Aufgaben:Aufgabe 3.10Z: BSC–Kanalkapazität: Unterschied zwischen den Versionen
(3 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 4: | Zeile 4: | ||
[[Datei:P_ID2789__Inf_Z_3_9.png|right|frame|Entropien der Modelle „BC” und „BSC”]] | [[Datei:P_ID2789__Inf_Z_3_9.png|right|frame|Entropien der Modelle „BC” und „BSC”]] | ||
− | Die Kanalkapazität $C$ wurde von [https:// | + | Die Kanalkapazität $C$ wurde von [https://de.wikipedia.org/wiki/Claude_Shannon Claude E. Shannon] als die maximale Transinformation definiert, wobei sich die Maximierung allein auf die Quellenstatistik bezieht: |
− | :$$ C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) \hspace{0.05cm}$$ | + | :$$ C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) \hspace{0.05cm}.$$ |
Beim Binärkanal mit der Wahrscheinlichkeitsfunktion $P_X(X) = \big [p_0, \ p_1 \big]$ ist nur ein Parameter optimierbar, beispielsweise $p_0$. Die Wahrscheinlichkeit für eine $1$ ist damit ebenfalls festgelegt: $p_1 = 1 - p_0.$ | Beim Binärkanal mit der Wahrscheinlichkeitsfunktion $P_X(X) = \big [p_0, \ p_1 \big]$ ist nur ein Parameter optimierbar, beispielsweise $p_0$. Die Wahrscheinlichkeit für eine $1$ ist damit ebenfalls festgelegt: $p_1 = 1 - p_0.$ | ||
Zeile 66: | Zeile 66: | ||
:$$H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = p_0 \cdot (1 - \varepsilon) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1 - \varepsilon} + p_0 \cdot \varepsilon \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{\varepsilon} +p_1 \cdot \varepsilon \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{\varepsilon} + p_1 \cdot (1 - \varepsilon) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1 - \varepsilon} $$ | :$$H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = p_0 \cdot (1 - \varepsilon) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1 - \varepsilon} + p_0 \cdot \varepsilon \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{\varepsilon} +p_1 \cdot \varepsilon \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{\varepsilon} + p_1 \cdot (1 - \varepsilon) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1 - \varepsilon} $$ | ||
:$$\Rightarrow \hspace{0.3cm} H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = (p_0 + p_1) \cdot \left [ \varepsilon \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{\varepsilon} + (1 - \varepsilon) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1 - \varepsilon} \right ] \hspace{0.05cm}.$$ | :$$\Rightarrow \hspace{0.3cm} H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = (p_0 + p_1) \cdot \left [ \varepsilon \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{\varepsilon} + (1 - \varepsilon) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1 - \varepsilon} \right ] \hspace{0.05cm}.$$ | ||
− | *Mit $p_0 + p_1 = 1$ und der binären Entropiefunktion $H_{\rm bin}$ erhält man das vorgeschlagene Ergebnis: $H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = H_{\rm bin}(\varepsilon)\hspace{0.05cm}.$ | + | *Mit $p_0 + p_1 = 1$ und der binären Entropiefunktion ⇒ $H_{\rm bin}$ erhält man das vorgeschlagene Ergebnis: $H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = H_{\rm bin}(\varepsilon)\hspace{0.05cm}.$ |
