Aufgaben:Aufgabe 2.7Z: Huffman-Codierung für Zweiertupel einer Ternärquelle: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(3 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID2458__Inf_Z_2_7.png|right|frame|Huffman–Baum für Ternärquelle]]
+
[[Datei:P_ID2458__Inf_Z_2_7.png|right|frame|Huffman–Baum für <br>eine Ternärquelle]]
Wir betrachten den gleichen Sachverhalt wie in der [[Aufgaben:2.7_Huffman-Anwendung_für_binäre_Zweiertupel|Aufgabe A2.7]]: &nbsp; Der Huffman&ndash;Algorithmus führt zu einem besseren Ergebnis, das heißt zu einer kleineren mittleren Codewortlänge $L_{\rm M}$, wenn man ihn nicht auf einzelne Symbole anwendet, sondern vorher $k$&ndash;Tupel bildet. Dadurch erhöht man den Symbolumfang von $M$ auf $M' = M^k$.
+
Wir betrachten den gleichen Sachverhalt wie in der&nbsp; [[Aufgaben:2.7_Huffman-Anwendung_für_binäre_Zweiertupel|Aufgabe A2.7]]: &nbsp;  
 +
*Der Huffman&ndash;Algorithmus führt zu einem besseren Ergebnis, das heißt zu einer kleineren mittleren Codewortlänge&nbsp; $L_{\rm M}$, wenn man ihn nicht auf einzelne Symbole anwendet, sondern vorher&nbsp; $k$&ndash;Tupel bildet.&nbsp;
 +
*Dadurch erhöht man den Symbolumfang von&nbsp; $M$&nbsp; auf $M\hspace{0.03cm}' = M^k$.
 +
 
  
 
Für die hier betrachtete Nachrichtenquelle gilt:
 
Für die hier betrachtete Nachrichtenquelle gilt:
 
* Symbolumfang: &nbsp; $M = 3$,
 
* Symbolumfang: &nbsp; $M = 3$,
* Symbolvorrat: &nbsp; $\{$ $\rm X$, $\rm Y$, $\rm Z$ $\}$,
+
* Symbolvorrat: &nbsp; $\{$ $\rm X$,&nbsp; $\rm Y$,&nbsp; $\rm Z$ $\}$,
* Wahrscheinlichkeiten: &nbsp;  $p_{\rm X} = 0.7$, $p_{\rm Y} = 0.2$, $p_{\rm Z} = 0.1$,
+
* Wahrscheinlichkeiten: &nbsp;  $p_{\rm X} = 0.7$,&nbsp; $p_{\rm Y} = 0.2$,&nbsp; $p_{\rm Z} = 0.1$,
 
* Entropie: &nbsp; $H = 1.157 \ \rm  bit/Ternärsymbol$.
 
* Entropie: &nbsp; $H = 1.157 \ \rm  bit/Ternärsymbol$.
  
  
Die Grafik zeigt den Huffman&ndash;Baum, wenn man den Huffman&ndash;Algorithmus auf Einzelsymbole anwendet, also den Fall $k= 1$. In der Teilaufgabe '''(2)''' sollen Sie den entsprechenden Huffman&ndash;Code angeben, wenn vorher Zweiertupel gebildet werden $(k=2)$.
+
Die Grafik zeigt den Huffman&ndash;Baum, wenn man den Huffman&ndash;Algorithmus auf Einzelsymbole anwendet, also den Fall&nbsp; $k= 1$. <br>In der Teilaufgabe&nbsp; '''(2)'''&nbsp; sollen Sie den entsprechenden Huffman&ndash;Code angeben, wenn vorher Zweiertupel gebildet werden&nbsp; $(k=2)$.
 +
 
 +
 
 +
 
  
  
