Aufgaben:Aufgabe 5.5: Fast-Fouriertransformation: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=*Buch*/*Kapitel* }} 250px|right|* ===Fragebogen=== <quiz display=simple> {Multiple-Choice Frage |type="[]"} - Falsch +…“)
 
 
(22 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
  
{{quiz-Header|Buchseite=*Buch*/*Kapitel*
+
{{quiz-Header|Buchseite=Signaldarstellung/Fast-Fouriertransformation (FFT)
 
}}
 
}}
  
[[Datei:*|250px|right|*]]
+
[[Datei:P_ID1177__Sig_A_5_5_neu.png|right|frame|FFT-Algorithmus für&nbsp; $N=8$]]
 +
 
 +
Die Grafik zeigt den Signalflussplan der Fast-Fouriertransformation&nbsp; $\rm (FFT)$&nbsp; für&nbsp; $N = 8$.&nbsp;
 +
 
 +
Aus den Zeitkoeffizienten&nbsp; $d(0), \hspace{0.03cm}\text{...} \hspace{0.1cm}, d(7)$&nbsp; werden die dazugehörigen Spektralkoeffizienten&nbsp; $D(0), \hspace{0.03cm}\text{...} \hspace{0.1cm} , D(7)$&nbsp; ermittelt. Für diese gilt mit&nbsp; $0 ≤ μ ≤ 7$:
 +
 +
:$$D(\mu) =  \frac{1}{N}\cdot \sum_{\nu = 0 }^{N-1}
 +
d(\nu) \cdot  {w}^{\hspace{0.03cm}\nu \hspace{0.05cm} \cdot
 +
\hspace{0.05cm}\mu}\hspace{0.05cm},$$
 +
 
 +
wobei der komplexe Drehfaktor&nbsp; $w = \text{e}^{-\text{j}\hspace{0.05cm} \cdot
 +
\hspace{0.05cm}2\pi /N}$&nbsp; zu verwenden ist, also&nbsp; $w = \text{e}^{-\text{j}\hspace{0.05cm} \cdot
 +
\hspace{0.05cm}\pi /4}$&nbsp; für&nbsp; $N = 8$.
 +
 
 +
*Am Eingang wird die alternierende $±1$–Folge&nbsp; $\langle\hspace{0.05cm} d(ν)\hspace{0.05cm}\rangle$&nbsp; angelegt.
 +
*Nach der Bitumkehroperation ergibt sich daraus die Folge&nbsp; $\langle \hspace{0.05cm}b(\kappa)\hspace{0.05cm}\rangle$.
 +
 
 +
 
 +
Es gilt&nbsp; $b(κ) = d(ν)$, wenn man&nbsp; $ν$&nbsp; als Dualzahl darstellt und die resultierenden drei Bit als&nbsp; $κ$&nbsp; in umgekehrter Reihenfolge geschrieben werden. Beispielsweise
 +
* folgt aus&nbsp; $ν = 1$&nbsp; $($binär&nbsp; $001)$&nbsp; die Position&nbsp; $κ = 4$&nbsp; $($binär&nbsp; $100)$,
 +
* verbleibt&nbsp; $d(2)$&nbsp; an der gleichen Position&nbsp; $2$&nbsp; $($binär&nbsp; $010)$.
 +
 
