eine fundamentale Definition, welche die Berechnung der Spektralfunktion einer aperiodischen Zeitfunktion ermöglicht.  Der Name dieser Spektraltransformation geht auf den französischen Physiker  Jean-Baptiste-Joseph Fourier  zurück.

$\text{Erstes Fourierintegral:}$ 

Die  $\text{Spektralfunktion}$  (oder kurz:  das  $\text{Spektrum})$  eines aperiodischen und gleichzeitig energiebegrenzten Signals  $x(t)$  ist wie folgt zu berechnen:

$$X(f)= \hspace{0.05cm}\int_{-\infty} ^{ {+}\infty} x(t) \, \cdot \, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$


Das Lernvideo  Kontinuierliche und diskrete Spektren  soll die Aussagen der letzten Seiten nochmals verdeutlichen.

Betrachteter Rechteckimpuls  $x(t)$

$\text{Beispiel 2:}$  Gegeben ist der skizzierte Zeitverlauf  $x(t)$.  Gesucht ist das zugehörige Spektrum  $X(f)$.

Wir wenden dazu das erste Fourierintegral an.

  • Aus obiger Darstellung ist zu erkennen, dass für  $\vert t \vert > T/2$  das Signal  $x(t) = 0$  ist.
  • Das bedeutet, dass das Integrationsintervall auf den Bereich  $\pm T/2$  begrenzt werden kann.
  • Damit erhält man den Ansatz:
$$ \begin{align*} X(f) & = A \cdot \int_{- T/2}^{+T/2} {\rm e}^{- {\rm j2\pi} ft}\,{\rm d}t = \frac{ A}{- \rm j2\pi f}\left[ {\rm e}^{- {\rm j}2\pi ft}\right]_{-T/2}^{+T/2} \\ & = \frac{\it A} {- \rm j 2\pi f}\cdot \big[\cos({\rm \pi} f T) - {\rm j} \cdot \sin({\rm \pi} fT) - \cos({\rm \pi} fT) - {\rm j} \cdot \sin({\rm \pi} fT)\big] \end{align*}$$
$$\Rightarrow \hspace{0.5cm}X(f)=A\cdot \frac{\sin({\rm \pi} fT)}{ {\rm \pi} f}.$$
  • Erweitert man Zähler und Nenner mit  $T$, so erhält man:
$$X(f)=A\cdot T \cdot\frac{\sin(\pi fT)}{\pi fT} = A\cdot T \cdot{\rm si }(\pi fT).$$

Die Funktion  $\text{si}(x) = \sin(x)/x$  wird auf der Seite  Rechteckimpuls  eingehend analysiert. Man bezeichnet diese „si–Funktion” manchmal auch als „Spaltfunktion”.


Betrachten wir noch die Einheiten der beiden Funktionen im Zeit- und Frequenzbereich:

  • Ist  $x(t)$  beispielsweise eine Spannung, so hat die Impulsamplitude  $A$  die Einheit „Volt”.
  • Die Dimension der Größe  $T$  ist häufig die Zeit, zum Beispiel mit der Einheit „Sekunde”.
  • Der Kehrwert der Zeit entspricht der Frequenz mit der Einheit „Hertz”.
  • Das Argument  $f \cdot T$  ist dimensionslos.
  • Die Spektralfunktion  $X(f)$  hat somit beispielsweise die Einheit „V/Hz”.


Fouriertransformation


Das Spektrum  $X(f)$  eines Signals  $x(t)$  lautet gemäß dem „Ersten Fourierintegral”:

$$X(f)= \hspace{0.05cm}\int _{-\infty} ^{{+}\infty} x(t) \, \cdot \, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$

Wie auf der letzten Seite an einem einfachen Beispiel gezeigt wurde, ist dieses Integral bei einem energiebegrenzten Signal  $x(t)$  problemlos lösbar.  Bei nicht energiebegrenzten Signalen, zum Beispiel


divergiert aber das Fourierintegral.  Unter Einbeziehung einer beidseitig abfallenden Hilfsfunkion  $\varepsilon (t)$  kann allerdings die Konvergenz erzwungen werden:

$$X(f) = \lim_{\varepsilon \to 0} \int _{-\infty} ^{{+}\infty} x(t) \cdot {\rm e}^{\it -\varepsilon | \hspace{0.01cm} t \hspace{0.01cm} |} \cdot {\rm e}^{{-\rm j 2 \pi}\it ft} \,{\rm d}t.$$

Solche nicht energiebegrenzten Signale führen im Spektrum zu so genannten  „Diracfunktionen”, manchmal auch  „Distributionen”  genannt.

