Aufgaben:Aufgabe 1.7: Nahezu kausaler Gaußtiefpass: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
Zeile 108: Zeile 108:
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^1.3 Einige systemtheoretische Tiefpassfunktionen^]]
+
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^1.3 Systemtheoretische Tiefpassfunktionen^]]

Aktuelle Version vom 9. September 2021, 17:43 Uhr

Impulsantwort eines nahezu kausalen Gaußtiefpasses

Messungen haben ergeben, dass ein LZI–System mit guter Näherung durch einen Gaußtiefpass angenähert werden kann, wenn man eine zusätzliche Laufzeit  $τ$  berücksichtigt. Somit lautet der Frequenzgang:

$$H(f) = {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}(f/\Delta f)^2} \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi f \tau}.$$

Die beiden Systemparameter,

  • die äquivalente Impulsdauer  $Δt = 1/Δf$  und
  • die Verzögerungszeit  $τ$,


können der in der Grafik dargestellten Impulsantwort  $h(t)$  entnommen werden.

  • Es ist offensichtlich, dass dieses Modell nicht exakt der (kausalen) Wirklichkeit entspricht, da die Impulsantwort  $h(t)$  auch für  $t < 0$  nicht vollkommen verschwindet.
  • In der Teilaufgabe  (3)  wird deshalb nach dem maximalen relativen Fehler gefragt, der wie folgt definiert ist:
$$\varepsilon_{\rm max} = \frac{\max_{t \hspace{0.02cm}< \hspace{0.1cm}0}|h(t)|}{h(t = \tau)}.$$

In Worten:   Der maximale relative Fehler  $ε_{\rm max}$  ist gleich dem Maximalwert der Impulsantwort  $h(t)$  bei negativen Zeiten, bezogen auf den maximalen Wert  $h(t = τ)$  der Impulsantwort.




Hinweise:

  • Bezug genommen wird insbesondere auf die Seite  Gaußtiefpass.
  • Zur Berechnung von Sprung– und Rechteckantwort können Sie das Gaußsche Fehlerintegral verwenden:
$${\rm \phi}(x) = \frac{1}{\sqrt{2 \pi }} \cdot \int_{ -\infty }^{ x } {{\rm e}^{-u^2/2}} \hspace{0.1cm}{\rm d}u.$$
Einige Werte der Gaußschen Fehlerfunktion




Fragebogen

1

Wie groß sind die äquivalente Bandbreite  $\Delta f $  und die Laufzeit  $\tau $?

$\Delta f \ = \ $

$\ \rm MHz$
$\tau \ = \ $

$\ \rm ns$

2

Es gelte  $x(t) = 1 \hspace{0.05cm}{\rm V} · \cos(2π · 6\ {\rm MHz }· t)$.  Wie lautet das Ausgangssignal  $y(t)$?  Welcher Signalwert ergibt sich zur Zeit  $t = 0$?

$y(t = 0) \ = \ $

$\ \rm V$

3

Eigentlich sollte bei Kausalität  $h(t < 0) = 0$  gelten.  Wie groß ist der maximale relative Fehler  $\varepsilon_{\rm max}$  des betrachteten Modells?
Definition von  $\varepsilon_{\rm max}$ siehe Angabenseite.

$\varepsilon_{\rm max} \ = \ $

$\ \cdot 10^{-6}$

4

Berechnen Sie die (dimensionslose) Sprungantwort  $σ(t)$.  Welche Werte ergeben sich zu den Zeiten  $t = 250 \hspace{0.05cm} \rm ns$  und  $t = 300 \hspace{0.05cm} \rm ns$?

$σ(t = 250\hspace{0.05cm} \rm ns)\ = \ $

$σ(t = 300\hspace{0.05cm} \rm ns) \ = \ $


Musterlösung

(1)  Die äquivalente Bandbreite  $Δf$  ist gleich  $h(t = τ) \hspace{0.05cm} \rm \underline{= \ 8 \ MHz}$.

  • Dies ist gleichzeitig der Kehrwert der äquivalenten Impulsdauer  $Δt = 125 \ \rm ns$.
  • Auch die Phasenlaufzeit  $τ \hspace{0.15cm} \rm \underline{= \ 250 \ \rm ns}$  kann direkt aus der Grafik abgelesen werden.


