Aufgaben:Aufgabe 3.14: Kanalcodierungstheorem: Unterschied zwischen den Versionen
(Eine dazwischenliegende Version desselben Benutzers wird nicht angezeigt) | |||
Zeile 4: | Zeile 4: | ||
[[Datei:P_ID2817__Inf_A_3_13.png|right|frame|Informationstheoretische Größen von $\rm BSC$– und $\rm EUC–Modell$]] | [[Datei:P_ID2817__Inf_A_3_13.png|right|frame|Informationstheoretische Größen von $\rm BSC$– und $\rm EUC–Modell$]] | ||
− | [https://de.wikipedia.org/wiki/Claude_Shannon Shannons] Kanalcodierungstheorem besagt, dass über einen | + | [https://de.wikipedia.org/wiki/Claude_Shannon Shannons] Kanalcodierungstheorem besagt, dass über einen „diskreten gedächtnislosen Kanal” (englisch: "Discrete Memoryless Channel", $\rm DMC)$ mit der Coderate $R$ fehlerfrei übertragen werden kann, so lange $R$ nicht größer ist als die Kanalkapazität |
:$$C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) \hspace{0.05cm}.$$ | :$$C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) \hspace{0.05cm}.$$ | ||
Das Kanalcodierungstheorem soll in dieser Aufgabe numerisch ausgewertet werden, wobei zwei typische Kanalmodelle zu betrachten sind: | Das Kanalcodierungstheorem soll in dieser Aufgabe numerisch ausgewertet werden, wobei zwei typische Kanalmodelle zu betrachten sind: | ||
− | * | + | * Das $\rm BSC$–Modell ("Binary Symmetric Channel") mit Verfälschungswahrscheinlichkeit $ε = 0.25$ und der Kanalkapazität $C = 1 - H_{\rm bin}(ε),$ |
− | * das $\rm EUC$–Modell (von | + | * das $\rm EUC$–Modell (von "Extremely Unsymmetric Channel"; diese Bezeichnung stammt von uns und ist nicht allgemein üblich) entsprechend der [[Aufgaben:Aufgabe_3.11Z:_Extrem_unsymmetrischer_Kanal|Aufgabe 3.11Z]]. |
− | Die Grafiken zeigen die numerischen Werte der informationstheoretischen Größen für die beiden | + | Die Grafiken zeigen die numerischen Werte der informationstheoretischen Größen für die beiden Modelle $\rm BSC$ und $\rm EUC$: |
− | * | + | * Die Quellenentropie $H(X),$ |
* die Äquivokation $H(X|Y),$ | * die Äquivokation $H(X|Y),$ | ||
* die Transinformation $I(X; Y),$ | * die Transinformation $I(X; Y),$ | ||
Zeile 44: | Zeile 44: | ||
+ Beide Modelle führen zur gleichen Bitfehlerwahrscheinlichkeit. | + Beide Modelle führen zur gleichen Bitfehlerwahrscheinlichkeit. | ||
− | {Lässt sich bei $\underline{R = 1}$ durch andere Werte von $p_0$ bzw. $p_1 das Ergebnis (formal) verbessern? | + | {Lässt sich bei $\underline{R = 1}$ durch andere Werte von $p_0$ bzw. $p_1$ das Ergebnis (formal) verbessern? |
|type="()"} | |type="()"} | ||
- Bei beiden Kanälen. | - Bei beiden Kanälen. | ||
Zeile 87: | Zeile 87: | ||
*Dagegen erhält man beim EUC–Modell beispielsweise mit $p_0 = 0.6$ und $p_1 = 0.4$ eine kleinere Bitfehlerwahrscheinlichkeit: | *Dagegen erhält man beim EUC–Modell beispielsweise mit $p_0 = 0.6$ und $p_1 = 0.4$ eine kleinere Bitfehlerwahrscheinlichkeit: | ||
:$$p_{\rm B} = 0.6 \cdot 0 + 0.4 \cdot 0.5=0.2 \hspace{0.05cm}.$$ | :$$p_{\rm B} = 0.6 \cdot 0 + 0.4 \cdot 0.5=0.2 \hspace{0.05cm}.$$ | ||