$\text{Definition:}$  Man bezeichnet den allgemein gültigen Funktionalzusammenhang  $X(f) = F\big [x(t) \big ]$  als  $\text{Fouriertransformation}$.  Für die Kurzschreibweise verwenden wir (mit dem „weißen” Punkt für den Zeitbereich und dem ausgefüllten Punkt für den Spektralbereich):

$$X(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ x(t).$$

Bei einem anklingenden Signal wird die Konvergenz allerdings nur dann erreicht, solange die Zeitfunktion weniger als exponentiell ansteigt.


Sprungfunktion und zugehöriges Spektrum

$\text{Beispiel 3:}$  Wir betrachten eine akausale Sprungfunktion

$$x (t) = \left\{ {\begin{array}{*{20}c} { +1 } & { {\rm{f\ddot{u}r} }\quad t > 0,} \\ {-1 } & { {\rm{f\ddot{u}r} }\quad t < 0.} \\\end{array} } \right.$$

Dieses Signal ist in der linken Skizze in blauer Farbe dargestellt.

Da das Signal  $x(t)$  nach beiden Seiten bis ins Unendliche reicht, muss zur Berechnung der Fouriertransformierten für beide Abschnitte zunächst ein geeigneter Konvergenzfaktor  $\text{e}^{-\varepsilon \hspace{0.05cm} \cdot \hspace{0.05cm}\vert \hspace{0.05cm} t \hspace{0.05cm} \vert}$  hinzugefügt werden $($es gelte  $\varepsilon > 0)$.  Die resultierende Zeitfunktion lautet dann:

$$x_\varepsilon (t) = \left\{ {\begin{array}{*{20}c} { {\rm{e} }^{ - \varepsilon \hspace{0.05cm} \cdot \hspace{0.05cm}t} } & { {\rm{f\ddot{u}r} }\quad t > 0,} \\ { {\rm{ - e} }^{\hspace{0.05cm}\varepsilon\hspace{0.05cm} \cdot \hspace{0.05cm} t} } & { {\rm{f\ddot{u}r} }\quad t < 0.} \\\end{array} } \right.$$

Nach ähnlicher Vorgehensweise wie auf der Seite  Diracfunktion im Frequenzbereich  ergibt sich für die zugehörige Spektralfunktion:

$$X_\varepsilon (f) = \frac{1}{ {\varepsilon + {\rm{j} }2{\rm{\pi } }f} } - \frac{1}{ {\varepsilon - {\rm{j} }2{\rm{\pi } }f} } = \frac{ { - {\rm{j4\pi } }f} }{ {\varepsilon ^2 + \left( {2{\rm{\pi } }f} \right)^2 } }.$$

Eigentlich interessieren wir uns aber für das Spektrum der tatsächlichen Sprungfunktion

$$x(t) = \mathop {\lim }\limits_{\varepsilon \hspace{0.05cm}\to \hspace{0.05cm}0 } x_\varepsilon (t).$$

Deshalb ist auch die Spektralfunktion  $X(f) =\text{F}\big[x(t)\big]$  als Grenzwert von  $X_\varepsilon(f)$  für  $\varepsilon \to 0$  zu bestimmen:

$$X(f) = \mathop {\lim }\limits_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm}0 } X_\varepsilon (f) = \frac{ { - {\rm{j} } } }{ { {\rm{\pi } }f} } = \frac{1}{ { {\rm{j\pi } }f} }.$$

In der rechten Grafik ist die imaginäre Spektralfunktion  $X(f)$  als blaue Kurve dargestellt.  Man erkennt, dass  $\vert X(f) \vert$  mit steigender Frequenz kontinuierlich abnimmt.

