Lineare zeitinvariante Systeme/Folgerungen aus dem Zuordnungssatz: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(32 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
+
 
 
{{Header
 
{{Header
 
|Untermenü=Beschreibung kausaler realisierbarer Systeme
 
|Untermenü=Beschreibung kausaler realisierbarer Systeme
Zeile 5: Zeile 5:
 
|Nächste Seite=Laplace–Transformation und p–Übertragungsfunktion
 
|Nächste Seite=Laplace–Transformation und p–Übertragungsfunktion
 
}}
 
}}
 +
 +
== # ÜBERBLICK ZUM DRITTEN HAUPTKAPITEL # ==
 +
<br>
 +
In den beiden ersten Kapiteln wurden aus Darstellungsgründen meist Filterfunktionen mit reellwertigen Frequenzgängen betrachtet, so dass die dazugehörige Zeitfunktion symmetrisch zum Zeitnullpunkt ist. Die Impulsantwort eines realisierbaren Systems muss aber stets kausal sein, das heißt, es muss &nbsp;$h(t)$&nbsp; für &nbsp;$t < 0$&nbsp; identisch Null sein. Diese starke Asymmetrie der Zeitfunktion&nbsp; $h(t)$&nbsp; bedeutet aber gleichzeitig, dass der Frequenzgang &nbsp;$H(f)$&nbsp; eines realisierbaren Systems mit Ausnahme von &nbsp;$H(f) = K$&nbsp; immer komplexwertig ist, wobei zwischen dessen Realteil und Imaginärteil ein fester Zusammenhang besteht.
 +
 +
Dieses dritte Kapitel bringt eine zusammenfassende Darstellung der Beschreibung kausaler realisierbarer Systeme, die sich auch von den mathematischen Methoden her von den bei akausalen Systemen üblichen Verfahren unterscheiden.
 +
 +
Im Einzelnen wird nachfolgend behandelt:
 +
 +
*die Hilbert–Transformation, die aussagt, wie Real– und Imaginärteil von&nbsp; $H(f)$&nbsp; zusammenhängen,
 +
*die Laplace–Transformation, die bei kausalem &nbsp;$h(t)$&nbsp; eine weitere Spektralfunktion &nbsp;$H_{\rm L}(p)$&nbsp; liefert,
 +
*die Beschreibung realisierbarer Systeme durch das Pol–Nullstellen–Diagramm, sowie
 +
*die Laplace–Rücktransformation unter Anwendung der Funktionentheorie (Residuensatz).
 +
 +
 +
Zu diesem Kapitel empfehlen wir
 +
*zur Vorbereitung das Lernvideo &nbsp;[[Rechnen_mit_komplexen_Zahlen_(Lernvideo)|Rechnen mit komplexen Zahlen]], sowie
 +
* das interaktive Applet &nbsp;[[Applets:Kausale_Systeme_-_Laplacetransformation|Kausale Systeme – Laplacetransformation]] -  eine zusammenhängende Darstellung.
 +
 +
 
==Voraussetzungen für das gesamte Kapitel &bdquo;Realisierbare Systeme&rdquo;==
 
==Voraussetzungen für das gesamte Kapitel &bdquo;Realisierbare Systeme&rdquo;==
In den beiden ersten Kapiteln wurden meist reelle [[Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Frequenzbereich#.C3.9Cbertragungsfunktion_-_Frequenzgang|Übertragungsfunktionen]] $H(f)$ betrachtet, bei denen demzufolge die zugehörige Impulsantwort $h(t)$ stets symmetrisch zum Bezugszeitpunkt $t =$ 0 war. Solche Übertragungsfunktionen  
+
<br>
 +
In den beiden ersten Kapiteln wurden meist reelle&nbsp; [[Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Frequenzbereich#Frequenzgang_.E2.80.93_Systemfunktion_.E2.80.93_.C3.9Cbertragungsfunktion|Übertragungsfunktionen]]&nbsp; &nbsp;$H(f)$&nbsp; betrachtet, bei denen demzufolge die zugehörige Impulsantwort &nbsp;$h(t)$&nbsp; stets symmetrisch zum Bezugszeitpunkt &nbsp;$t = 0$&nbsp; ist. Solche Übertragungsfunktionen  
 
*eignen sich, um grundlegende Zusammenhänge einfach zu erklären,  
 
*eignen sich, um grundlegende Zusammenhänge einfach zu erklären,  
 
*sind aber leider aus Kausalitätsgründen nicht realisierbar.  
 
