Lineare zeitinvariante Systeme/Systembeschreibung im Frequenzbereich: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(16 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 5: Zeile 5:
 
}}
 
}}
  
 +
== # ÜBERBLICK ZUM ERSTEN HAUPTKAPITEL # ==
 +
<br>
 +
Im Buch „Signaldarstellung” wurden Sie mit der mathematischen Beschreibung deterministischer Signale im Zeit- und Frequenzbereich vertraut gemacht.&nbsp; Das zweite Buch „Lineare zeitvariante Syteme” beschreibt nun, welche Veränderungen ein Signal bzw. dessen Spektrum durch ein Nachrichtensystem erfährt und wie diese Veränderungen mathematisch erfasst werden können.
  
Im Buch „Signaldarstellung” wurden Sie mit der mathematischen Beschreibung deterministischer Signale im Zeit- und Frequenzbereich vertraut gemacht. Das zweite Buch „Lineare zeitvariante Syteme” beschreibt nun, welche Veränderungen ein Signal bzw. dessen Spektrum durch ein Nachrichtensystem erfährt und wie diese Veränderungen mathematisch erfasst werden können.  
+
{{BlaueBox|TEXT= 
 +
$\text{Bitte beachten Sie:}$&nbsp;
 +
*Das „System” kann sowohl eine einfache Schaltung als auch ein vollständiges, hochkompliziertes Übertragungssystem mit einer Vielzahl von Komponenten sein.  
 +
*Es wird hier lediglich vorausgesetzt, dass das System die beiden Eigenschaften &bdquo;linear&rdquo; und &bdquo;zeitinvariant&rdquo; aufweist.}}
  
*Das „System” kann sowohl eine einfache Schaltung als auch ein vollständiges, hochkompliziertes Übertragungssystem mit einer Vielzahl von Komponenten sein. Es wird hier lediglich vorausgesetzt, dass das System die beiden Eigenschaften linear und zeitinvariant aufweist.
 
  
 
+
Im ersten Kapitel werden die Grundlagen der so genannten&nbsp; '''Systemtheorie'''&nbsp; genannt, die eine einheitliche und einfache Beschreibung solcher Systeme erlaubt.&nbsp; Wir beginnen mit der Systembeschreibung im Frequenzbereich mit den oben aufgeführten Teilaspekten.
Im ersten Kapitel werden die Grundlagen der so genannten Systemtheorie genannt, die eine einheitliche und einfache Beschreibung solcher Systeme erlaubt. Wir beginnen mit der Systembeschreibung im Frequenzbereich mit den unten aufgeführten Teilaspekten.
 
  
 
Weitere Informationen zum Thema sowie Aufgaben, Simulationen und Programmierübungen finden Sie im  
 
Weitere Informationen zum Thema sowie Aufgaben, Simulationen und Programmierübungen finden Sie im  
  
*Kapitel 6: ''Lineare zeitinvariante Systeme'' (Programm lzi)
+
*Kapitel 6: &nbsp; ''Lineare zeitinvariante Systeme'' (Programm lzi)
  
  
des Praktikums &bdquo;Simulationsmethoden in der Nachrichtentechnik&rdquo;. Diese LNT-Lehrveranstaltung an der TU München basiert auf  
+
des Praktikums &bdquo;Simulationsmethoden in der Nachrichtentechnik&rdquo;.&nbsp; Diese (ehemalige) LNT-Lehrveranstaltung an der TU München basiert auf  
*dem Lehrsoftwarepaket [http://www.lntwww.de/downloads/Sonstiges/Programme/LNTsim.zip LNTsim] &nbsp;&rArr;&nbsp; Link verweist auf die ZIP-Version des Programms und  
+
*dem Lehrsoftwarepaket&nbsp; [http://www.lntwww.de/downloads/Sonstiges/Programme/LNTsim.zip LNTsim] &nbsp; &rArr; &nbsp; Link verweist auf die ZIP-Version des Programms, und  
*dieser [http://www.lntwww.de/downloads/Sonstiges/Texte/Praktikum_LNTsim_Teil_A.pdf Praktikumsanleitung]  &nbsp;&rArr;&nbsp; Link verweist auf die PDF-Version; Kapitel 6: Seite 99-118.
+
*dieser&nbsp; [http://www.lntwww.de/downloads/Sonstiges/Texte/Praktikum_LNTsim_Teil_A.pdf Praktikumsanleitung]  &nbsp; &rArr; &nbsp; Link verweist auf die PDF-Version; Kapitel 6: Seite 99-118.
  
  
 
==Das Ursachen-Wirkungs-Prinzip==
 
==Das Ursachen-Wirkungs-Prinzip==
 
+
<br>
Wir betrachten in diesem Kapitel stets das folgende einfache Modell:
+
[[Datei:P_ID775__LZI_T_1_1_S1_neu.png|right|frame|Einfachstes Systemmodell|class=fit]]
 
+
Wir betrachten in diesem Kapitel stets das rechts skizzierte einfache Modell.
[[Datei:P_ID775__LZI_T_1_1_S1_neu.png| Einfachstes Systemmodell|class=fit]]
 
  
 
Diese Anordnung ist wie folgt zu interpretieren:   
 
Diese Anordnung ist wie folgt zu interpretieren:   
  
*Im Mittelpunkt steht das so genannte ''System'', das in seiner Funktion weitestgehend abstrahiert ist („Black Box”). Über die Realisierung des Systems ist nichts Genaues bekannt.  
+
*Im Mittelpunkt steht das so genannte&nbsp; '''System''', das in seiner Funktion weitestgehend abstrahiert ist („Black Box”).&nbsp; Über die Realisierung des Systems ist nichts Genaues bekannt.  
*Die auf dieses System einwirkende zeitabhängige Eingangsgröße $x(t)$ bezeichnen wir im Folgenden auch als die ''Ursachenfunktio''n.  
+
*Die auf dieses System einwirkende zeitabhängige Eingangsgröße&nbsp; $x(t)$&nbsp; bezeichnen wir im Folgenden auch als die&nbsp; '''Ursachenfunktion'''.  
*Am Ausgang des Systems erscheint dann die ''Wirkungsfunktion'' $y(t)$ – quasi als Antwort des Systems auf die Eingangsfunktion $x(t)$.  
+
*Am Ausgang des Systems erscheint dann die&nbsp; '''Wirkungsfunktion'''&nbsp; $y(t)$&nbsp; – quasi als Antwort des Systems auf die Eingangsfunktion&nbsp; $x(t)$.  
  
  
''Anmerkung:'' Das System kann im Allgemeinen von beliebiger Art sein und ist nicht allein auf die Nachrichtentechnik beschränkt. Vielmehr wird auch in anderen Wissenschaftsgebieten wie zum Beispiel den Naturwissenschaften, der Volks- und Betriebswirtschaft, der Soziologie und der Politologie versucht, Kausalzusammenhänge zwischen verschiedenen Größen durch das Ursachen–Wirkungs–Prinzip zu erfassen und zu beschreiben.  
+
''Anmerkung:'' &nbsp; Das &bdquo;System&rdquo; kann im Allgemeinen von beliebiger Art sein und ist nicht allein auf die Nachrichtentechnik beschränkt.&nbsp; Vielmehr wird auch in anderen Wissenschaftsgebieten wie zum Beispiel den Naturwissenschaften, der Volks- und Betriebswirtschaft, der Soziologie und der Politologie versucht, Kausalzusammenhänge zwischen verschiedenen Größen durch das Ursachen–Wirkungs–Prinzip zu erfassen und zu beschreiben.  
  
Die für diese phänomenologischen Systemtheorien angewandten Methoden unterscheiden sich aber deutlich von der Vorgehensweise in der Nachrichtentechnik, die in diesem ersten Kapitel des vorliegenden Buches „Lineare zeitinvariante Systeme” dargelegt wird.  
+
Die für diese phänomenologischen Systemtheorien angewandten Methoden unterscheiden sich aber deutlich von der Vorgehensweise in der Nachrichtentechnik, die in diesem ersten Hauptkapitel des vorliegenden Buches „Lineare zeitinvariante Systeme” dargelegt wird.  
  