Der grüne Kurvenzug in der linken Grafik zeigt das Signal  $y(t)$, das sich von  $x(t)$  nur bei den negativen Zeiten unterscheidet.

  • In diesem Bereich gilt  $y(t) = 0$.  Die zugehörige Spektralfunktion  $Y(f)$  ist im gesamten Bereich nur halb so groß wie  $X(f)$.  Dies zeigt die folgende Rechnung:
$$Y(f) = \mathop {\lim }\limits_{\varepsilon \to 0 } Y_\varepsilon (f) = \mathop {\lim }\limits_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm}0 }\frac{1}{ {\varepsilon + {\rm{j} }2{\rm{\pi } }f} } = \frac{1}{ { {\rm{j2\pi } }f} }.$$
  • Zudem ergibt sich auf Grund des Gleichanteils nun noch eine Diracfunktion bei  $f = 0$  mit dem Gewicht  $1/2$.  Hierauf wird im Beispiel zum Abschnitt  Zuordnungssatz  noch im Detail eingegangen.


Das zweite Fourierintegral


Bisher wurde lediglich gezeigt, wie man für ein aperiodisches, impulsförmiges Signal  $x(t)$  die zugehörige Spektralfunktion  $X(f)$  berechnet.  Nun wenden wir uns der umgekehrten Aufgabenstellung zu, nämlich:   Wie ermittelt man die Zeitfunktion  $x(t)$  aus der Spektralfunktion  $X(f)$?

Zum zweiten Fourierintegral

Mit den gleichen Bezeichnungen wie auf den ersten Seiten dieses Kapitels kann man das Signal  $x(t)$  als Fourierreihe schreiben, wobei nun der Grenzübergang  ${f_0}' \to 0$  zu berücksichtigen ist:

$$x(t)=\lim_{{f_{\rm 0}}' \hspace{0.05cm}\to \hspace{0.05cm}0} \sum^{+\infty}_{\nu = -\infty}{D_{\it \nu}}' \cdot \rm e^{j\hspace{0.03cm} 2 \hspace{0.03cm}\pi \hspace{0.03cm}\it\nu \hspace{0.03cm} {f_{\rm 0}}' t}.$$

Erweitert man nun den Zähler und den Nenner um  ${f_0}'$,  so erhält man:

$$x(t)=\lim_{{f_{\rm 0}}' \hspace{0.05cm}\to \hspace{0.05cm}0} \sum^{+\infty}_{\nu = -\infty} ({{D_{\it \nu}}'}/{{f_{\rm 0}}'}) \cdot \rm e^{j \hspace{0.03cm}2\hspace{0.03cm} \pi \hspace{0.03cm} \it \nu \hspace{0.03cm}{f_{\rm 0}}' t} \cdot {\it f_{\rm 0}}'.$$

Der Grenzübergang  ${f_0}' \to 0$  hat folgende Auswirkungen:

  • Die (unendliche) Summe wird zum Integral, wobei  ${f_0}'$  formal durch die differenzielle Größe  $\text{d}f$  (Integrationsvariable) zu ersetzen ist.
  • Die Größe  $\nu \cdot{f_0}'$  im Exponenten beschreibt die physikalische Frequenz  $f$.
  • Der Quotient  ${D_{\nu}}'/{f_0}'$  ergibt die Spektralfunktion  $X(f)$  bei der Frequenz  $f$.


Unter Berücksichtigung dieser Eigenschaften kommt man zum „zweiten Fourierintegral”.

$\text{Zweites Fourierintegral:}$  Ist die Spektralfunktion  $X(f)$  eines aperiodischen und energiebegrenzten Signals gegeben, so lautet die dazugehörige  $\text{Zeitfunktion}$:

$$x(t) = \hspace{0.01cm}\int_{-\infty} ^{ {+}\infty} X(f) \, \cdot \, { \rm e}^{\rm j 2\pi \it ft} \,{\rm d}f.$$


Aufgaben zum Kapitel


Aufgabe 3.1: Spektrum des Exponentialimpulses

Aufgabe 3.1Z: Spektrum des Dreieckimpulses

Aufgabe 3.2: Vom Spektrum zum Signal

Aufgabe 3.2Z: si–Quadrat–Spektrum mit Diracs