*sind aber leider aus Kausalitätsgründen nicht realisierbar.  
Zeile 13: Zeile 34:
 
Dies wird deutlich, wenn man sich die Definition der Impulsantwort betrachtet:
 
Dies wird deutlich, wenn man sich die Definition der Impulsantwort betrachtet:
  
{{Definition}}
+
{{BlaueBox|TEXT= 
Die Impulsantwort $h(t)$ ist gleich dem Ausgangssignal $y(t)$ des Systems, wenn am Eingang zum Zeitpunkt $t =$ 0 ein unendlich kurzer Impuls mit unendlich großer Ampltude anliegt: $x(t) = δ(t)$. Man bezeichnet einen solchen Impuls als Diracimpuls.
+
$\text{Definition:}$&nbsp;
{{end}}
+
Die&nbsp; '''Impulsantwort''' &nbsp;$h(t)$&nbsp; ist gleich dem Ausgangssignal &nbsp;$y(t)$&nbsp; des Systems, wenn am Eingang zum Zeitpunkt &nbsp;$t = 0$&nbsp; ein unendlich kurzer Impuls mit unendlich großer Ampltude anliegt: &nbsp; $x(t) = δ(t)$. Man bezeichnet einen solchen Impuls als [[Signaldarstellung/Einige_Sonderfälle_impulsartiger_Signale#Diracimpuls|Diracimpuls]].}}
  
  
Es ist offensichtlich, dass keine Impulsantwort realisiert werden kann, für die $h(t < 0) ≠$ 0 gilt.
+
Es ist offensichtlich, dass keine Impulsantwort realisiert werden kann, für die &nbsp;$h(t < 0) ≠ 0$&nbsp; gilt.
  
{{Definition}}
+
{{BlaueBox|TEXT= 
Bei einem kausalen System ist die Impulsantwort $h(t)$ für alle Zeiten $t <$ 0 identisch 0.
+
$\text{Definition:}$&nbsp;
{{end}}
+
Bei einem&nbsp; '''kausalen System'''&nbsp; ist die Impulsantwort $h(t)$ für alle Zeiten&nbsp; $t < 0$&nbsp;  identisch Null.}}
  
  
Die einzige reelle Übertragungsfunktion, die der Kausalitätsbedingung „Das Ausgangssignal kann nicht vor dem Eingangssignal beginnen” genügt, lautet:
+
Die einzige reelle Übertragungsfunktion, die der Kausalitätsbedingung „das Ausgangssignal kann nicht vor dem Eingangssignal beginnen” genügt, lautet:
$$H(f) = 1 \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h(t) = \delta(t).$$
+
:$$H(f) = K \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h(t) = K \cdot \delta(t).$$
Alle anderen reellwertigen Übertragungsfunktionen $H(f)$ beschreiben akausale Systeme und sind somit durch ein (elektrisches) Schaltungsnetzwerk nicht zu realisieren. '''In anderen Worten:''' Außer der idealen Übertragungsfunktion $H(f) =$ 1 ist jede realistische Übertragungsfunktion komplex.  
+
Alle anderen reellwertigen Übertragungsfunktionen&nbsp; $H(f)$&nbsp; beschreiben akausale Systeme und sind somit durch ein (elektrisches) Schaltungsnetzwerk nicht zu realisieren.  
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{In anderen Worten:}$ &nbsp; Außer der Übertragungsfunktion&nbsp; $H(f) = K$&nbsp;  '''ist jede realistische Übertragungsfunktion komplex'''.
 +
*Gilt zudem&nbsp; $K=1$, so bezeichnet man die  Übertragungsfunktion als ideal.&nbsp;
 +
*Der Ausgang &nbsp;$y(t)$&nbsp; ist dann identische mit dem Eingang &nbsp;$x(t)$&nbsp; &ndash; auch ohne Dämpfung oder Verstärkung.}}
  