− | *Zu beachten ist jedoch, dass nun die Quellenentropie nicht mehr $H(X) = 1\ \rm (bit)$ beträgt, sondern | + | *Zu beachten ist jedoch, dass nun die Quellenentropie nicht mehr $H(X) = 1\ \rm (bit)$ beträgt, sondern nur mehr $H(X) = H_{bin} (0.6) = 0.971 \ \rm (bit)$. |
*Im Grenzfall $p_0 = 1$ werden nur noch Nullen übertragen und es gilt $H(X) = 0$. Für die Bitfehlerwahrscheinlichkeit gilt dann aber tatsächlich: | *Im Grenzfall $p_0 = 1$ werden nur noch Nullen übertragen und es gilt $H(X) = 0$. Für die Bitfehlerwahrscheinlichkeit gilt dann aber tatsächlich: | ||
:$$ p_{\rm B} = 1 \cdot 0 + 0 \cdot 0.5=0 \hspace{0.05cm}.$$ | :$$ p_{\rm B} = 1 \cdot 0 + 0 \cdot 0.5=0 \hspace{0.05cm}.$$ | ||
Zeile 96: | Zeile 96: | ||
'''(3)''' Richtig ist der <u>Lösungsvorschlag 1</u>: | '''(3)''' Richtig ist der <u>Lösungsvorschlag 1</u>: | ||
*Aus der Grafik auf der Angabenseite lässt sich für die Kapazitäten der beiden Kanäle ablesen: | *Aus der Grafik auf der Angabenseite lässt sich für die Kapazitäten der beiden Kanäle ablesen: | ||
− | :$$C_{\rm BSC} = 0.1887 \ \rm {bit/use}, \hspace{0.5cm}C_{rm EUC} = 0.3219 \ \rm {bit/use}.$$ | + | :$$C_{\rm BSC} = 0.1887 \ \rm {bit/use}, \hspace{0.5cm}C_{\rm EUC} = 0.3219 \ \rm {bit/use}.$$ |
*Nach dem Kanalcodierungstheorem kann bei $R ≤ C$ eine Kanalcodierung gefunden werden, mit der die Fehlerwahrscheinlichkeit zu Null gemacht werden kann. | *Nach dem Kanalcodierungstheorem kann bei $R ≤ C$ eine Kanalcodierung gefunden werden, mit der die Fehlerwahrscheinlichkeit zu Null gemacht werden kann. | ||
*Bei beiden Kanälen trifft diese Bedingung mit der Rate $R = 0.16$ zu. | *Bei beiden Kanälen trifft diese Bedingung mit der Rate $R = 0.16$ zu. |
Aktuelle Version vom 24. September 2021, 11:17 Uhr
Shannons Kanalcodierungstheorem besagt, dass über einen „diskreten gedächtnislosen Kanal” (englisch: "Discrete Memoryless Channel", $\rm DMC)$ mit der Coderate $R$ fehlerfrei übertragen werden kann, so lange $R$ nicht größer ist als die Kanalkapazität
- $$C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) \hspace{0.05cm}.$$
Das Kanalcodierungstheorem soll in dieser Aufgabe numerisch ausgewertet werden, wobei zwei typische Kanalmodelle zu betrachten sind:
- Das $\rm BSC$–Modell ("Binary Symmetric Channel") mit Verfälschungswahrscheinlichkeit $ε = 0.25$ und der Kanalkapazität $C = 1 - H_{\rm bin}(ε),$
- das $\rm EUC$–Modell (von "Extremely Unsymmetric Channel"; diese Bezeichnung stammt von uns und ist nicht allgemein üblich) entsprechend der Aufgabe 3.11Z.
Die Grafiken zeigen die numerischen Werte der informationstheoretischen Größen für die beiden Modelle $\rm BSC$ und $\rm EUC$:
- Die Quellenentropie $H(X),$
- die Äquivokation $H(X|Y),$
- die Transinformation $I(X; Y),$
- die Irrelevanz $H(Y|X),$ und
- die Sinkenentropie $H(Y).$
Der Parameter in diesen Tabellen ist $p_0 = {\rm Pr}(X = 0)$ im Bereich zwischen $p_0 = 0.3$ bis $p_0 = 0.7$.