Zeile 20: Zeile 26:
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum  Kapitel [[Informationstheorie/Entropiecodierung_nach_Huffman|Entropiecodierung nach Huffman]].
+
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Informationstheorie/Entropiecodierung_nach_Huffman|Entropiecodierung nach Huffman]].
*Insbesondere wird auf die Seite [[Informationstheorie/Entropiecodierung_nach_Huffman#Anwendung_der_Huffman.E2.80.93Codierung_auf_.7F.27.22.60UNIQ-MathJax153-QINU.60.22.27.7F.E2.80.93Tupel|Anwendung der Huffman-Codierung auf k-Tupel]] Bezug genommen.
+
*Insbesondere wird auf die Seite&nbsp; [[Informationstheorie/Entropiecodierung_nach_Huffman#Anwendung_der_Huffman.E2.80.93Codierung_auf_.7F.27.22.60UNIQ-MathJax169-QINU.60.22.27.7F.E2.80.93Tupel|Anwendung der Huffman-Codierung auf&nbsp; $k$-Tupel]]&nbsp; Bezug genommen.
*Eine vergleichbare Aufgabenstellung mit binären Eingangssymbolen wird in der  [[Aufgaben:2.7_Huffman-Anwendung_für_binäre_Zweiertupel|Aufgabe 2.7]] behandelt.
+
*Eine vergleichbare Aufgabenstellung mit binären Eingangssymbolen wird in der&nbsp;   [[Aufgaben:2.7_Huffman-Anwendung_für_binäre_Zweiertupel|Aufgabe 2.7]]&nbsp; behandelt.
*Bezeichnen Sie die möglichen Zweiertupel mit &nbsp; &nbsp; $\rm XX = A$,&nbsp;&nbsp;$\rm XY = B$,&nbsp;&nbsp;$\rm XZ = C$,&nbsp;&nbsp; $\rm YX = D$,&nbsp;&nbsp;$\rm YY = E$,&nbsp;&nbsp;$\rm YZ = F$,&nbsp;&nbsp;$\rm ZX = G$,&nbsp;&nbsp;$\rm ZY = H$,&nbsp;&nbsp;$\rm ZZ = I$.
+
*Bezeichnen Sie die möglichen Zweiertupel mit &nbsp; &nbsp; $\rm XX = A$,&nbsp; &nbsp;$\rm XY = B$,&nbsp; &nbsp;$\rm XZ = C$,&nbsp;&nbsp; $\rm YX = D$,&nbsp; &nbsp;$\rm YY = E$,&nbsp; &nbsp;$\rm YZ = F$,&nbsp; &nbsp;$\rm ZX = G$,&nbsp; &nbsp;$\rm ZY = H$,&nbsp; &nbsp;$\rm ZZ = I$.
 
   
 
   
  
Zeile 30: Zeile 36:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß ist die mittlere Codewortlänge, wenn der Huffman&ndash;Algorithmus direkt auf die ternären Quellensymbole $\rm X$, $\rm Y$ und $\rm Z$ angewendet wird?  
+
{Wie groß ist die mittlere Codewortlänge, wenn der Huffman&ndash;Algorithmus direkt auf die ternären Quellensymbole&nbsp; $\rm X$,&nbsp; $\rm Y$&nbsp; und&nbsp; $\rm Z$&nbsp; angewendet wird?  
 
|type="{}"}
 
|type="{}"}
 
$\underline{k=1}\text{:} \hspace{0.25cm}L_{\rm M} \ = \ $ { 1.3 3% } $\ \rm bit/Quellensymbol$
 
$\underline{k=1}\text{:} \hspace{0.25cm}L_{\rm M} \ = \ $ { 1.3 3% } $\ \rm bit/Quellensymbol$
  
  
{Wie groß sind die Tupel&ndash;Wahrscheinlichkeiten? Insbesondere:
+
{Wie groß sind hier die Tupel&ndash;Wahrscheinlichkeiten? Insbesondere:
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm A} = \rm Pr(XX)\ = \ $ { 0.49 3% }
 
$p_{\rm A} = \rm Pr(XX)\ = \ $ { 0.49 3% }
Zeile 47: Zeile 53:
  
  
{Welche der folgenden Aussagen sind zutreffend, wenn man mehr als zwei Ternärzeichen zusammenfasst ($k>2$)?
+
{Welche der folgenden Aussagen sind zutreffend, wenn man mehr als zwei Ternärzeichen zusammenfasst&nbsp; $(k>2)$?
 
|type="[]"}
 
|type="[]"}
 
+ $L_{\rm M}$&nbsp; fällt monoton mit steigendem &nbsp;$k$&nbsp; ab.
 