 
==Anwendung in der Nachrichtentechnik==
 
==Anwendung in der Nachrichtentechnik==
Das Ursachen–Wirkungs–Prinzip lässt sich auch in der Nachrichtentechnik anwenden, beispielsweise zur Beschreibung von Zweipolen. Hier kann man den Stromverlauf $i(t)$ als Ursachenfunktion und die Spannung $u(t)$ als Wirkungsfunktion betrachten. Durch Beobachten der I/U–Beziehungen lassen sich so Rückschlüsse über die Eigenschaften des eigentlich unbekannten Zweipols ziehen.  
+
<br>
 +
Das Ursachen–Wirkungs–Prinzip lässt sich auch in der Nachrichtentechnik anwenden, beispielsweise zur Beschreibung von Zweipolen.&nbsp; Hier kann man den Stromverlauf&nbsp; $i(t)$&nbsp; als Ursachenfunktion und die Spannung&nbsp; $u(t)$&nbsp; als Wirkungsfunktion betrachten.&nbsp; Durch Beobachten der I/U–Beziehungen lassen sich so Rückschlüsse über die Eigenschaften des eigentlich unbekannten Zweipols ziehen.  
  
[https://de.wikipedia.org/wiki/Karl_K%C3%BCpfm%C3%BCller Karl Küpfmüller ]  hat den Begriff „Systemtheorie” 1949 erstmals (in Deutschland) eingeführt. Er versteht darunter eine Methode zur Beschreibung komplexer Kausalzusammenhänge in Naturwissenschaften und Technik, basierend auf einer Spektraltransformation – beispielsweise der im Buch &bdquo;Signaldarstellung&rdquo; dargelegten   
+
[https://de.wikipedia.org/wiki/Karl_K%C3%BCpfm%C3%BCller Karl Küpfmüller ]&nbsp; hat den Begriff „Systemtheorie” 1949 erstmals (in Deutschland) eingeführt.&nbsp; Er versteht darunter eine Methode zur Beschreibung komplexer Kausalzusammenhänge in Naturwissenschaften und Technik, basierend auf einer Spektraltransformation – beispielsweise der im Buch &bdquo;Signaldarstellung&rdquo; dargelegten&nbsp;  
 
[[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_erste_Fourierintegral|Fouriertransformation]].
 
[[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_erste_Fourierintegral|Fouriertransformation]].
  
Man kann ein ganzes Nachrichtensystem systemtheoretisch beschreiben. Hier ist  
+
[[Datei:P_ID776__LZI_T_1_1_S2_neu.png|right|frame|Allgemeines Modell der Nachrichtenübertragung|class=fit]]
*die Ursachenfunktion das Eingangssignal $x(t)$ bzw. dessen Spektrum $X(f)$,  
+
Man kann ein ganzes Nachrichtensystem systemtheoretisch beschreiben.&nbsp; Hier ist  
*die Wirkungsfunktion das Ausgangssignal $y(t)$ oder die dazugehörige Spektralfunktion $Y(f)$.  
+
*die Ursachenfunktion das Eingangssignal&nbsp; $x(t)$&nbsp; bzw. dessen Spektrum&nbsp; $X(f)$,  
 
+
*die Wirkungsfunktion das Ausgangssignal&nbsp; $y(t)$&nbsp; oder das Spektrum&nbsp; $Y(f)$.  
[[Datei:P_ID776__LZI_T_1_1_S2_neu.png  | Allgemeines Modell der Nachrichtenübertragung|class=fit]]
 
  
Auch in den nachfolgenden Bildern werden die Eingangsgrößen meist blau, die Ausgangsgrößen rot und Systemgrößen grün gezeichnet.
 
  
{{Beispiel}}
+
Auch in den folgenden Bildern werden die Eingangsgrößen meist blau, die Ausgangsgrößen rot und Systemgrößen grün gezeichnet.
Beschreibt das „Nachrichtensystem” eine vorgegebene lineare Schaltung, so kann bei bekanntem Eingangssignal $x(t)$ mit Hilfe der Systemtheorie das Ausgangssignal $y(t)$ vorhergesagt werden. Eine zweite Aufgabe der Systemtheorie besteht darin, durch Messung von $y(t)$ bei Kenntnis von $x(t)$ das Nachrichtensystem zu klassifizieren, ohne dieses im Detail zu kennen.  
+
<br clear=all>
 +
{{GraueBox|TEXT= 
 +
$\text{Beispiel 1:}$&nbsp;
 +
Beschreibt das „Nachrichtensystem” eine vorgegebene lineare Schaltung, so kann bei bekanntem Eingangssignal&nbsp; $x(t)$&nbsp; mit Hilfe der Systemtheorie das Ausgangssignal&nbsp; $y(t)$&nbsp; vorhergesagt werden.&nbsp; Eine zweite Aufgabe der Systemtheorie besteht darin, durch Messung von&nbsp; $y(t)$&nbsp; bei Kenntnis von&nbsp; $x(t)$&nbsp; das Nachrichtensystem zu klassifizieren, ohne dieses im Detail zu kennen.  
  
 +
Beschreibt&nbsp; $x(t)$&nbsp; beispielsweise die Stimme eines Anrufers aus Hamburg und&nbsp; $y(t)$&nbsp; die Aufzeichnung eines Anrufbeantworters in München, dann besteht das „Nachrichtensystem” aus folgenden Komponenten:
  
Beschreibt $x(t)$ beispielsweise die Stimme eines Anrufers aus Hamburg und $y(t)$ die Aufzeichnung eines Anrufbeantworters in München, dann besteht das „Nachrichtensystem” aus folgenden Komponenten:
+
Mikrofon – Telefon – elektrische Leitung – Signalumsetzer – Glasfaserkabel – optischer Verstärker – Signalrücksetzer – Empfangsfilter (zum Beispiel zur Entzerrung und Rauschbegrenzung) – &nbsp; ... &nbsp; – elektromagnetischer Wandler. }}
 
 
Mikrofon – Telefon – elektrische Leitung – Signalumsetzer – Glasfaserkabel – optischer Verstärker – Signalrücksetzer – Empfangsfilter (zum Beispiel zur Entzerrung und Rauschbegrenzung) – &nbsp; ... &nbsp; – elektromagnetischer Wandler.  
 
{{end}}
 
  
 
==Voraussetzungen für die Anwendung der Systemtheorie==
 
==Voraussetzungen für die Anwendung der Systemtheorie==
Das oben angegebene Modell eines Nachrichtensystems gilt allgemein und unabhängig von den Randbedingungen. Die Anwendung der Systemtheorie erfordert jedoch zusätzlich einige einschränkende Voraussetzungen.  
+
<br>
 +
Das oben angegebene Modell eines Nachrichtensystems gilt allgemein und unabhängig von den Randbedingungen.&nbsp; Die Anwendung der Systemtheorie erfordert jedoch zusätzlich einige einschränkende Voraussetzungen.  
  
Für das Folgende soll stets gelten, wenn nicht explizit etwas anderes angegeben ist:  
+
Wenn nicht explizit etwas anderes angegeben ist, soll für das Folgende stets gelten:  
*Sowohl $x(t)$ als auch $y(t)$ sind deterministische Signale. Andernfalls muss man entsprechend der Seite [[Stochastische_Signaltheorie/Stochastische_Systemtheorie|Stochastische Systemtheorie]]  im Buch &bdquo;Stochastische Signaltheorie&rdquo; vorgehen.
+
*Sowohl&nbsp; $x(t)$&nbsp; als auch&nbsp; $y(t)$&nbsp; sind deterministische Signale.&nbsp; Andernfalls muss man entsprechend der Seite&nbsp; [[Stochastische_Signaltheorie/Stochastische_Systemtheorie|Stochastische Systemtheorie]]&nbsp; im Buch &bdquo;Stochastische Signaltheorie&rdquo; vorgehen.
*Das System ist '''linear'''. Dies erkennt man zum Beispiel daran, dass eine harmonische Schwingung $x(t)$ am Eingang auch eine harmonische Schwingung $y(t)$ gleicher Frequenz am Ausgang zur Folge hat:  
+
*Das System ist&nbsp; '''linear'''.&nbsp; Dies erkennt man zum Beispiel daran, dass eine harmonische Schwingung&nbsp; $x(t)$&nbsp; am Eingang auch eine harmonische Schwingung&nbsp; $y(t)$&nbsp; gleicher Frequenz am Ausgang zur Folge hat:  
 