 
==Real– und Imaginärteil einer kausalen Übertragungsfunktion==
 
==Real– und Imaginärteil einer kausalen Übertragungsfunktion==
Eine jede kausale Impulsantwort $h(t)$ kann als Summe eines geraden Anteils $h_{\rm g}(t)$ und eines ungeraden Anteils $h_{\rm u}(t)$ dargestellt werden, wobei gilt:
+
<br>
$$\begin{align*} h_{ {\rm g}}(t)  & =  \frac{1}{2}\cdot \left[  h(t) + h(-t) \right]\hspace{0.05cm},\\ h_{ {\rm u}}(t) & =  \frac{1}{2}\cdot \left[  h(t) - h(-t) \right] = h_{ {\rm g}}(t) \cdot {\rm sign}(t)\hspace{0.05cm} \end{align*}$$.
+
Jede kausale Impulsantwort&nbsp; $h(t)$&nbsp; kann als Summe eines geraden Anteils&nbsp; $h_{\rm g}(t)$&nbsp; und eines ungeraden Anteils&nbsp; $h_{\rm u}(t)$&nbsp; dargestellt werden:
  
Hierbei ist die sogenannte Signum–Funktion verwendet:
+
:$$\begin{align*} h_{ {\rm g}}(t)  & =  {1}/{2}\cdot \big[  h(t) + h(-t) \big]\hspace{0.05cm},\\ h_{ {\rm u}}(t) & =  {1}/{2}\cdot \big[  h(t) - h(-t) \big] = h_{ {\rm g}}(t) \cdot {\rm sign}(t)\hspace{0.05cm} .\end{align*}$$
$${\rm sign}(t) = \left\{ \begin{array}{c} -1 \\
+
 
 +
Hierbei ist die sogenannte&nbsp; [https://de.wikipedia.org/wiki/Vorzeichenfunktion Signum–Funktion]&nbsp; verwendet:
 +
:$${\rm sign}(t) = \left\{ \begin{array}{c} -1 \\
 
  +1 \\  \end{array} \right.\quad \quad
 
  +1 \\  \end{array} \right.\quad \quad
 
\begin{array}{c}  {\rm{f\ddot{u}r}}  \\ {\rm{f\ddot{u}r}}
 
\begin{array}{c}  {\rm{f\ddot{u}r}}  \\ {\rm{f\ddot{u}r}}
Zeile 42: Zeile 70:
 
\end{array}$$
 
\end{array}$$
  
{{Beispiel}}
+
{{GraueBox|TEXT= 
Die Grafik zeigt diese Aufspaltung für eine kausale exponentiell abfallende Impulsantwort
+
$\text{Beispiel 1:}$&nbsp;
$$h(t) = \left\{ \begin{array}{c} 0 \\
+
Die Grafik zeigt diese Aufspaltung für eine kausale exponentiell abfallende Impulsantwort eines Tiefpasses erster Ordnung entsprechend&nbsp; [[Aufgaben:Aufgabe_1.3Z:_Exponentiell_abfallende_Impulsantwort|Aufgabe 1.3Z]]:
  0.5/T  \\ 1/T \cdot {\rm e}^{-t/T} \end{array} \right.\quad \quad
+
[[Datei: P_ID1750__LZI_T_3_1_S2a_neu.png |right|frame| Aufteilung der Impulsantwort in einen geraden und einen ungeraden Anteil|class=fit]]
\begin{array}{c}  {\rm{f\ddot{u}r}}  \\ {\rm{f\ddot{u}r}}
+
:$$h(t) = \left\{ \begin{array}{c} 0 \\
\\  {\rm{f\ddot{u}r}}  \end{array}\begin{array}{*{20}c}
+
  0.5/T  \\ 1/T \cdot {\rm e}^{-t/T} \end{array} \right.\quad  
 +
\begin{array}{c}  {\rm{f\ddot{u}r} }  \\ {\rm{f\ddot{u}r} }
 +
\\  {\rm{f\ddot{u}r} }  \end{array}\begin{array}{*{20}c}
 
{  t  < 0\hspace{0.05cm},}  \\
 
{  t  < 0\hspace{0.05cm},}  \\
 
{ t  = 0\hspace{0.05cm},}  \\{ t  > 0\hspace{0.05cm}.}
 
{ t  = 0\hspace{0.05cm},}  \\{ t  > 0\hspace{0.05cm}.}
 +
 
\end{array}$$
 
\end{array}$$
  
eines Tiefpasses erster Ordnung entsprechend [[Aufgaben:1.3Z_Exponentiell_abfallendes_h(t)|Aufgabe Z1.3]].  
+
Man erkennt:  
 +
*Für positive Zeiten gilt &nbsp;$h_{\rm g}(t) = h_{\rm u}(t) = h(t)/2$.  
 +
*Für negative Zeiten unterscheiden sich &nbsp;$h_{\rm g}(t)$&nbsp; und &nbsp;$h_{\rm u}(t)$&nbsp; nur durch das Vorzeichen.  
 +
*Für alle Zeiten gilt &nbsp;$h(t) = h_{\rm g}(t) + h_{\rm u}(t)$, auch zum Zeitpunkt &nbsp;$t = 0$ (durch Kreise markiert). }}
 +
 