 +
 
 +
Der eigentliche FFT–Algorithmus geschieht für das Beispiel&nbsp; $N = 8$&nbsp; in&nbsp; $\log_2 N = 3$&nbsp; Stufen, die mit&nbsp; $L = 1$,&nbsp; $L =2$&nbsp; und&nbsp; $L = 3$&nbsp; bezeichnet werden.&nbsp; Weiter gilt:
 +
* In jeder Stufe sind vier Basisoperationen – so genannte '''Butterflies''' – durchzuführen.
 +
* Die Werte am Ausgang der ersten Stufe werden in dieser Aufgabe mit&nbsp; $X(0),\hspace{0.03cm}\text{...} \hspace{0.1cm} , X(7)$&nbsp; bezeichnet, <br>die der zweiten mit&nbsp; $Y(0), \hspace{0.03cm}\text{...} \hspace{0.1cm}  , Y(7)$.
 +
* Nach der dritten und letzten Stufe sind alle Werte noch durch&nbsp; $N$&nbsp; zu dividieren.&nbsp; Hier liegt dann das endgültige Ergebnis&nbsp; $D(0), \hspace{0.03cm}\text{...} \hspace{0.1cm}  , D(7)$&nbsp; vor.
 +
 
 +
 
 +
 
 +
 
 +
''Hinweis:''
 +
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Signaldarstellung/Fast-Fouriertransformation_(FFT)|Fast-Fouriertransformation (FFT)]].
 +
 +
 
  
  
Zeile 9: Zeile 43:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
 
 +
{Berechnen Sie den DFT–Koeffizienten&nbsp; $D(\mu=3)$.
 +
|type="{}"}
 +
$D(\mu=3) \ = \ $ { 0. }
 +
 
 +
{Berechnen Sie den DFT–Koeffizienten&nbsp; $D(\mu=4)$.
 +
|type="{}"}
 +
$D(\mu=4) \ = \ $ { 1 3% }
 +
 
 +
{Ermitteln Sie die Ausgangswerte&nbsp; $X(0)$, ... , $X(7)$&nbsp; der ersten Stufe.&nbsp; Welche der folgenden Aussagen sind zutreffend?
 
|type="[]"}
 
|type="[]"}
- Falsch
+
- Alle&nbsp; $X$&ndash;Werte mit geradzahligen Indizes sind gleich&nbsp; $2$.
+ Richtig
+
+ Alle&nbsp; $X$&ndash;Werte mit ungeradzahligen Indizes sind gleich&nbsp; $0$.
  
 +
{Ermitteln Sie die Ausgangswerte&nbsp; $Y(0)$, ... , $Y(7)$&nbsp; der zweiten Stufe.&nbsp; Geben Sie zur Kontrolle die Werte&nbsp; $Y(0)$&nbsp; und&nbsp; $Y(4)$&nbsp; ein.
 +
|type="{}"}
 +
$Y(0) \ = \ $ { 4 3% }
 +
$Y(4) \ = \ $ { -4.12--3.88 }
  
{Input-Box Frage
+
{Berechnen Sie alle&nbsp; $N$&nbsp; Spektralwerte&nbsp; $D(\mu)$, insbesondere
 
|type="{}"}
 
|type="{}"}
<math> \alpha = </math> { 0.3 _5 }
+
$D(\mu = 3) \ = \ $ { 0. 3% }
 +
$D(\mu = 4) \ = \ $ { 1 }
  
 +
{Welche Spektralkoeffizienten würden sich für&nbsp; $d(ν = 4) = 1$&nbsp; und&nbsp; $d(ν \neq 4) = 0$&nbsp; ergeben? <br>Geben Sie zur Kontrolle die Werte&nbsp; $D(\mu=3)$&nbsp; und&nbsp; $D(\mu=4)$&nbsp; ein.
 +
|type="{}"}
 +
$D(\mu = 3) \ = \ $ { -1.03--0.97 }
 +
$D(\mu = 4) \ = \ $ { 1 3% }
  
  
Zeile 24: Zeile 76:
  
 
===Musterlösung===
 
===Musterlösung===
 +
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''  Antwort 1
+
'''(1)'''&nbsp; Entsprechend der auf dem Angabenblatt gegebenen allgemeinen DFT–Gleichung gilt mit&nbsp; $w = \text{e}^{-\text{j}\hspace{0.05cm} \cdot
 +
\hspace{0.05cm}\pi /4}$&nbsp; unter Berücksichtigung der alternierenden Zeitkoeffizienten:
 +
 +
:$$8 \cdot D(3)  =    w^0 - w^3 + w^6- w^9+ w^{12}- w^{15}+ w^{18}-
 +
w^{21}  =    w^0 - w^3 + w^2- w^1+ w^{4}- w^{7}+ w^{6}-
 +
w^{5}\hspace{0.05cm}.$$
 +
 