:$$x(t) = A_x \cdot \cos(\omega_0 \hspace{0.05cm}t - \varphi_x)\hspace{0.2cm}\Rightarrow \hspace{0.2cm} y(t) = A_y \cdot\cos(\omega_0 \hspace{0.05cm}t - \varphi_y).$$
 
:$$x(t) = A_x \cdot \cos(\omega_0 \hspace{0.05cm}t - \varphi_x)\hspace{0.2cm}\Rightarrow \hspace{0.2cm} y(t) = A_y \cdot\cos(\omega_0 \hspace{0.05cm}t - \varphi_y).$$
*Neue Frequenzen entstehen nicht. Lediglich Amplitude und Phase der harmonischen Schwingung können verändert werden. Nichtlineare Systeme werden im Kapitel [[Lineare_zeitinvariante_Systeme/Nichtlineare_Verzerrungen|Nichtlineare Verzerrungen]] behandelt.
+
*Neue Frequenzen entstehen nicht.&nbsp; Lediglich Amplitude und Phase der harmonischen Schwingung können verändert werden.&nbsp; Nichtlineare Systeme werden im Kapitel&nbsp; [[Lineare_zeitinvariante_Systeme/Nichtlineare_Verzerrungen|Nichtlineare Verzerrungen]]&nbsp; behandelt.
*Aufgrund der Linearität ist auch das Superpositionsprinzip anwendbar. Dieses besagt, dass aus $x_1(t) ⇒  y_1(t)$ und $x_2(t)  ⇒  y_2(t)$ auch zwingend die folgende Zuordnung gilt:
+
*Aufgrund der Linearität ist auch das Superpositionsprinzip anwendbar.&nbsp; Dieses besagt, dass aus&nbsp; $x_1(t) ⇒  y_1(t)$&nbsp;  und&nbsp; $x_2(t)  ⇒  y_2(t)$&nbsp; auch zwingend die folgende Zuordnung gilt:
 
:$$x_1(t) + x_2(t) \hspace{0.1cm}\Rightarrow \hspace{0.1cm} y_1(t) + y_2(t).$$
 
:$$x_1(t) + x_2(t) \hspace{0.1cm}\Rightarrow \hspace{0.1cm} y_1(t) + y_2(t).$$
*Das System ist '''zeitinvariant'''. Das bedeutet, dass ein um $\tau$ verschobenes Eingangssignal genau das gleiche Ausgangssignal zur Folge hat aber ebenfalls um $\tau$ verzögert:
+
*Das System ist&nbsp; '''zeitinvariant'''.&nbsp; Das bedeutet, dass ein um&nbsp; &nbsp;$\tau$&nbsp; verschobenes Eingangssignal das gleiche Ausgangssignal zur Folge hat,&nbsp; dieses aber ebenfalls um &nbsp;$\tau$&nbsp; verzögert ist:
 
:$$x(t - \tau)  \hspace{0.1cm}\Rightarrow \hspace{0.1cm} y(t -\tau)\hspace{0.4cm}{\rm falls} \hspace{0.4cm}x(t )\hspace{0.2cm}\Rightarrow \hspace{0.1cm} y(t).$$  
 
:$$x(t - \tau)  \hspace{0.1cm}\Rightarrow \hspace{0.1cm} y(t -\tau)\hspace{0.4cm}{\rm falls} \hspace{0.4cm}x(t )\hspace{0.2cm}\Rightarrow \hspace{0.1cm} y(t).$$  
:Zeitvariante Systeme  werden im Buch [[Mobile Kommunikation]] behandelt.  
+
:Zeitvariante Systeme  werden im Buch&nbsp; [[Mobile Kommunikation]]&nbsp; behandelt.  
  
Sind alle hier aufgeführten Voraussetzungen erfüllt, so spricht man von einem '''linearen zeitinvarianten System''', abgekürzt LZI–System. In der englischsprachigen Literatur ist hierfür die Abkürzung LTI (''Linear Time–invariant'') gebräuchlich.
+
Sind alle hier aufgeführten Voraussetzungen erfüllt, so spricht man von einem&nbsp; '''linearen zeitinvarianten System''', abgekürzt&nbsp; $\rm LZI$–System.&nbsp; In der englischsprachigen Literatur ist hierfür die Abkürzung&nbsp; $\rm LTI$&nbsp; ("linear time–invariant")&nbsp; gebräuchlich.
  
==Übertragungsfunktion - Frequenzgang==
+
== Frequenzgang &ndash; Systemfunktion &ndash; Übertragungsfunktion==
Wir setzen ein LZI–System voraus, dessen Eingangs– und Ausgangsspektrum $X(f)$ bzw. $Y(f)$ bekannt sind oder aus den Zeitsignalen $x(t)$ und $y(t)$ durch [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_erste_Fourierintegral|Fouriertransformation]] berechnet werden können.
+
<br>
 +
Wir setzen ein LZI–System voraus, dessen Eingangs– und Ausgangsspektren&nbsp; $X(f)$&nbsp; und&nbsp; $Y(f)$&nbsp; bekannt sind oder aus den Zeitsignalen&nbsp; $x(t)$&nbsp; und&nbsp; $y(t)$&nbsp; durch&nbsp; [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_erste_Fourierintegral|Fouriertransformation]]&nbsp; berechnet werden können.
  
[[Datei:P_ID777__LZI_T_1_1_S4_neu.png | Zur Definition des Frequenzgangs|class=fit]]
+
[[Datei:P_ID777__LZI_T_1_1_S4_neu.png|right|frame|Zur Definition des Frequenzgangs|class=fit]]
  
{{Definition}}
+
{{BlaueBox|TEXT= 
Das Übertragungsverhalten eines Nachrichtensystems wird im Frequenzbereich durch die '''Übertragungsfunktion''' beschrieben:
+
$\text{Definition:}$&nbsp;
$$H(f) = \frac{Y(f)}{X(f)}= \frac{ {\rm Wirkungsfunktion}}{ {\rm Ursachenfunktion}}.$$
+
Das Übertragungsverhalten eines Nachrichtenübertragungssystems wird im Frequenzbereich durch den&nbsp; $\text{Frequenzgang}$&nbsp; beschrieben:
Weitere Bezeichnungen für $H(f)$ sind ''Systemfunktion'' und ''Frequenzgang''. Im Folgenden werden wir vorwiegend den letzten Begriff verwenden.
+
:$$H(f) = \frac{Y(f)}{X(f)}= \frac{ {\rm Wirkungsfunktion} }{ {\rm Ursachenfunktion} }.$$
{{end}}
+
Weitere Bezeichnungen für&nbsp; $H(f)$&nbsp; sind &bdquo;Systemfunktion&rdquo; und &bdquo;Übertragungsfunktion&rdquo;.}}
  
  
{{Beispiel}}
+
[[Datei:P_ID778__LZI_T_1_1_S4b_neu.png |right|frame|Eingangsspektrum,&nbsp; Ausgangsspektrum&nbsp; und&nbsp; Frequenzgang|class=fit]]
Am Eingang eines LZI–Systems liegt das Signal $x(t)$ mit dem rein reellen Spektrum $X(f)$ an (blaue Kurve). Das gemessene Ausgangsspektrum $Y(f)$ – in der Grafik rot markiert – ist bei Frequenzen kleiner als 2 kHz größer als $X(f)$ und besitzt im Bereich um 2 kHz eine steilere Flanke. Oberhalb von 2.8 kHz hat das Signal $y(t)$ keine Spektralanteile.
+
{{GraueBox|TEXT= 
 +
$\text{Beispiel 2:}$&nbsp;
 +
Am Eingang eines LZI–Systems liegt das Signal&nbsp; $x(t)$&nbsp; mit dem reellen Spektrum&nbsp; $X(f)$&nbsp; an (blaue Kurve).&nbsp; Das gemessene Ausgangsspektrum&nbsp; $Y(f)$&nbsp; – in der Grafik rot markiert – ist bei Frequenzen kleiner als&nbsp; $2 \ \rm kHz$&nbsp; größer als&nbsp; $X(f)$&nbsp; und besitzt im Bereich um&nbsp; $2 \ \rm kHz$&nbsp; eine steilere Flanke.&nbsp; Oberhalb von&nbsp; $2.8 \ \rm kHz$&nbsp; hat das Signal&nbsp; $y(t)$&nbsp; keine Spektralanteile.
 +
*Die grünen Kreise markieren einige Messpunkte des ebenfalls reellen Frequenzgangs&nbsp;
 +
:$$H(f) = Y(f)/X(f).$$
 +
*Bei niedrigen Frequenzen ist&nbsp; $H(f)>1$:&nbsp; In diesem Bereich wirkt das LZI–System verstärkend.
 +
*Der Flankenabfall von&nbsp; $H(f)$&nbsp; verläuft ähnlich wie der von&nbsp; $Y(f)$, ist aber nicht identisch.}}
  