  
[[Datei: P_ID1750__LZI_T_3_1_S2a_neu.png | Aufteilung der Impulsantwort in einen geraden und einen ungeraden Anteil|class=fit]]
+
Betrachten wir nun den gleichen Sachverhalt im Spektralbereich. Nach dem&nbsp; [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Zuordnungssatz|Zuordnungssatz]]&nbsp;  gilt für die komplexe Übertragungsfunktion: &nbsp;
 +
:$$H(f) = {\rm Re} \left\{ H(f) \right \} + {\rm j} \cdot {\rm Im} \left\{ H(f) \right \}
 +
,$$
 +
wobei folgende Zuordnung gilt:
  
Man erkennt:  
+
:$${\rm Re} \left\{ H(f) \right \} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h_{ {\rm g}}(t)\hspace{0.05cm},$$
*Für positive Zeiten gilt $h_{\rm g}(t) = h_{\rm u}(t) = h(t)/2$.
 
*Für negative Zeiten unterscheiden sich $h_{\rm g}(t)$ und $h_{\rm u}(t)$ nur durch das Vorzeichen.
 
*Für alle Zeiten gilt $h(t) = h_{\rm g}(t) + h_{\rm u}(t)$, auch zum Zeitpunkt $t$ = 0 (durch Kreise markiert).
 
{{end}}
 
  
 +
:$${\rm j} \cdot {\rm Im} \left\{ H(f) \right\}  \quad  \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h_{ {\rm u}}(t)\hspace{0.05cm}.$$
  
Betrachten wir nun den gleichen Sachverhalt im Spektralbereich. Nach dem Zuordnungssatz  gilt für die komplexe Übertragungsfunktion:
+
Zunächst soll an einem weiteren Beispiel dieser Zusammenhang zwischen Real– und Imaginärteil von &nbsp;$H(f)$&nbsp; herausgearbeitet werden.
  
$$H(f) = {\rm Re} \left\{ H(f) \right \} + {\rm j} \cdot {\rm Im} \left\{ H(f) \right \}
+
{{GraueBox|TEXT= 
\hspace{0.05cm},\hspace{5cm}$$
+
$\text{Beispiel 2:}$&nbsp;
 +
Wir gehen von einem Tiefpass erster Ordnung aus, für dessen Übertragungsfunktion gilt:
 +
:$$H(f) = \frac{1}{1+{\rm j}\cdot f/f_{\rm G} } = \frac{1}{1+(f/f_{\rm G})^2}- {\rm j} \cdot \frac{f/f_{\rm G} }{1+(f/f_{\rm G})^2} \hspace{0.05cm}.$$
  
$${\rm Re} \left\{ H(f) \right \} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h_{ {\rm g}}(t)\hspace{0.05cm},$$
+
[[Datei:P_ID1754__LZI_T_3_1_S2b_neu.png|right|frame|Frequenzgang eines Tiefpasses erster Ordnung&nbsp; (Real– und Imaginärteil)|class=fit]]
 +
Hierbei gibt&nbsp; $f_{\rm G}$&nbsp; die 3dB–Grenzfrequenz an, bei der&nbsp; $\vert H(f)\vert^2$&nbsp; auf die Hälfte seines Maximums&nbsp; $($bei&nbsp; $f = 0)$&nbsp; abgesunken ist. Die dazugehörige Impulsantwort&nbsp;  $h(t)$&nbsp; wurde bereits im obigen&nbsp; $\text{Beispiel 1}$&nbsp; für&nbsp;  $f_{\rm G} = 1/(2πT)$&nbsp; dargestellt.
  
$${\rm j} \cdot {\rm Im} \left\{ H(f) \right\}  \quad  \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h_{ {\rm u}}(t)\hspace{0.05cm}.$$
+
Die Grafik zeigt den Realteil  (blau) und den Imaginärteil (rot) von&nbsp; $H(f)$. Grün–gestrichelt ist zudem der Betrag dargestellt.  
  