 +
*Hierbei ist berücksichtigt, dass aufgrund der Periodizität&nbsp; $w_9 = w_1$,&nbsp; $w_{12} = w_4$,&nbsp; $w_{15} = w_7$,&nbsp; $w_{18} = w_2$&nbsp; und&nbsp; $w_{21} = w_5$&nbsp; ist.
 +
*Nach Umsortieren gilt in gleicher Weise:
 +
 +
:$$8 \cdot D(3)  =  (w^0 + w^4) - (w^1 + w^5)+ (w^2 + w^6) - (w^3 + w^7) =  (1 + w + w^2+ w^3) \cdot (w^0 + w^4)\hspace{0.05cm}.$$
 +
 
 +
*Wegen&nbsp; $w_0 = 1$&nbsp; und&nbsp; $w_4 = \text{e}^{-\text{j}\pi } = \hspace{0.08cm} - \hspace{-0.08cm}1$&nbsp; erhält man somit&nbsp; $\underline {D(\mu=3) = 0}$.
 +
 
 +
 
 +
'''(2)'''&nbsp; In analoger Weise zur Teilaufgabe&nbsp; '''(1)'''&nbsp; ergibt sich nun:
 +
 +
:$$ 8 \cdot D(4)  =    w^0 - w^4 + w^8- w^{12}+ w^{16}- w^{20}+
 +
w^{24}- w^{28}=  4 \cdot (w^0 - w^4)= 8 \hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm}\hspace{0.15 cm}\underline{D(\mu=4) = 1}\hspace{0.05cm}.$$
 +
 
 +
 
 +
[[Datei:P_ID1178__Sig_A_5_5c_neu.png|right|frame|Beispiel für den FFT-Algorithmus]]
 +
'''(3)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>:
 +
*Der Term&nbsp; $w^0 = 1$&nbsp; muss nicht berücksichtigt werden.
 +
*Alle Ausgangswerte mit ungeraden Indizes sind durch die Subtraktion zweier identischer Eingangswerte Null.
 +
*Die erste Aussage trifft nicht zu: &nbsp; Es gilt&nbsp; $X(0) = X(2) = +2$&nbsp; und&nbsp; $X(4) = X(6) = - 2$.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Auf die Multiplikation mit&nbsp; $w^{2} = -{\rm j}$&nbsp; kann verzichtet werden, da im Signalflussplan die entsprechenden Eingangsgrößen Null sind.
 +
*Man erhält somit&nbsp; $Y(0) \;\underline{= 4}$&nbsp; und&nbsp; $Y(4) \;\underline{=  - \hspace{-0.03cm}4}$.
 +
*Alle anderen Werte sind Null.
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; Wegen&nbsp; $Y(5) = Y(6) =Y(7) = 0$&nbsp; spielen auch in der dritten Stufe die Multiplikationen mit&nbsp; $w$,&nbsp; $w^2$&nbsp; und&nbsp; $w^3$&nbsp; keine Rolle.&nbsp; Alle Spektralkoeffizienten&nbsp; $D(\mu)$&nbsp; ergeben sich deshalb zu Null mit Ausnahme von
 +
 +
:$$\hspace{0.15 cm}\underline{D(\mu= 4)} = {1}/{N}\cdot \left[Y(0) - Y(4) \right ] \hspace{0.15 cm}\underline{= 1}
 +
\hspace{0.05cm},$$
 +
:$$\hspace{0.15 cm}\underline{D(\mu =3)} =  D(\mu \ne 4) \hspace{0.15 cm}\underline{= 0}
 +
\hspace{0.05cm}.$$
 +
 