(2)  Ohne Berücksichtigung der Laufzeit ergäbe sich ein Cosinussignal mit der Amplitude

$$A_y = 1\,{\rm V} \cdot {\rm e}^{-\pi({ {6\,\rm MHz} }/{ {8\,\rm MHz} })^2}= 0.171\,{\rm V}.$$
  • Die Laufzeit bewirkt eine Phasenverschiebung um  $3π$:
$$ y(t) = A_y \cdot {\rm cos}(2\pi f_0 ( t - \tau) ) = A_y \cdot {\rm cos}(2\pi f_0 t - 2\pi \cdot {6\,\rm MHz}\cdot {250\,\rm ns} ) = A_y \cdot {\rm cos}(2\pi f_0 t - 3\pi ) = -A_y \cdot {\rm cos}(2\pi f_0 t ).$$
  • Der gesuchte Wert ist somit  $y(t = 0) \hspace{0.05cm} \rm \underline{= \ –0.171 \ V}$.


(3)  Die Impulsantwort lautet:

$$h(t) = h_{\rm GTP}(t - \tau) =\Delta f \cdot {\rm e}^{-\pi(\frac{t - \tau}{\Delta t})^2} .$$
  • Da  $h(t)$  im Bereich  $t < 0$  stetig zunimmt, tritt der Maximalwert (bei negativen Zeiten) etwa bei  $t = 0$  auf:
$$h(t = 0) = \Delta f \cdot {\rm e}^{-\pi(\frac{ \tau}{\Delta t})^2}= \Delta f \cdot {\rm e}^{-4\pi} .$$
  • Mit  $h(t = τ) = Δf$ erhält man so:
$$\varepsilon_{\rm max}= {\rm e}^{-4\pi}\hspace{0.15cm}\underline{ \approx 3.49} \cdot 10^{-6} .$$


(4)  Wir lassen vorerst die Phasenlaufzeit  $τ$  des zweiten Systems außer Betracht und berechnen die Sprungantwort des Gaußtiefpasses:

$$\sigma_{\rm GTP}(t) = \frac{1}{\Delta t} \cdot \int_{ -\infty }^{ t } {{\rm e}^{-\pi \left({t\hspace{0.05cm}'}/{\Delta t}\right)^2}} \hspace{0.1cm}{\rm d}t'.$$
  • Nach der Substitution  $u = t\hspace{0.05cm}' \cdot {\sqrt{2\pi}}/{\Delta t}$  ergibt sich mit dem Gaußschen Fehlerintegral  $ϕ(x)$:
$$\sigma_{\rm GTP}(t) = \frac{1}{\sqrt{2 \pi } } \cdot \int_{ -\infty }^{ \sqrt{2\pi}\cdot\hspace{0.05cm} t / \Delta t } { {\rm e}^{-u^2/2} } \hspace{0.1cm}{\rm d}u = {\rm \phi}(\sqrt{2\pi}\cdot \frac{t}{\Delta t }),\hspace{1cm} {\rm \phi}(x) = \frac{1}{\sqrt{2 \pi }} \cdot \int_{ -\infty }^{ x } {{\rm e}^{-u^2/2}} \hspace{0.1cm}{\rm d}u.$$
  • Unter Berücksichtigung der Laufzeit  $τ$  erhält man somit für die gesamte Sprungantwort:
$$\sigma(t) = \sigma_{\rm GTP}(t - \tau) = {\rm \phi}(\sqrt{2\pi}\cdot \frac{t - \tau}{\Delta t }).$$
  • Der Wert bei  $t = τ = 250 \ \rm ns$  ist
$$\sigma(t = {250\,\rm ns}) = \sigma_{\rm GTP}(t = 0) =\ \rm \underline{ϕ(0) \ = \ 0.500}.$$
  • Entsprechend erhält man für  $t = τ = 300 \ \rm ns$:
$$\sigma(t = {300\,\rm ns}) = \sigma_{\rm GTP}(t = {50\,\rm ns}) = {\rm \phi}(\sqrt{2\pi}\cdot \frac{ {50\,\rm ns} }{ {125\,\rm ns} })\approx {\rm \phi}(1)\hspace{0.15cm}\underline{ = 0.841}.$$