+ $L_{\rm M}$&nbsp; fällt monoton mit steigendem &nbsp;$k$&nbsp; ab.
Zeile 61: Zeile 67:
 
'''(1)'''&nbsp; Die mittlere Codewortlänge ergibt sich mit &nbsp;$p_{\rm X} = 0.7$, &nbsp;$L_{\rm X} = 1$, &nbsp;$p_{\rm Y} = 0.2$, &nbsp;$L_{\rm Y} = 2$, &nbsp;$p_{\rm Z} = 0.1$, &nbsp;$L_{\rm Z} = 2$ zu
 
'''(1)'''&nbsp; Die mittlere Codewortlänge ergibt sich mit &nbsp;$p_{\rm X} = 0.7$, &nbsp;$L_{\rm X} = 1$, &nbsp;$p_{\rm Y} = 0.2$, &nbsp;$L_{\rm Y} = 2$, &nbsp;$p_{\rm Z} = 0.1$, &nbsp;$L_{\rm Z} = 2$ zu
 
:$$L_{\rm M} = p_{\rm X} \cdot 1 + (p_{\rm Y} + p_{\rm Z}) \cdot 2 \hspace{0.15cm}\underline{= 1.3\,\,{\rm bit/Quellensymbol}}\hspace{0.05cm}. $$
 
:$$L_{\rm M} = p_{\rm X} \cdot 1 + (p_{\rm Y} + p_{\rm Z}) \cdot 2 \hspace{0.15cm}\underline{= 1.3\,\,{\rm bit/Quellensymbol}}\hspace{0.05cm}. $$
Dieser Wert liegt noch deutlich über der Quellenentropie $H = 1.157$ bit/Quellensymbol.
+
*Dieser Wert liegt noch deutlich über der Quellenentropie&nbsp; $H = 1.157$&nbsp; bit/Quellensymbol.
  
  
'''(2)'''&nbsp; Es gibt $M' = M^k = 3^2$ = 9 Zweiertupel mit folgenden Wahrscheinlichkeiten:
+
 
 +
'''(2)'''&nbsp; Es gibt&nbsp; $M\hspace{0.03cm}' = M^k = 3^2 = 9$&nbsp; Zweiertupel mit folgenden Wahrscheinlichkeiten:
  
 
[[Datei:P_ID2459__Inf_Z_2_7c.png|right|frame|Huffman–Baum für Ternärquelle und Zweiertupel]]
 
[[Datei:P_ID2459__Inf_Z_2_7c.png|right|frame|Huffman–Baum für Ternärquelle und Zweiertupel]]
Zeile 76: Zeile 83:
 
:$$p_{\rm H} = \rm Pr(ZY) = 0.1 \cdot 0.2 = 0.02,$$
 
:$$p_{\rm H} = \rm Pr(ZY) = 0.1 \cdot 0.2 = 0.02,$$
 
:$$p_{\rm I} = \rm Pr(ZZ) = 0.1 \cdot 0.1 = 0.01.$$
 
:$$p_{\rm I} = \rm Pr(ZZ) = 0.1 \cdot 0.1 = 0.01.$$
 +
<br clear=all>
  
 
+
'''(3)'''&nbsp; Die Grafik zeigt den Huffman&ndash;Baum für die Anwendung mit $k = 2$.&nbsp; Damit erhält man
'''(3)'''&nbsp; Die Grafik zeigt den Huffman&ndash;Baum für die Anwendung mit $k = 2$.
 