 +
Dieses Ergebnis stimmt mit den Ergebnissen aus&nbsp; '''(1)'''&nbsp; und&nbsp; '''(2)'''&nbsp; überein.
 +
 
 +
 
 +
 
 +
'''(6)'''&nbsp; Nachdem sowohl die Zeitkoeffizienten&nbsp; $d(ν)$&nbsp; als auch alle Spektralkoeffizienten&nbsp; $D(\mu)$&nbsp; rein reell sind, besteht kein Unterschied zwischen der FFT und der IFFT.
 +
*Das bedeutet gleichzeitig:&nbsp; Die Eingangs– und Ausgangswerte können vertauscht werden.
 +
 
 +
*Die Teilaufgabe&nbsp; '''(5)'''&nbsp; hat das folgende Ergebnis geliefert:
 +
 +
:$$d({\rm gerades}\hspace{0.15cm}\nu) =  +1, \hspace{0.2cm}d({\rm
 +
ungerades}\hspace{0.15cm}\nu)=  -1$$
 +
:$$\Rightarrow
 +
\hspace{0.3cm}D(\mu = 4)= 1,\hspace{0.2cm}D(\mu \ne 4)= 0.$$
 +
 
 +
*Durch Vertauschen der Eingangs– und Ausgangswerte kommt man zur Aufgabenstellung&nbsp; '''(6)''':
 +
 +
:$$d(\nu = 4)= 1, \hspace{0.2cm}d(\nu \ne 4)= 0 \hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm}D({\rm gerades}\hspace{0.15cm}\mu) = +1,
 +
\hspace{0.2cm}D({\rm ungerades}\hspace{0.15cm}\mu)=  -1
 +
\hspace{0.05cm}.$$
 +
 
 +
*Insbesondere ergibt sich sich&nbsp; $D(\mu=3) \; \underline{=  -1}$&nbsp; und&nbsp; $D(\mu=4) \; \underline{= +1}$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Aufgaben zu Signaldarstellung|^4. Bandpassartige Signale^]]
+
[[Category:Aufgaben zu Signaldarstellung|^5. Zeit- und frequenzdiskrete Signaldarstellung^]]

Aktuelle Version vom 21. Mai 2021, 17:03 Uhr

FFT-Algorithmus für  $N=8$

Die Grafik zeigt den Signalflussplan der Fast-Fouriertransformation  $\rm (FFT)$  für  $N = 8$. 

Aus den Zeitkoeffizienten  $d(0), \hspace{0.03cm}\text{...} \hspace{0.1cm}, d(7)$  werden die dazugehörigen Spektralkoeffizienten  $D(0), \hspace{0.03cm}\text{...} \hspace{0.1cm} , D(7)$  ermittelt. Für diese gilt mit  $0 ≤ μ ≤ 7$:

$$D(\mu) = \frac{1}{N}\cdot \sum_{\nu = 0 }^{N-1} d(\nu) \cdot {w}^{\hspace{0.03cm}\nu \hspace{0.05cm} \cdot \hspace{0.05cm}\mu}\hspace{0.05cm},$$

wobei der komplexe Drehfaktor  $w = \text{e}^{-\text{j}\hspace{0.05cm} \cdot \hspace{0.05cm}2\pi /N}$  zu verwenden ist, also  $w = \text{e}^{-\text{j}\hspace{0.05cm} \cdot \hspace{0.05cm}\pi /4}$  für  $N = 8$.

  • Am Eingang wird die alternierende $±1$–Folge  $\langle\hspace{0.05cm} d(ν)\hspace{0.05cm}\rangle$  angelegt.
  • Nach der Bitumkehroperation ergibt sich daraus die Folge  $\langle \hspace{0.05cm}b(\kappa)\hspace{0.05cm}\rangle$.