[[Datei:P_ID778__LZI_T_1_1_S4b_neu.png |center|Eingangsspektrum, Ausgangsspektrum und Frequenzgang|class=fit]]
+
==Eigenschaften des Frequenzgangs==
 +
<br>
 +
Der Frequenzgang&nbsp; $H(f)$&nbsp; ist eine zentrale Größe bei der Beschreibung nachrichtentechnischer Systeme.  
  
Die grünen Kreise markieren einige Messpunkte des ebenfalls reellen Frequenzgangs $H(f)$ = $Y(f)/X(f)$. Bei niedrigen Frequenzen ist $H(f)$ größer als 1, das heißt, in diesem Bereich wirkt das LZI–System verstärkend. Der Flankenabfall von $H(f)$ verläuft ähnlich wie der von $Y(f)$, ist aber nicht identisch mit diesem.
+
Nachfolgend werden einige Eigenschaften dieser wichtigen Systemgröße aufgezählt:
{{end}}
+
*Der Frequenzgang beschreibt allein das LZI&ndash;System.&nbsp; Er ist zum Beispiel aus den linearen Bauelementen eines elektrischen Netzwerks&nbsp; berechenbar.&nbsp; Bei anderem Eingangssignal&nbsp; $x(t)$&nbsp; und dementsprechend anderem Ausgangssignal&nbsp; $y(t)$&nbsp; ergibt sich der genau gleiche Frequenzgang&nbsp; $H(f)$.  
 
+
*$H(f)$&nbsp; kann eine &bdquo;Einheit&rdquo; besitzen.&nbsp; Betrachtet man zum Beispiel bei einem Zweipol den Spannungsverlauf&nbsp; $u(t)$&nbsp; als Ursache und den Strom&nbsp; $i(t)$&nbsp; als Wirkung, so hat der Frequenzgang&nbsp; $H(f) = I(f)/U(f)$&nbsp; die Einheit&nbsp; $\rm A/V$.&nbsp; $I(f)$&nbsp; und&nbsp; $U(f)$&nbsp; sind die Fouriertransformierten von&nbsp; $i(t)$&nbsp; bzw.&nbsp; $u(t)$.  
==Eigenschaften des Frequenzgangs==
+
*Im Folgenden betrachten wir ausschließlich&nbsp; '''Vierpole'''.&nbsp; Zudem setzen wir ohne Einschränkung der Allgemeingültigkeit meist voraus, dass&nbsp; $x(t)$&nbsp; und&nbsp; $y(t)$&nbsp; jeweils Spannungen seien.&nbsp; In diesem Fall ist&nbsp; $H(f)$&nbsp; stets dimensionslos.  
Der Frequenzgang $H(f)$ ist eine zentrale Größe bei der Beschreibung nachrichtentechnischer Systeme. Nachfolgend werden einige Eigenschaften dieser wichtigen Systemgröße aufgezählt:
+
*Da die Spektren&nbsp; $X(f)$&nbsp; und&nbsp; $Y(f)$&nbsp; im allgemeinen komplex sind, ist auch der Frequenzgang&nbsp; $H(f)$&nbsp; eine komplexe Funktion.&nbsp; Man nennt den Betrag&nbsp; $|H(f)|$&nbsp; den&nbsp; '''Amplitudengang'''.&nbsp; Dieser wird auch oft in logarithmierter Form dargestellt und als&nbsp; '''Dämpfungsverlauf'''&nbsp; bezeichnet:
*Der Frequenzgang beschreibt allein das System. Er ist zum Beispiel aus den linearen Bauelementen eines ''elektrischen Netzwerks'' berechenbar. Bei anderem Eingangssignal $x(t)$ und dementsprechend anderem Ausgangssignal $y(t)$  ergibt sich der genau gleiche Frequenzgang $H(f)$.  
 
*$H(f)$ kann auch eine ''Einheit'' besitzen. Betrachtet man zum Beispiel bei einem Zweipol den Spannungsverlauf $u(t)$ als Ursache und den Strom $i(t)$ als Wirkung, so hat der Frequenzgang $H(f)$ = $I(f)/U(f)$ die Einheit A/V. $I(f)$ und $U(f)$ sind die Fouriertransformierten von $i(t)$ bzw. $u(t)$.  
 
*Im Folgenden betrachten wir ausschließlich ''Vierpole''. Zudem setzen wir ohne Einschränkung der Allgemeingültigkeit meist voraus, dass $x(t)$ und $y(t)$ jeweils Spannungen seien. In diesem Fall ist $H(f)$ stets dimensionslos.  
 
*Da die Spektren $X(f)$ und $Y(f)$ im Allgemeinen komplex sind, ist auch der Frequenzgang $H(f)$ eine komplexe Funktion. Man bezeichnet den Betrag $\\ |H(f)|$ als ''Amplitudengang''. Dieser wird auch oft in logarithmierter Form dargestellt und als ''Dämpfungsverlauf'' bezeichnet:
 
 
:$$a(f) = - \ln |H(f)| = - 20 \cdot \lg |H(f)|.$$
 
:$$a(f) = - \ln |H(f)| = - 20 \cdot \lg |H(f)|.$$
:Je nachdem, ob die erste Form mit dem natürlichen oder die zweite mit dekadischem Logarithmus verwendet wird, ist die Pseudoeinheit &bdquo;Neper&rdquo; (Np) bzw. &bdquo;Dezibel&rdquo; (dB) hinzuzufügen.  
+
*Je nachdem, ob die erste Form mit dem natürlichen oder die zweite mit dekadischem Logarithmus verwendet wird, ist die Pseudoeinheit &bdquo;Neper&rdquo;&nbsp; $\rm (Np)$&nbsp; bzw. &bdquo;Dezibel&rdquo;&nbsp; $\rm  (dB)$&nbsp; hinzuzufügen.  
*Der Phasengang ist aus $H(f)$ in folgender Weise berechenbar:
+
*Der&nbsp; '''Phasengang'''&nbsp; ist aus&nbsp; $H(f)$&nbsp; in folgender Weise berechenbar:
 
:$$b(f) = - {\rm arc} \hspace{0.1cm}H(f) \hspace{0.2cm}{\rm in\hspace{0.1cm}Radian \hspace{0.1cm}(rad)}.$$
 
:$$b(f) = - {\rm arc} \hspace{0.1cm}H(f) \hspace{0.2cm}{\rm in\hspace{0.1cm}Radian \hspace{0.1cm}(rad)}.$$
*Damit kann der gesamte Frequenzgang auch wie folgt dargestellt werden:
+
 
:$$H(f) = |H(f)| \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot\hspace{0.05cm} b(f)} = {\rm e}^{-a(f)}\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} b(f)}.$$
+
{{BlaueBox|TEXT= 
 +
&nbsp; $\text{Damit kann der gesamte Frequenzgang auch wie folgt dargestellt werden:}$
 +
:$$H(f) = \vert H(f)\vert \cdot {\rm e}^{ - {\rm j} \hspace{0.05cm} \cdot\hspace{0.05cm} b(f)} = {\rm e}^{-a(f)}\cdot {\rm e}^{ - {\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} b(f)}.$$}}
  
 
==Tiefpass, Hochpass, Bandpass und Bandsperre==
 
==Tiefpass, Hochpass, Bandpass und Bandsperre==
Nach dem Amplitudengang $|H(f)|$ unterscheidet man zwischen  
+
<br>
 +
Nach dem Amplitudengang&nbsp; $|H(f)|$&nbsp; unterscheidet man zwischen
 +
[[Datei:P_ID780__LZI_T_1_1_S6_neu.png|right|frame|Tiefpass und Hochpass (links) sowie Bandpass (rechts)|class=fit]]
 +
 
*'''Tiefpass''': &nbsp;Signalanteile werden mit zunehmender Frequenz in der Tendenz stärker gedämpft.  
 