 
 
Damit erhält man
 
 
* für die einzelnen Zweiertupels folgende Binärcodierungen: <br>
 
* für die einzelnen Zweiertupels folgende Binärcodierungen: <br>
 
: &nbsp; &nbsp;  $\rm XX = A$ &nbsp; &#8594; &nbsp; '''0''', &nbsp; &nbsp;  $\rm XY = B$ &nbsp; &#8594; &nbsp; '''111''', &nbsp; &nbsp;  $\rm XZ = C$ &nbsp; &#8594; &nbsp; <b>1011</b>,  
 
: &nbsp; &nbsp;  $\rm XX = A$ &nbsp; &#8594; &nbsp; '''0''', &nbsp; &nbsp;  $\rm XY = B$ &nbsp; &#8594; &nbsp; '''111''', &nbsp; &nbsp;  $\rm XZ = C$ &nbsp; &#8594; &nbsp; <b>1011</b>,  
 
: &nbsp; &nbsp;  $\rm YX = D$ &nbsp; &#8594; &nbsp; <b>110</b>, &nbsp; &nbsp;  $\rm YY = E$ &nbsp; &#8594; &nbsp; <b>1000</b>, &nbsp; &nbsp;  $\rm YZ = F$ &nbsp; &#8594; &nbsp; <b>10010</b>,
 
: &nbsp; &nbsp;  $\rm YX = D$ &nbsp; &#8594; &nbsp; <b>110</b>, &nbsp; &nbsp;  $\rm YY = E$ &nbsp; &#8594; &nbsp; <b>1000</b>, &nbsp; &nbsp;  $\rm YZ = F$ &nbsp; &#8594; &nbsp; <b>10010</b>,
: &nbsp; &nbsp;  $\rm ZX = G$ &nbsp; &#8594; &nbsp; <b>1010</b>, &nbsp; &nbsp;  $\rm ZY = H$ &nbsp; &#8594; &nbsp; <b>100111</b>, &nbsp; &nbsp;  $\rm ZZ =I$ &nbsp; &#8594; &nbsp; <b>100110</b>.    
+
: &nbsp; &nbsp;  $\rm ZX = G$ &nbsp; &#8594; &nbsp; <b>1010</b>, &nbsp; &nbsp;  $\rm ZY = H$ &nbsp; &#8594; &nbsp; <b>100111</b>, &nbsp; &nbsp;  $\rm ZZ =I$ &nbsp; &#8594; &nbsp; <b>100110</b>;    
  
 
* für die mittlere Codewortlänge:
 
* für die mittlere Codewortlänge:
Zeile 91: Zeile 96:
  
  
'''(4)'''&nbsp; Richtig ist die <u>Aussage 1</u>, auch wenn $L_{\rm M}$ mit wachsendem $k$ nur sehr langsam abfällt.
+
'''(4)'''&nbsp; Richtig ist die <u>Aussage 1</u>, auch wenn&nbsp; $L_{\rm M}$&nbsp; mit wachsendem&nbsp; $k$&nbsp; nur sehr langsam abfällt.
* Die letzte Aussage ist falsch, da $L_{\rm M}$ auch für $k &#8594; &#8734;$ nicht kleiner sein kann als $H = 1.157$ bit/Quellensymbol.
+
* Die letzte Aussage ist falsch, da&nbsp; $L_{\rm M}$&nbsp; auch für&nbsp; $k &#8594; &#8734;$&nbsp; nicht kleiner sein kann als&nbsp; $H = 1.157$&nbsp; bit/Quellensymbol.
* Aber auch die zweite Aussage ist nicht unbedingt richtig: &nbsp; Da mit $k = 2$ weiterhin $L_{\rm M} > H$ gilt, kann $k = 3$ zu einer weiteren Verbesserung führen.
+
* Aber auch die zweite Aussage ist nicht unbedingt richtig: &nbsp; Da mit&nbsp; $k = 2$&nbsp; weiterhin&nbsp; $L_{\rm M} > H$&nbsp; gilt, kann&nbsp; $k = 3$&nbsp; zu einer weiteren Verbesserung führen.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Aktuelle Version vom 11. August 2021, 10:49 Uhr