Für die zweite Quellensymbolwahrscheinlichkeit gilt: $p_1 = {\rm Pr}(X = 1) =1 - p_0$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Anwendung auf die Digitalsignalübertragung.
- Bezug genommen wird insbesondere auf die Seite Definition und Bedeutung der Kanalkapazität.
Fragebogen
Musterlösung
- Die BSC–Fehlerwahrscheinlichkeit ist mit $p_0 = p_1 = 0.5$ bei uncodierter Übertragung ⇒ $R = 1$:
- $$ p_{\rm B} = 0.5 \cdot 0.25 + 0.5 \cdot 0.25=0.25 \hspace{0.05cm}.$$
- Entsprechend gilt bei gleichen Randbedingungen für das EUC–Modell:
- $$ p_{\rm B} = 0.5 \cdot 0 + 0.5 \cdot 0.5=0.25 \hspace{0.05cm}.$$
(2) Richtig ist der Lösungsvorschlag 3:
- Beim BSC–Modell mit der Verfälschungswahrscheinlichkeit $ε = 0.25$ ist bei uncodierter Übertragung ⇒ $R = 1$ unabhängig von $p_0$ und $p_1$ die Bitfehlerwahrscheinlichkeit gleich $p_{\rm B} = 0.25$.
- Dagegen erhält man beim EUC–Modell beispielsweise mit $p_0 = 0.6$ und $p_1 = 0.4$ eine kleinere Bitfehlerwahrscheinlichkeit:
- $$p_{\rm B} = 0.6 \cdot 0 + 0.4 \cdot 0.5=0.2 \hspace{0.05cm}.$$
- Zu beachten ist jedoch, dass nun die Quellenentropie nicht mehr $H(X) = 1\ \rm (bit)$ beträgt, sondern nur mehr $H(X) = H_{bin} (0.6) = 0.971 \ \rm (bit)$.
- Im Grenzfall $p_0 = 1$ werden nur noch Nullen übertragen und es gilt $H(X) = 0$. Für die Bitfehlerwahrscheinlichkeit gilt dann aber tatsächlich:
- $$ p_{\rm B} = 1 \cdot 0 + 0 \cdot 0.5=0 \hspace{0.05cm}.$$
- Man überträgt also keinerlei Information, diese aber mit der Bitfehlerwahrscheinlichkeit „Null”.
(3) Richtig ist der Lösungsvorschlag 1:
- Aus der Grafik auf der Angabenseite lässt sich für die Kapazitäten der beiden Kanäle ablesen:
- $$C_{\rm BSC} = 0.1887 \ \rm {bit/use}, \hspace{0.5cm}C_{\rm EUC} = 0.3219 \ \rm {bit/use}.$$
- Nach dem Kanalcodierungstheorem kann bei $R ≤ C$ eine Kanalcodierung gefunden werden, mit der die Fehlerwahrscheinlichkeit zu Null gemacht werden kann.
- Bei beiden Kanälen trifft diese Bedingung mit der Rate $R = 0.16$ zu.
(4) Richtig ist der Lösungsvorschlag 3:
- Beim EUC–Modell wird mit $R = 0.32$ und $C = 0.3219$ die notwendige Bedingung $R ≤ C$ für eine fehlerfreie Übertragung erfüllt.
- Voraussetzung hierfür ist allerdings die Wahrscheinlichkeitsfunktion $P_X(X) = (0.6,\ 0.4).$
- Dagegen ergäbe sich für gleichwahrscheinliche Symbole ⇒ $P_X(X) = (0.5,\ 0.5)$ die Transinformation $I(X; Y) = 0.3113$,
also ein kleinerer Wert als für die Kanalkapazität $C$, und es gilt auch $I(X; Y) < R$. - Man erkennt: Das EUC–Modell bietet mehr Potenzial für die Anwendung einer Kanalcodierung als das BSC–Modell. Hier kann beispielsweise im Code ausgenutzt werden, dass eine gesendete „0” stets fehlerfrei übertragen wird.
(5) Aus der Kommentierung der Teilaufgaben (3) und (4) geht hervor, dass der Lösungsvorschlag 4 zutrifft.