*'''Tiefpass''': &nbsp;Signalanteile werden mit zunehmender Frequenz in der Tendenz stärker gedämpft.  
*'''Hochpass''': &nbsp;Hier werden hochfrequente Signalanteile weniger gedämpft als niederfrequente. Ein Gleichsignal (also ein Signalanteil mit der Frequenz $f = 0$) kann über einen Hochpass nicht übertragen werden.  
+
*'''Hochpass''': &nbsp;Hier werden hochfrequente Signalanteile weniger gedämpft als niederfrequente.&nbsp; Ein Gleichsignal&nbsp; $($also ein Signalanteil mit der Frequenz&nbsp; $f = 0)$&nbsp; kann über einen Hochpass nicht übertragen werden.  
*'''Bandpass''': &nbsp;Es gibt eine bevorzugte Frequenz, die man als Mittenfrequenz $f_{\rm M}$ bezeichnet. Je weiter die Frequenz eines Signalanteils von $f_{\rm M}$ entfernt ist, um so stärker wird dieser gedämpft.  
+
*'''Bandpass''': &nbsp;Es gibt eine bevorzugte Frequenz &nbsp; &rArr; &nbsp;  &bdquo;Mittenfrequenz&rdquo;&nbsp; $f_{\rm M}$.&nbsp; Je weiter die Frequenz eines Signalanteils von&nbsp; $f_{\rm M}$&nbsp; entfernt ist, um so stärker wird dieser gedämpft.  
*'''Bandsperre''': &nbsp;Dies ist das Gegenstück zum Bandpass und es gilt $|H(f_{\rm M})| ≈ 0$. Sehr niederfrequente und sehr hochfrequente Signalanteile werden dagegen gut durchgelassen.
+
*'''Bandsperre''': &nbsp;Dies ist das Gegenstück zum Bandpass und es gilt&nbsp; $|H(f_{\rm M})| ≈ 0$.&nbsp; Sehr niederfrequente und sehr hochfrequente Signalanteile werden dagegen gut durchgelassen.
  
[[Datei:P_ID780__LZI_T_1_1_S6_neu.png|center|Tiefpass, Hochpass (links) und Bandpass (rechts)|class=fit]]
 
  
Die Grafik zeigt die Amplitudengänge der Filtertypen TP und HP (links) sowie BP (rechts). Ebenfalls eingezeichnet sind die Grenzfrequenzen $f_{\rm G}$ (bei Tiefpass und Hochpass) bzw. $f_{\rm U}$ und $f_{\rm O}$ (beim Bandpass). Diese bezeichnen hier 3dB–Grenzfrequenzen, zum Beispiel gemäß folgender Definition:
+
Die Grafik zeigt links  die Amplitudengänge der Filtertypen &bdquo;Tiefpass&rdquo;&nbsp; $\rm (TP)$&nbsp; und &bdquo;Hochpass&rdquo; &nbsp; $\rm (HP)$&nbsp; sowie rechts einen&bdquo;Bandpass&rdquo; &nbsp; $\rm (BP)$.  
{{Definition}}
+
*Ebenfalls eingezeichnet sind die Grenzfrequenzen&nbsp; $f_{\rm G}$&nbsp; (bei Tiefpass und Hochpass) bzw.&nbsp; $f_{\rm U}$&nbsp; und&nbsp; $f_{\rm O}$&nbsp; (beim Bandpass).  
Die '''3dB–Grenzfrequenz''' eines Tiefpasses gibt diejenige Frequenz $f_{\rm G}$ an, für die gilt:
+
*Diese bezeichnen hier 3dB–Grenzfrequenzen, zum Beispiel gemäß der folgenden Definition.
$$|H(f = f_{\rm G})| = {1}/{\sqrt{2}} \cdot|H(f = 0)| \hspace{0.5cm}\Rightarrow\hspace{0.5cm} |H(f = f_{\rm G})|^2 = {1}/{2} \cdot|H(f = 0)|^2.$$
+
<br clear=all>
{{end}}
+
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
 +
Die&nbsp; $\text{3dB–Grenzfrequenz}$&nbsp; eines Tiefpasses gibt diejenige Frequenz $f_{\rm G}$&nbsp; an, für die gilt:
 +
:$$\vert H(f = f_{\rm G})\vert = {1}/{\sqrt{2} } \cdot \vert H(f = 0)\vert \hspace{0.5cm}\Rightarrow\hspace{0.5cm} \vert H(f = f_{\rm G})\vert^2 = {1}/{2} \cdot \vert H(f = 0) \vert^2.$$}}
  
  
Anzumerken ist, dass es für Grenzfrequenzen auch andere Definitionen gibt. Diese finden Sie auf der Seite [[Lineare_zeitinvariante_Systeme/Einige_systemtheoretische_Tiefpassfunktionen#Allgemeine_Bemerkungen|Allgemeine Bemerkungen]]
+
*Anzumerken ist, dass es für die Grenzfrequenz auch eine Reihe anderer Definitionen gibt.  
im Kapitel &bdquo;Einige systemtheoretische Tiefpassfunktionen&rdquo; .  
+
*Diese finden Sie zu Beginn des Kapitels&nbsp; [[Lineare_zeitinvariante_Systeme/Einige_systemtheoretische_Tiefpassfunktionen#Allgemeine_Bemerkungen|Einige systemtheoretische Tiefpassfunktionen]].
 
   
 
   
==Testsignale zur Messung von <i>H(f)</i>==
+
==Testsignale zur Messung des Frequenzgangs==
Zur messtechnischen Erfassung des Frequenzgangs $H(f)$ eignet sich jedes beliebige Eingangssignal $x(t)$ mit Spektrum $X(f)$, solange $X(f)$ keine Nullstellen aufweist. Durch Messung des Ausgangsspektrums $Y(f)$ lässt sich so der Frequenzgang in einfacher Weise ermitteln:
+
<br>
$$H(f) = \frac{Y(f)}{X(f)}.$$
+
Zur messtechnischen Erfassung des Frequenzgangs&nbsp; $H(f)$&nbsp; eignet sich jedes beliebige Eingangssignal&nbsp; $x(t)$&nbsp; mit Spektrum&nbsp; $X(f)$, solange&nbsp; $X(f)$&nbsp; keine Nullstelle&nbsp; $($im interessierenden Bereich$)$&nbsp;  aufweist.&nbsp; Durch Messung des Ausgangsspektrums&nbsp; $Y(f)$&nbsp; lässt sich so der Frequenzgang in einfacher Weise ermitteln:
Insbesondere sind  folgende Eingangssignale besonders geeignet:   
+
:$$H(f) = \frac{Y(f)}{X(f)}.$$
 +
Insbesondere sind  folgende Eingangssignale geeignet:   
 
*'''Diracimpuls''' &nbsp; $x(t) = K · δ(t)$  &nbsp; ⇒ &nbsp;  Spektrum $X(f) = K$:
 