Huffman–Baum für
eine Ternärquelle

Wir betrachten den gleichen Sachverhalt wie in der  Aufgabe A2.7:  

  • Der Huffman–Algorithmus führt zu einem besseren Ergebnis, das heißt zu einer kleineren mittleren Codewortlänge  $L_{\rm M}$, wenn man ihn nicht auf einzelne Symbole anwendet, sondern vorher  $k$–Tupel bildet. 
  • Dadurch erhöht man den Symbolumfang von  $M$  auf $M\hspace{0.03cm}' = M^k$.


Für die hier betrachtete Nachrichtenquelle gilt:

  • Symbolumfang:   $M = 3$,
  • Symbolvorrat:   $\{$ $\rm X$,  $\rm Y$,  $\rm Z$ $\}$,
  • Wahrscheinlichkeiten:   $p_{\rm X} = 0.7$,  $p_{\rm Y} = 0.2$,  $p_{\rm Z} = 0.1$,
  • Entropie:   $H = 1.157 \ \rm bit/Ternärsymbol$.


Die Grafik zeigt den Huffman–Baum, wenn man den Huffman–Algorithmus auf Einzelsymbole anwendet, also den Fall  $k= 1$.
In der Teilaufgabe  (2)  sollen Sie den entsprechenden Huffman–Code angeben, wenn vorher Zweiertupel gebildet werden  $(k=2)$.





Hinweise:

  • Die Aufgabe gehört zum Kapitel  Entropiecodierung nach Huffman.
  • Insbesondere wird auf die Seite  Anwendung der Huffman-Codierung auf  $k$-Tupel  Bezug genommen.
  • Eine vergleichbare Aufgabenstellung mit binären Eingangssymbolen wird in der  Aufgabe 2.7  behandelt.
  • Bezeichnen Sie die möglichen Zweiertupel mit     $\rm XX = A$,   $\rm XY = B$,   $\rm XZ = C$,   $\rm YX = D$,   $\rm YY = E$,   $\rm YZ = F$,   $\rm ZX = G$,   $\rm ZY = H$,   $\rm ZZ = I$.


Fragebogen

1

Wie groß ist die mittlere Codewortlänge, wenn der Huffman–Algorithmus direkt auf die ternären Quellensymbole  $\rm X$,  $\rm Y$  und  $\rm Z$  angewendet wird?

$\underline{k=1}\text{:} \hspace{0.25cm}L_{\rm M} \ = \ $

$\ \rm bit/Quellensymbol$

2

Wie groß sind hier die Tupel–Wahrscheinlichkeiten? Insbesondere:

$p_{\rm A} = \rm Pr(XX)\ = \ $

$p_{\rm B} = \rm Pr(XY)\ = \ $

$p_{\rm C} = \rm Pr(XZ)\ = \ $

3

Wie groß ist die mittlere Codewortlänge, wenn man zuerst Zweiertupel bildet und darauf den Huffman–Algorithmus anwendet?

$\underline{k=2}\text{:} \hspace{0.25cm}L_{\rm M} \ = \ $

$\ \rm bit/Quellensymbol$

4

Welche der folgenden Aussagen sind zutreffend, wenn man mehr als zwei Ternärzeichen zusammenfasst  $(k>2)$?

$L_{\rm M}$  fällt monoton mit steigendem  $k$  ab.
$L_{\rm M}$  ändert sich nicht, wenn man  $k$  erhöht.
Für  $k= 3$  erhält man  $L_{\rm M} = 1.05 \ \rm bit/Quellensymbol$.