− | *Für $ε = 0.1$ ergibt sich $H(Y|X) = 0.4690 \ \rm bit$. Der gleiche Wert steht für | + | *Für $ε = 0.1$ ergibt sich $H(Y|X) = 0.4690 \ \rm bit$. Der gleiche Wert steht für $p_0=0.50$ in der vorgegebenen Tabelle. |
*Aus der Tabelle erkennt man auch, dass beim BSC–Modell (blaue Hinterlegung) wie auch beim allgemeineren (unsymmetrischen) BC–Modell (rote Hinterlegung) die Äquivokation $H(X|Y)$ von den Quellensymbolwahrscheinlichkeiten $p_0$ und $p_1$ abhängen. Daraus folgt, dass der Lösungsvorschlag 1 nicht richtig sein kann. | *Aus der Tabelle erkennt man auch, dass beim BSC–Modell (blaue Hinterlegung) wie auch beim allgemeineren (unsymmetrischen) BC–Modell (rote Hinterlegung) die Äquivokation $H(X|Y)$ von den Quellensymbolwahrscheinlichkeiten $p_0$ und $p_1$ abhängen. Daraus folgt, dass der Lösungsvorschlag 1 nicht richtig sein kann. | ||
− | *Die Irrelevanz $H(Y|X)$ | + | *Die Irrelevanz $H(Y|X)$ ist unabhängig von der Quellenstatistik, so dass auch der Lösungsvorschlag 3 ausgeschlossen werden kann. |
Zeile 92: | Zeile 92: | ||
* für $ε = 0.1$ (bisher betrachtet): <br> $C = 0.531\ \rm (bit)$ ⇒ Punkt mit grüner Füllung, | * für $ε = 0.1$ (bisher betrachtet): <br> $C = 0.531\ \rm (bit)$ ⇒ Punkt mit grüner Füllung, | ||
* für $ε = 0.5$ (vollkommen gestört): <br> $C = 0\ \rm (bit)$ ⇒ Punkt mit grauer Füllung. | * für $ε = 0.5$ (vollkommen gestört): <br> $C = 0\ \rm (bit)$ ⇒ Punkt mit grauer Füllung. | ||
+ | |||
Aktuelle Version vom 22. September 2021, 11:34 Uhr
Die Kanalkapazität $C$ wurde von Claude E. Shannon als die maximale Transinformation definiert, wobei sich die Maximierung allein auf die Quellenstatistik bezieht:
- $$ C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) \hspace{0.05cm}.$$
Beim Binärkanal mit der Wahrscheinlichkeitsfunktion $P_X(X) = \big [p_0, \ p_1 \big]$ ist nur ein Parameter optimierbar, beispielsweise $p_0$. Die Wahrscheinlichkeit für eine $1$ ist damit ebenfalls festgelegt: $p_1 = 1 - p_0.$
Die obere Grafik (rötlich hinterlegt) fasst die Ergebnisse für den unsymmetrischen Binärkanal mit $ε_0 = 0.01$ und $ε_1 = 0.2$ zusammen, der auch im Theorieteil betrachtet wurde.
Die Maximierung führt zum Ergebnis $p_0 = 0.55$ ⇒ $p_1 = 0.45$, und man erhält für die Kanalkapazität:
- $$C_{\rm BC} = \hspace{-0.05cm} \max_{P_X(X)} \hspace{0.1cm} I(X;Y) \big |_{p_0 \hspace{0.05cm} = \hspace{0.05cm}0.55} \hspace{0.05cm}=\hspace{0.05cm} 0.5779\,{\rm bit} \hspace{0.05cm}.$$
In der unteren Grafik (blaue Hinterlegung) sind die gleichen informationstheoretischen Größen für den symmetrischen Kanal ⇒ Binary Symmetric Channel (BSC) mit den Verfälschungswahrscheinlichkeiten $ε_0 = ε_1 = ε = 0.1$ angegeben, der auch für die Aufgabe 3.10 vorausgesetzt wurde.
In der vorliegenden Aufgabe sollen Sie für das BSC–Kanalmodell $($zunächst für $ε = 0.1)$
- die Entropien $H(X)$, $H(Y)$, $H(X|Y)$ und $H(Y|X)$ analysieren,
- den Quellenparameter $p_0$ hinsichtlich maximaler Transinformation $I(X; Y)$ optimieren,
- somit die Kanalkapazität $C(ε)$ bestimmen, sowie
- durch Verallgemeinerung eine geschlossene Gleichung für $C(ε)$ angeben.
Hinweise:
- Die Aufgabe gehört zum Kapitel Anwendung auf die Digitalsignalübertragung.
- Bezug genommen wird insbesondere auf die Seite Kanalkapazität eines Binärkanals.