*'''Diracimpuls''' &nbsp; $x(t) = K · δ(t)$  &nbsp; ⇒ &nbsp;  Spektrum $X(f) = K$:
:Somit ist der Frequenzgang nach Betrag und Phase formgleich mit dem Ausgangsspektrum $Y(f)$ und es gilt $H(f) = 1/K · Y(f)$. Approximiert man den Diracimpuls durch ein schmales Rechteck gleicher Fläche $K$, so muss $H(f)$ mit Hilfe einer ${\rm sin}(x)/x$–Funktion korrigiert werden.  
+
:Somit ist der Frequenzgang nach Betrag und Phase formgleich mit dem Ausgangsspektrum&nbsp; $Y(f)$&nbsp; und es gilt&nbsp; $H(f) = 1/K · Y(f)$.&nbsp; <br>Approximiert man den Diracimpuls durch ein schmales Rechteck gleicher Fläche&nbsp; $K$, so muss&nbsp; $H(f)$&nbsp; mit Hilfe einer&nbsp; ${\rm sin}(x)/x$–Funktion korrigiert werden.  
*'''Diracpuls''' – die unendliche Summe gleichgewichteter Diracimpulse im zeitlichen Abstand $T_{\rm A}$:  
+
*'''Diracpuls''' &nbsp;&nbsp;  die unendliche Summe gleichgewichteter Diracimpulse im zeitlichen Abstand&nbsp; $T_{\rm A}$:  
:Dieser führt gemäß Kapitel  [[Signaldarstellung/Zeitdiskrete_Signaldarstellung|Zeitdiskrete Signaldarstellung]]  im Buch &bdquo;Signaldarstellung&rdquo; zu einem Diracpuls im Frequenzbereich mit Abstand $f_{\rm A} =1/T_{\rm A}$. Damit ist eine frequenzdiskrete Messung von $H(f)$ möglich, mit den spektralen Abtastwerten im Abstand $f_{\rm A}$.  
+
:Dieser führt gemäß dem Kapitel&nbsp; [[Signaldarstellung/Zeitdiskrete_Signaldarstellung|Zeitdiskrete Signaldarstellung]]&nbsp; im Buch &bdquo;Signaldarstellung&rdquo; zu einem Diracpuls im Frequenzbereich mit Abstand&nbsp; $f_{\rm A} =1/T_{\rm A}$.&nbsp; Damit ist eine frequenzdiskrete Messung von&nbsp; $H(f)$ möglich, mit den spektralen Abtastwerten im Abstand $f_{\rm A}$.  
*'''Harmonische Schwingung''' &nbsp; $x(t) = A_x · \cos (2πf_0t φ_x)$  &nbsp; ⇒ &nbsp;  diracförmiges Spektrum bei $\pm f_0$:
+
*'''Harmonische Schwingung''' &nbsp; $x(t) = A_x · \cos (2πf_0t - φ_x)$  &nbsp; ⇒ &nbsp;  diracförmiges Spektrum bei&nbsp; $\pm f_0$:
:Das Ausgangssignal $y(t) = A_y · \cos(2πf_0t φ_y)$ ist eine Schwingung mit gleicher Frequenz $f_0$.  Der Frequenzgang lautet für $f_0 \gt 0$:  
+
:Das Ausgangssignal&nbsp; $y(t) = A_y · \cos(2πf_0t - φ_y)$&nbsp; ist eine Schwingung mit gleicher Frequenz&nbsp; $f_0$.  Der Frequenzgang lautet für&nbsp; $f_0 \gt 0$:  
:$$H(f_0) = \frac{Y(f_0)}{X(f_0)} = \frac{A_y}{A_x}\cdot{\rm e}^{\hspace{0.05cm} {\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} (\varphi_x - \varphi_y)}.$$ Um den frequenzkontinuierlichen Frequenzgang $H(f)$ zu ermitteln, sind allerdings  (unendlich) viele Messungen mit unterschiedlichen Frequenzen $f_0$ erforderlich.  
+
:$$H(f_0) = \frac{Y(f_0)}{X(f_0)} = \frac{A_y}{A_x}\cdot{\rm e}^{\hspace{0.05cm} {\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} (\varphi_x - \varphi_y)}.$$  
 +
:Zur Ermittlung des gesamten Frequenzgangs&nbsp; $H(f)$&nbsp; sind (unendlich) viele Messungen mit verschiedenen Frequenzen&nbsp; $f_0$&nbsp; erforderlich.  
  
  
  
 
==Aufgaben zum Kapitel==
 
==Aufgaben zum Kapitel==
[[Aufgaben:1.1_Einfache_Filterfunktionen| Aufgabe 1.1: &nbsp; Einfache Filterfunktionen]]
+
<br>
 
+
[[Aufgaben:1.1_Einfache_Filterfunktionen| Aufgabe 1.1: Einfache Filterfunktionen]]
[[Aufgaben:1.1Z_Tiefpass_1._und_2._Ordnung|Zusatzaufgabe 1.1Z: &nbsp; Tiefpass 1. und 2. Ordnung]]
 
  
[[Aufgaben:1.2_Koaxialkabel|Aufgabe 1.2: &nbsp; Koaxialkabel]]
+
[[Aufgaben:1.1Z_Tiefpass_1._und_2._Ordnung|Aufgabe 1.1Z: Tiefpass 1. und 2. Ordnung]]
  
[[Aufgaben:1.2Z_Messung von H(f)|Zusatzaufgabe 1.2Z: &nbsp;  Messung der Übertragungsfunktion]]
+
[[Aufgaben:1.2_Koaxialkabel|Aufgabe 1.2: Koaxialkabel]]
  
 +
[[Aufgaben:Aufgabe_1.2Z:_Messung_der_Übertragungsfunktion|Aufgabe 1.2Z: Messung der Übertragungsfunktion]]
  
  
{{Definition}}
 
Ein '''Gleichsignal''' ist ein deterministisches Signal, dessen Augenblickswerte für alle Zeiten $t$ von $-\infty$ bis $+\infty$ konstant sind. Ein solches Signal ist der Grenzfall einer [[Signaldarstellung/Harmonische_Schwingung|harmonischen Schwingung]], wobei die Periodendauer $T_{0}$ einen unendlich großen Wert besitzt.
 
{{end}}
 
  
 
{{Display}}
 
{{Display}}

Aktuelle Version vom 27. Mai 2021, 13:24 Uhr

  • [[Lineare zeitinvariante Systeme/{{{Vorherige Seite}}} | Vorherige Seite]]
  • Nächste Seite
  • [[Lineare zeitinvariante Systeme/{{{Vorherige Seite}}} | Vorherige Seite]]
  • Nächste Seite

# ÜBERBLICK ZUM ERSTEN HAUPTKAPITEL #


Im Buch „Signaldarstellung” wurden Sie mit der mathematischen Beschreibung deterministischer Signale im Zeit- und Frequenzbereich vertraut gemacht.  Das zweite Buch „Lineare zeitvariante Syteme” beschreibt nun, welche Veränderungen ein Signal bzw. dessen Spektrum durch ein Nachrichtensystem erfährt und wie diese Veränderungen mathematisch erfasst werden können.

$\text{Bitte beachten Sie:}$ 

  • Das „System” kann sowohl eine einfache Schaltung als auch ein vollständiges, hochkompliziertes Übertragungssystem mit einer Vielzahl von Komponenten sein.
  • Es wird hier lediglich vorausgesetzt, dass das System die beiden Eigenschaften „linear” und „zeitinvariant” aufweist.


Im ersten Kapitel werden die Grundlagen der so genannten  Systemtheorie  genannt, die eine einheitliche und einfache Beschreibung solcher Systeme erlaubt.  Wir beginnen mit der Systembeschreibung im Frequenzbereich mit den oben aufgeführten Teilaspekten.

Weitere Informationen zum Thema sowie Aufgaben, Simulationen und Programmierübungen finden Sie im

  • Kapitel 6:   Lineare zeitinvariante Systeme (Programm lzi)


des Praktikums „Simulationsmethoden in der Nachrichtentechnik”.  Diese (ehemalige) LNT-Lehrveranstaltung an der TU München basiert auf

  • dem Lehrsoftwarepaket  LNTsim   ⇒   Link verweist auf die ZIP-Version des Programms, und
  • dieser  Praktikumsanleitung   ⇒   Link verweist auf die PDF-Version; Kapitel 6: Seite 99-118.


Das Ursachen-Wirkungs-Prinzip


Einfachstes Systemmodell

Wir betrachten in diesem Kapitel stets das rechts skizzierte einfache Modell.