Musterlösung

(1)  Die mittlere Codewortlänge ergibt sich mit  $p_{\rm X} = 0.7$,  $L_{\rm X} = 1$,  $p_{\rm Y} = 0.2$,  $L_{\rm Y} = 2$,  $p_{\rm Z} = 0.1$,  $L_{\rm Z} = 2$ zu

$$L_{\rm M} = p_{\rm X} \cdot 1 + (p_{\rm Y} + p_{\rm Z}) \cdot 2 \hspace{0.15cm}\underline{= 1.3\,\,{\rm bit/Quellensymbol}}\hspace{0.05cm}. $$
  • Dieser Wert liegt noch deutlich über der Quellenentropie  $H = 1.157$  bit/Quellensymbol.


(2)  Es gibt  $M\hspace{0.03cm}' = M^k = 3^2 = 9$  Zweiertupel mit folgenden Wahrscheinlichkeiten:

Huffman–Baum für Ternärquelle und Zweiertupel
$$p_{\rm A} = \rm Pr(XX) = 0.7 \cdot 0.7\hspace{0.15cm}\underline{= 0.49},$$
$$p_{\rm B} = \rm Pr(XY) = 0.7 \cdot 0.2\hspace{0.15cm}\underline{= 0.14},$$
$$p_{\rm C} = \rm Pr(XZ) = 0.7 \cdot 0.1\hspace{0.15cm}\underline{= 0.07},$$
$$p_{\rm D} = \rm Pr(YX) = 0.2 \cdot 0.7 = 0.14,$$
$$p_{\rm E} = \rm Pr(YY) = 0.2 \cdot 0.2 = 0.04,$$
$$p_{\rm F} = \rm Pr(YZ) = 0.2 \cdot 0.1 = 0.02,$$
$$p_{\rm G} = \rm Pr(ZX) = 0.1 \cdot 0.7 = 0.07,$$
$$p_{\rm H} = \rm Pr(ZY) = 0.1 \cdot 0.2 = 0.02,$$
$$p_{\rm I} = \rm Pr(ZZ) = 0.1 \cdot 0.1 = 0.01.$$


(3)  Die Grafik zeigt den Huffman–Baum für die Anwendung mit $k = 2$.  Damit erhält man

  • für die einzelnen Zweiertupels folgende Binärcodierungen:
    $\rm XX = A$   →   0,     $\rm XY = B$   →   111,     $\rm XZ = C$   →   1011,
    $\rm YX = D$   →   110,     $\rm YY = E$   →   1000,     $\rm YZ = F$   →   10010,
    $\rm ZX = G$   →   1010,     $\rm ZY = H$   →   100111,     $\rm ZZ =I$   →   100110;
  • für die mittlere Codewortlänge:
$$L_{\rm M}\hspace{0.01cm}' =0.49 \cdot 1 + (0.14 + 0.14) \cdot 3 + (0.07 + 0.04 + 0.07) \cdot 4 + 0.02 \cdot 5 + (0.02 + 0.01) \cdot 6 = 2.33\,\,{\rm bit/Zweiertupel}$$
$$\Rightarrow\hspace{0.3cm}L_{\rm M} = {L_{\rm M}\hspace{0.01cm}'}/{2}\hspace{0.15cm}\underline{ = 1.165\,\,{\rm bit/Quellensymbol}}\hspace{0.05cm}.$$


(4)  Richtig ist die Aussage 1, auch wenn  $L_{\rm M}$  mit wachsendem  $k$  nur sehr langsam abfällt.

  • Die letzte Aussage ist falsch, da  $L_{\rm M}$  auch für  $k → ∞$  nicht kleiner sein kann als  $H = 1.157$  bit/Quellensymbol.
  • Aber auch die zweite Aussage ist nicht unbedingt richtig:   Da mit  $k = 2$  weiterhin  $L_{\rm M} > H$  gilt, kann  $k = 3$  zu einer weiteren Verbesserung führen.