Fragebogen
Musterlösung
- $$H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = p_0 \cdot (1 - \varepsilon) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1 - \varepsilon} + p_0 \cdot \varepsilon \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{\varepsilon} +p_1 \cdot \varepsilon \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{\varepsilon} + p_1 \cdot (1 - \varepsilon) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1 - \varepsilon} $$
- $$\Rightarrow \hspace{0.3cm} H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = (p_0 + p_1) \cdot \left [ \varepsilon \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{\varepsilon} + (1 - \varepsilon) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1 - \varepsilon} \right ] \hspace{0.05cm}.$$
- Mit $p_0 + p_1 = 1$ und der binären Entropiefunktion ⇒ $H_{\rm bin}$ erhält man das vorgeschlagene Ergebnis: $H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = H_{\rm bin}(\varepsilon)\hspace{0.05cm}.$
- Für $ε = 0.1$ ergibt sich $H(Y|X) = 0.4690 \ \rm bit$. Der gleiche Wert steht für $p_0=0.50$ in der vorgegebenen Tabelle.
- Aus der Tabelle erkennt man auch, dass beim BSC–Modell (blaue Hinterlegung) wie auch beim allgemeineren (unsymmetrischen) BC–Modell (rote Hinterlegung) die Äquivokation $H(X|Y)$ von den Quellensymbolwahrscheinlichkeiten $p_0$ und $p_1$ abhängen. Daraus folgt, dass der Lösungsvorschlag 1 nicht richtig sein kann.
- Die Irrelevanz $H(Y|X)$ ist unabhängig von der Quellenstatistik, so dass auch der Lösungsvorschlag 3 ausgeschlossen werden kann.
(2) Zutreffend sind hier alle vorgegebenen Lösungsalternativen:
- Die Kanalkapazität ist definiert als die maximale Transinformation, wobei die Maximierung hinsichtlich $P_X = (p_0, p_1)$ zu erfolgen hat:
- $$C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) \hspace{0.05cm}.$$
- Die Gleichung gilt allgemein, also auch für den rot hinterlegten unsymmetrischen Binärkanal.
- Die Transinformation kann zum Beispiel berechnet werden als $I(X;Y) = H(Y) - H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X)\hspace{0.05cm}$, wobei entsprechend der Teilaufgabe (1) der Term $H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X)\hspace{0.05cm}$ unabhängig von $p_0$ bzw. $p_1 = 1- p_0$ ist.
- Die maximale Transinformation ergibt sich somit genau dann, wenn die Sinkenentropie $H(Y)$ maximal ist. Dies ist der Fall für $p_0 = p_1 = 0.5$:
- $$H(X) = H(Y) = 1 \ \rm bit.$$
(3) Entsprechend den Teilaufgaben (1) und (2) erhält man für die BSC–Kanalkapazität:
- $$C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) \hspace{0.05cm}.$$
Die Grafik zeigt links die binäre Entropiefunktion und rechts die Kanalkapazität. Man erhält:
- für $ε = 0.0$ (fehlerfreier Kanal):
$C = 1\ \rm (bit)$ ⇒ Punkt mit gelber Füllung, - für $ε = 0.1$ (bisher betrachtet):
$C = 0.531\ \rm (bit)$ ⇒ Punkt mit grüner Füllung, - für $ε = 0.5$ (vollkommen gestört):
$C = 0\ \rm (bit)$ ⇒ Punkt mit grauer Füllung.
(4) Aus der Grafik erkennt man, dass aus informationstheoretischer Sicht $ε = 1$ identisch mit $ε = 0$ ist:
- $$C_{\rm BSC} \big |_{\hspace{0.05cm}\varepsilon \hspace{0.05cm} = \hspace{0.05cm}1} \hspace{0.05cm}= C_{\rm BSC} \big |_{\hspace{0.05cm}\varepsilon \hspace{0.05cm} = \hspace{0.05cm}0} \hspace{0.15cm} \underline {=1\,{\rm (bit)}} \hspace{0.05cm}.$$
- Der Kanal nimmt hier nur eine Umbenennung vor. Man spricht von „Mapping”.
- Aus jeder $0$ wird eine $1$ und aus jeder $1$ eine $0$. Entsprechend gilt:
- $$C_{\rm BSC} \big |_{\hspace{0.05cm}\varepsilon \hspace{0.05cm} = \hspace{0.05cm}0.9} \hspace{0.05cm}= C_{\rm BSC} \big |_{\hspace{0.05cm}\varepsilon \hspace{0.05cm} = \hspace{0.05cm}0.1} \hspace{0.15cm} \underline {=0.531\,{\rm (bit)}} \hspace{0.05cm}$$