Diese Anordnung ist wie folgt zu interpretieren:

  • Im Mittelpunkt steht das so genannte  System, das in seiner Funktion weitestgehend abstrahiert ist („Black Box”).  Über die Realisierung des Systems ist nichts Genaues bekannt.
  • Die auf dieses System einwirkende zeitabhängige Eingangsgröße  $x(t)$  bezeichnen wir im Folgenden auch als die  Ursachenfunktion.
  • Am Ausgang des Systems erscheint dann die  Wirkungsfunktion  $y(t)$  – quasi als Antwort des Systems auf die Eingangsfunktion  $x(t)$.


Anmerkung:   Das „System” kann im Allgemeinen von beliebiger Art sein und ist nicht allein auf die Nachrichtentechnik beschränkt.  Vielmehr wird auch in anderen Wissenschaftsgebieten wie zum Beispiel den Naturwissenschaften, der Volks- und Betriebswirtschaft, der Soziologie und der Politologie versucht, Kausalzusammenhänge zwischen verschiedenen Größen durch das Ursachen–Wirkungs–Prinzip zu erfassen und zu beschreiben.

Die für diese phänomenologischen Systemtheorien angewandten Methoden unterscheiden sich aber deutlich von der Vorgehensweise in der Nachrichtentechnik, die in diesem ersten Hauptkapitel des vorliegenden Buches „Lineare zeitinvariante Systeme” dargelegt wird.

Anwendung in der Nachrichtentechnik


Das Ursachen–Wirkungs–Prinzip lässt sich auch in der Nachrichtentechnik anwenden, beispielsweise zur Beschreibung von Zweipolen.  Hier kann man den Stromverlauf  $i(t)$  als Ursachenfunktion und die Spannung  $u(t)$  als Wirkungsfunktion betrachten.  Durch Beobachten der I/U–Beziehungen lassen sich so Rückschlüsse über die Eigenschaften des eigentlich unbekannten Zweipols ziehen.

Karl Küpfmüller   hat den Begriff „Systemtheorie” 1949 erstmals (in Deutschland) eingeführt.  Er versteht darunter eine Methode zur Beschreibung komplexer Kausalzusammenhänge in Naturwissenschaften und Technik, basierend auf einer Spektraltransformation – beispielsweise der im Buch „Signaldarstellung” dargelegten  Fouriertransformation.

Allgemeines Modell der Nachrichtenübertragung

Man kann ein ganzes Nachrichtensystem systemtheoretisch beschreiben.  Hier ist

  • die Ursachenfunktion das Eingangssignal  $x(t)$  bzw. dessen Spektrum  $X(f)$,
  • die Wirkungsfunktion das Ausgangssignal  $y(t)$  oder das Spektrum  $Y(f)$.


Auch in den folgenden Bildern werden die Eingangsgrößen meist blau, die Ausgangsgrößen rot und Systemgrößen grün gezeichnet.

$\text{Beispiel 1:}$  Beschreibt das „Nachrichtensystem” eine vorgegebene lineare Schaltung, so kann bei bekanntem Eingangssignal  $x(t)$  mit Hilfe der Systemtheorie das Ausgangssignal  $y(t)$  vorhergesagt werden.  Eine zweite Aufgabe der Systemtheorie besteht darin, durch Messung von  $y(t)$  bei Kenntnis von  $x(t)$  das Nachrichtensystem zu klassifizieren, ohne dieses im Detail zu kennen.

Beschreibt  $x(t)$  beispielsweise die Stimme eines Anrufers aus Hamburg und  $y(t)$  die Aufzeichnung eines Anrufbeantworters in München, dann besteht das „Nachrichtensystem” aus folgenden Komponenten:

Mikrofon – Telefon – elektrische Leitung – Signalumsetzer – Glasfaserkabel – optischer Verstärker – Signalrücksetzer – Empfangsfilter (zum Beispiel zur Entzerrung und Rauschbegrenzung) –   ...   – elektromagnetischer Wandler.

Voraussetzungen für die Anwendung der Systemtheorie


Das oben angegebene Modell eines Nachrichtensystems gilt allgemein und unabhängig von den Randbedingungen.  Die Anwendung der Systemtheorie erfordert jedoch zusätzlich einige einschränkende Voraussetzungen.

Wenn nicht explizit etwas anderes angegeben ist, soll für das Folgende stets gelten:

  • Sowohl  $x(t)$  als auch  $y(t)$  sind deterministische Signale.  Andernfalls muss man entsprechend der Seite  Stochastische Systemtheorie  im Buch „Stochastische Signaltheorie” vorgehen.
  • Das System ist  linear.  Dies erkennt man zum Beispiel daran, dass eine harmonische Schwingung  $x(t)$  am Eingang auch eine harmonische Schwingung  $y(t)$  gleicher Frequenz am Ausgang zur Folge hat:
$$x(t) = A_x \cdot \cos(\omega_0 \hspace{0.05cm}t - \varphi_x)\hspace{0.2cm}\Rightarrow \hspace{0.2cm} y(t) = A_y \cdot\cos(\omega_0 \hspace{0.05cm}t - \varphi_y).$$
  • Neue Frequenzen entstehen nicht.  Lediglich Amplitude und Phase der harmonischen Schwingung können verändert werden.  Nichtlineare Systeme werden im Kapitel  Nichtlineare Verzerrungen  behandelt.
  • Aufgrund der Linearität ist auch das Superpositionsprinzip anwendbar.  Dieses besagt, dass aus  $x_1(t) ⇒ y_1(t)$  und  $x_2(t) ⇒ y_2(t)$  auch zwingend die folgende Zuordnung gilt:
$$x_1(t) + x_2(t) \hspace{0.1cm}\Rightarrow \hspace{0.1cm} y_1(t) + y_2(t).$$
  • Das System ist  zeitinvariant.  Das bedeutet, dass ein um   $\tau$  verschobenes Eingangssignal das gleiche Ausgangssignal zur Folge hat,  dieses aber ebenfalls um  $\tau$  verzögert ist:
$$x(t - \tau) \hspace{0.1cm}\Rightarrow \hspace{0.1cm} y(t -\tau)\hspace{0.4cm}{\rm falls} \hspace{0.4cm}x(t )\hspace{0.2cm}\Rightarrow \hspace{0.1cm} y(t).$$
Zeitvariante Systeme werden im Buch  Mobile Kommunikation  behandelt.

Sind alle hier aufgeführten Voraussetzungen erfüllt, so spricht man von einem  linearen zeitinvarianten System, abgekürzt  $\rm LZI$–System.  In der englischsprachigen Literatur ist hierfür die Abkürzung  $\rm LTI$  ("linear time–invariant")  gebräuchlich.

Frequenzgang – Systemfunktion – Übertragungsfunktion


Wir setzen ein LZI–System voraus, dessen Eingangs– und Ausgangsspektren  $X(f)$  und  $Y(f)$  bekannt sind oder aus den Zeitsignalen  $x(t)$  und  $y(t)$  durch  Fouriertransformation  berechnet werden können.

Zur Definition des Frequenzgangs

$\text{Definition:}$  Das Übertragungsverhalten eines Nachrichtenübertragungssystems wird im Frequenzbereich durch den  $\text{Frequenzgang}$  beschrieben:

$$H(f) = \frac{Y(f)}{X(f)}= \frac{ {\rm Wirkungsfunktion} }{ {\rm Ursachenfunktion} }.$$

Weitere Bezeichnungen für  $H(f)$  sind „Systemfunktion” und „Übertragungsfunktion”.


Eingangsspektrum,  Ausgangsspektrum  und  Frequenzgang

$\text{Beispiel 2:}$  Am Eingang eines LZI–Systems liegt das Signal  $x(t)$  mit dem reellen Spektrum  $X(f)$  an (blaue Kurve).  Das gemessene Ausgangsspektrum  $Y(f)$  – in der Grafik rot markiert – ist bei Frequenzen kleiner als  $2 \ \rm kHz$  größer als  $X(f)$  und besitzt im Bereich um  $2 \ \rm kHz$  eine steilere Flanke.  Oberhalb von  $2.8 \ \rm kHz$  hat das Signal  $y(t)$  keine Spektralanteile.