Es gilt  $b(κ) = d(ν)$, wenn man  $ν$  als Dualzahl darstellt und die resultierenden drei Bit als  $κ$  in umgekehrter Reihenfolge geschrieben werden. Beispielsweise

  • folgt aus  $ν = 1$  $($binär  $001)$  die Position  $κ = 4$  $($binär  $100)$,
  • verbleibt  $d(2)$  an der gleichen Position  $2$  $($binär  $010)$.


Der eigentliche FFT–Algorithmus geschieht für das Beispiel  $N = 8$  in  $\log_2 N = 3$  Stufen, die mit  $L = 1$,  $L =2$  und  $L = 3$  bezeichnet werden.  Weiter gilt:

  • In jeder Stufe sind vier Basisoperationen – so genannte Butterflies – durchzuführen.
  • Die Werte am Ausgang der ersten Stufe werden in dieser Aufgabe mit  $X(0),\hspace{0.03cm}\text{...} \hspace{0.1cm} , X(7)$  bezeichnet,
    die der zweiten mit  $Y(0), \hspace{0.03cm}\text{...} \hspace{0.1cm} , Y(7)$.
  • Nach der dritten und letzten Stufe sind alle Werte noch durch  $N$  zu dividieren.  Hier liegt dann das endgültige Ergebnis  $D(0), \hspace{0.03cm}\text{...} \hspace{0.1cm} , D(7)$  vor.



Hinweis:



Fragebogen

1

Berechnen Sie den DFT–Koeffizienten  $D(\mu=3)$.

$D(\mu=3) \ = \ $

2

Berechnen Sie den DFT–Koeffizienten  $D(\mu=4)$.

$D(\mu=4) \ = \ $

3

Ermitteln Sie die Ausgangswerte  $X(0)$, ... , $X(7)$  der ersten Stufe.  Welche der folgenden Aussagen sind zutreffend?

Alle  $X$–Werte mit geradzahligen Indizes sind gleich  $2$.
Alle  $X$–Werte mit ungeradzahligen Indizes sind gleich  $0$.

4

Ermitteln Sie die Ausgangswerte  $Y(0)$, ... , $Y(7)$  der zweiten Stufe.  Geben Sie zur Kontrolle die Werte  $Y(0)$  und  $Y(4)$  ein.

$Y(0) \ = \ $

$Y(4) \ = \ $

5

Berechnen Sie alle  $N$  Spektralwerte  $D(\mu)$, insbesondere

$D(\mu = 3) \ = \ $

$D(\mu = 4) \ = \ $

6

Welche Spektralkoeffizienten würden sich für  $d(ν = 4) = 1$  und  $d(ν \neq 4) = 0$  ergeben?
Geben Sie zur Kontrolle die Werte  $D(\mu=3)$  und  $D(\mu=4)$  ein.

$D(\mu = 3) \ = \ $

$D(\mu = 4) \ = \ $


Musterlösung

(1)  Entsprechend der auf dem Angabenblatt gegebenen allgemeinen DFT–Gleichung gilt mit  $w = \text{e}^{-\text{j}\hspace{0.05cm} \cdot \hspace{0.05cm}\pi /4}$  unter Berücksichtigung der alternierenden Zeitkoeffizienten:

$$8 \cdot D(3) = w^0 - w^3 + w^6- w^9+ w^{12}- w^{15}+ w^{18}- w^{21} = w^0 - w^3 + w^2- w^1+ w^{4}- w^{7}+ w^{6}- w^{5}\hspace{0.05cm}.$$
  • Hierbei ist berücksichtigt, dass aufgrund der Periodizität  $w_9 = w_1$,  $w_{12} = w_4$,  $w_{15} = w_7$,  $w_{18} = w_2$  und  $w_{21} = w_5$  ist.
  • Nach Umsortieren gilt in gleicher Weise:
$$8 \cdot D(3) = (w^0 + w^4) - (w^1 + w^5)+ (w^2 + w^6) - (w^3 + w^7) = (1 + w + w^2+ w^3) \cdot (w^0 + w^4)\hspace{0.05cm}.$$
  • Wegen  $w_0 = 1$  und  $w_4 = \text{e}^{-\text{j}\pi } = \hspace{0.08cm} - \hspace{-0.08cm}1$  erhält man somit  $\underline {D(\mu=3) = 0}$.