  • Die grünen Kreise markieren einige Messpunkte des ebenfalls reellen Frequenzgangs 
$$H(f) = Y(f)/X(f).$$
  • Bei niedrigen Frequenzen ist  $H(f)>1$:  In diesem Bereich wirkt das LZI–System verstärkend.
  • Der Flankenabfall von  $H(f)$  verläuft ähnlich wie der von  $Y(f)$, ist aber nicht identisch.

Eigenschaften des Frequenzgangs


Der Frequenzgang  $H(f)$  ist eine zentrale Größe bei der Beschreibung nachrichtentechnischer Systeme.

Nachfolgend werden einige Eigenschaften dieser wichtigen Systemgröße aufgezählt:

  • Der Frequenzgang beschreibt allein das LZI–System.  Er ist zum Beispiel aus den linearen Bauelementen eines elektrischen Netzwerks  berechenbar.  Bei anderem Eingangssignal  $x(t)$  und dementsprechend anderem Ausgangssignal  $y(t)$  ergibt sich der genau gleiche Frequenzgang  $H(f)$.
  • $H(f)$  kann eine „Einheit” besitzen.  Betrachtet man zum Beispiel bei einem Zweipol den Spannungsverlauf  $u(t)$  als Ursache und den Strom  $i(t)$  als Wirkung, so hat der Frequenzgang  $H(f) = I(f)/U(f)$  die Einheit  $\rm A/V$.  $I(f)$  und  $U(f)$  sind die Fouriertransformierten von  $i(t)$  bzw.  $u(t)$.
  • Im Folgenden betrachten wir ausschließlich  Vierpole.  Zudem setzen wir ohne Einschränkung der Allgemeingültigkeit meist voraus, dass  $x(t)$  und  $y(t)$  jeweils Spannungen seien.  In diesem Fall ist  $H(f)$  stets dimensionslos.
  • Da die Spektren  $X(f)$  und  $Y(f)$  im allgemeinen komplex sind, ist auch der Frequenzgang  $H(f)$  eine komplexe Funktion.  Man nennt den Betrag  $|H(f)|$  den  Amplitudengang.  Dieser wird auch oft in logarithmierter Form dargestellt und als  Dämpfungsverlauf  bezeichnet:
$$a(f) = - \ln |H(f)| = - 20 \cdot \lg |H(f)|.$$
  • Je nachdem, ob die erste Form mit dem natürlichen oder die zweite mit dekadischem Logarithmus verwendet wird, ist die Pseudoeinheit „Neper”  $\rm (Np)$  bzw. „Dezibel”  $\rm (dB)$  hinzuzufügen.
  • Der  Phasengang  ist aus  $H(f)$  in folgender Weise berechenbar:
$$b(f) = - {\rm arc} \hspace{0.1cm}H(f) \hspace{0.2cm}{\rm in\hspace{0.1cm}Radian \hspace{0.1cm}(rad)}.$$

  $\text{Damit kann der gesamte Frequenzgang auch wie folgt dargestellt werden:}$

$$H(f) = \vert H(f)\vert \cdot {\rm e}^{ - {\rm j} \hspace{0.05cm} \cdot\hspace{0.05cm} b(f)} = {\rm e}^{-a(f)}\cdot {\rm e}^{ - {\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} b(f)}.$$

Tiefpass, Hochpass, Bandpass und Bandsperre


Nach dem Amplitudengang  $|H(f)|$  unterscheidet man zwischen

Tiefpass und Hochpass (links) sowie Bandpass (rechts)
  • Tiefpass:  Signalanteile werden mit zunehmender Frequenz in der Tendenz stärker gedämpft.
  • Hochpass:  Hier werden hochfrequente Signalanteile weniger gedämpft als niederfrequente.  Ein Gleichsignal  $($also ein Signalanteil mit der Frequenz  $f = 0)$  kann über einen Hochpass nicht übertragen werden.
  • Bandpass:  Es gibt eine bevorzugte Frequenz   ⇒   „Mittenfrequenz”  $f_{\rm M}$.  Je weiter die Frequenz eines Signalanteils von  $f_{\rm M}$  entfernt ist, um so stärker wird dieser gedämpft.
  • Bandsperre:  Dies ist das Gegenstück zum Bandpass und es gilt  $|H(f_{\rm M})| ≈ 0$.  Sehr niederfrequente und sehr hochfrequente Signalanteile werden dagegen gut durchgelassen.


Die Grafik zeigt links die Amplitudengänge der Filtertypen „Tiefpass”  $\rm (TP)$  und „Hochpass”   $\rm (HP)$  sowie rechts einen„Bandpass”   $\rm (BP)$.

  • Ebenfalls eingezeichnet sind die Grenzfrequenzen  $f_{\rm G}$  (bei Tiefpass und Hochpass) bzw.  $f_{\rm U}$  und  $f_{\rm O}$  (beim Bandpass).
  • Diese bezeichnen hier 3dB–Grenzfrequenzen, zum Beispiel gemäß der folgenden Definition.


$\text{Definition:}$  Die  $\text{3dB–Grenzfrequenz}$  eines Tiefpasses gibt diejenige Frequenz $f_{\rm G}$  an, für die gilt:

$$\vert H(f = f_{\rm G})\vert = {1}/{\sqrt{2} } \cdot \vert H(f = 0)\vert \hspace{0.5cm}\Rightarrow\hspace{0.5cm} \vert H(f = f_{\rm G})\vert^2 = {1}/{2} \cdot \vert H(f = 0) \vert^2.$$


Testsignale zur Messung des Frequenzgangs


Zur messtechnischen Erfassung des Frequenzgangs  $H(f)$  eignet sich jedes beliebige Eingangssignal  $x(t)$  mit Spektrum  $X(f)$, solange  $X(f)$  keine Nullstelle  $($im interessierenden Bereich$)$  aufweist.  Durch Messung des Ausgangsspektrums  $Y(f)$  lässt sich so der Frequenzgang in einfacher Weise ermitteln:

$$H(f) = \frac{Y(f)}{X(f)}.$$

Insbesondere sind folgende Eingangssignale geeignet:

  • Diracimpuls   $x(t) = K · δ(t)$   ⇒   Spektrum $X(f) = K$:
Somit ist der Frequenzgang nach Betrag und Phase formgleich mit dem Ausgangsspektrum  $Y(f)$  und es gilt  $H(f) = 1/K · Y(f)$. 
Approximiert man den Diracimpuls durch ein schmales Rechteck gleicher Fläche  $K$, so muss  $H(f)$  mit Hilfe einer  ${\rm sin}(x)/x$–Funktion korrigiert werden.
  • Diracpuls  –  die unendliche Summe gleichgewichteter Diracimpulse im zeitlichen Abstand  $T_{\rm A}$:
Dieser führt gemäß dem Kapitel  Zeitdiskrete Signaldarstellung  im Buch „Signaldarstellung” zu einem Diracpuls im Frequenzbereich mit Abstand  $f_{\rm A} =1/T_{\rm A}$.  Damit ist eine frequenzdiskrete Messung von  $H(f)$ möglich, mit den spektralen Abtastwerten im Abstand $f_{\rm A}$.
  • Harmonische Schwingung   $x(t) = A_x · \cos (2πf_0t - φ_x)$   ⇒   diracförmiges Spektrum bei  $\pm f_0$:
Das Ausgangssignal  $y(t) = A_y · \cos(2πf_0t - φ_y)$  ist eine Schwingung mit gleicher Frequenz  $f_0$. Der Frequenzgang lautet für  $f_0 \gt 0$:
$$H(f_0) = \frac{Y(f_0)}{X(f_0)} = \frac{A_y}{A_x}\cdot{\rm e}^{\hspace{0.05cm} {\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} (\varphi_x - \varphi_y)}.$$
Zur Ermittlung des gesamten Frequenzgangs  $H(f)$  sind (unendlich) viele Messungen mit verschiedenen Frequenzen  $f_0$  erforderlich.


Aufgaben zum Kapitel


Aufgabe 1.1: Einfache Filterfunktionen

Aufgabe 1.1Z: Tiefpass 1. und 2. Ordnung

Aufgabe 1.2: Koaxialkabel

Aufgabe 1.2Z: Messung der Übertragungsfunktion