(2)  In analoger Weise zur Teilaufgabe  (1)  ergibt sich nun:

$$ 8 \cdot D(4) = w^0 - w^4 + w^8- w^{12}+ w^{16}- w^{20}+ w^{24}- w^{28}= 4 \cdot (w^0 - w^4)= 8 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\hspace{0.15 cm}\underline{D(\mu=4) = 1}\hspace{0.05cm}.$$


Beispiel für den FFT-Algorithmus

(3)  Richtig ist der Lösungsvorschlag 2:

  • Der Term  $w^0 = 1$  muss nicht berücksichtigt werden.
  • Alle Ausgangswerte mit ungeraden Indizes sind durch die Subtraktion zweier identischer Eingangswerte Null.
  • Die erste Aussage trifft nicht zu:   Es gilt  $X(0) = X(2) = +2$  und  $X(4) = X(6) = - 2$.


(4)  Auf die Multiplikation mit  $w^{2} = -{\rm j}$  kann verzichtet werden, da im Signalflussplan die entsprechenden Eingangsgrößen Null sind.

  • Man erhält somit  $Y(0) \;\underline{= 4}$  und  $Y(4) \;\underline{= - \hspace{-0.03cm}4}$.
  • Alle anderen Werte sind Null.


(5)  Wegen  $Y(5) = Y(6) =Y(7) = 0$  spielen auch in der dritten Stufe die Multiplikationen mit  $w$,  $w^2$  und  $w^3$  keine Rolle.  Alle Spektralkoeffizienten  $D(\mu)$  ergeben sich deshalb zu Null mit Ausnahme von

$$\hspace{0.15 cm}\underline{D(\mu= 4)} = {1}/{N}\cdot \left[Y(0) - Y(4) \right ] \hspace{0.15 cm}\underline{= 1} \hspace{0.05cm},$$
$$\hspace{0.15 cm}\underline{D(\mu =3)} = D(\mu \ne 4) \hspace{0.15 cm}\underline{= 0} \hspace{0.05cm}.$$

Dieses Ergebnis stimmt mit den Ergebnissen aus  (1)  und  (2)  überein.


(6)  Nachdem sowohl die Zeitkoeffizienten  $d(ν)$  als auch alle Spektralkoeffizienten  $D(\mu)$  rein reell sind, besteht kein Unterschied zwischen der FFT und der IFFT.

  • Das bedeutet gleichzeitig:  Die Eingangs– und Ausgangswerte können vertauscht werden.
  • Die Teilaufgabe  (5)  hat das folgende Ergebnis geliefert:
$$d({\rm gerades}\hspace{0.15cm}\nu) = +1, \hspace{0.2cm}d({\rm ungerades}\hspace{0.15cm}\nu)= -1$$
$$\Rightarrow \hspace{0.3cm}D(\mu = 4)= 1,\hspace{0.2cm}D(\mu \ne 4)= 0.$$
  • Durch Vertauschen der Eingangs– und Ausgangswerte kommt man zur Aufgabenstellung  (6):
$$d(\nu = 4)= 1, \hspace{0.2cm}d(\nu \ne 4)= 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}D({\rm gerades}\hspace{0.15cm}\mu) = +1, \hspace{0.2cm}D({\rm ungerades}\hspace{0.15cm}\mu)= -1 \hspace{0.05cm}.$$
  • Insbesondere ergibt sich sich  $D(\mu=3) \; \underline{= -1}$  und  $D(\mu=4) \; \underline{= +1}$.