Zunächst soll an einem Beispiel der Zusammenhang zwischen Real– und Imaginärteil des Frequenzgangs $H(f)$ herausgearbeitet werden.
+
Nachdem die Zeitfunktionen &nbsp;$h_{\rm g}(t)$&nbsp; und &nbsp;$h_{\rm u}(t)$&nbsp; über die Signumfunktion zusammenhängen, besteht auch
{{Beispiel}}
+
* zwischen dem Realteil &nbsp; &rArr; &nbsp; ${\rm Re} \{H(f)\}$&nbsp;
Wir gehen wieder von einem Tiefpass erster Ordnung aus:
+
* und dem Imaginärteil &nbsp; &rArr; &nbsp;${\rm Im} \{H(f)\}$&nbsp;
$$H(f) = \frac{1}{1+{\rm j}\cdot f/f_{\rm G}} = \frac{1}{1+(f/f_{\rm G})^2}- {\rm j} \cdot \frac{f/f_{\rm G}}{1+(f/f_{\rm G})^2} \hspace{0.05cm}.$$
 
Hierbei gibt $f_{\rm G}$ die 3dB–Grenzfrequenz an, bei der $|H(f)|^2$ auf die Hälfte seines Maximums (bei $f =$ 0) abgesunken ist. Die dazugehörige Impulsantwort  $h(t)$ wurde bereits auf der letzten Seite dargestellt, wobei $f_{\rm G} = 1/(2πT)$ zu setzen ist.
 
  
[[Datei:P_ID1754__LZI_T_3_1_S2b_neu.png|Frequenzgang eines Tiefpasses erster Ordnung (Real– und Imaginärteil)|class=fit]]
 
  
Die Grafik zeigt den Realteil (blau) und den Imaginärteil (rot) von $H(f)$. Zusätzlich ist grün–gestrichelt der Betrag dargestellt. Nachdem die beiden Zeitfunktionen $h_{\rm g}(t)$ und $h_{\rm u}(t)$ über die Signumfunktion zusammenhängen, sind auch Re{ $H(f)$} und Im{ $H(f)$} fest miteinander verknüpft. Der Zusammenhang ist dabei durch die Hilbert–Transformation gegeben, die nachfolgend beschrieben wird.
+
der Übertragungsfunktion eine feste Verknüpfung &nbsp; &rArr; &nbsp; die&nbsp;  '''Hilbert–Transformation'''.
{{end}}
+
 +
Diese wird nachfolgend beschrieben.}}
  
 
==Hilbert–Transformation==
 
==Hilbert–Transformation==
Wir betrachten hier ganz allgemein zwei Zeitfunktionen $u(t)$ und $w(t) = \sign(t) · u(t)$. Die dazugehörigen Spektralfunktionen sind $U(f)$ und $j · W(f)$. Mit der Fourierkorrespondenz
+
<br>
$${\rm sign}(t) \quad \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\quad \frac{1}{{\rm j} \, \pi f }$$
+
Wir betrachten hier ganz allgemein zwei Zeitfunktionen&nbsp; $u(t)$&nbsp; und&nbsp; $w(t) = \sign(t) · u(t)$.  
erhält man nach Ausschreiben des [[Signaldarstellung/Faltungssatz_und_Faltungsoperation#Faltung_im_Zeitbereich|Faltungsintegrals]] mit der Integrationsvariablen $ν$:
+
*Die dazugehörigen Spektralfunktionen werden mit&nbsp; $U(f)$&nbsp; und&nbsp; ${\rm j} · W(f)$&nbsp; bezeichnet.  
$${\rm j} \cdot W(f) =  \frac{1}{{\rm j} \, \pi f }\, \star \, U(f) \quad \Rightarrow \quad W(f) = -\frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{U(\nu)}{f - \nu}}\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$
+
*Das heißt, in diesem Abschnitt gilt&nbsp;  ${w(t) \, \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \, {\rm j}  \cdot W(f) }$&nbsp; und nicht die sonst übliche Fourierkorrespondenz&nbsp; ${w(t) \, \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \, W(f)}.$
Da aber gleichzeitig auch $u(t) = \sign(t) · w(t)$ zutrifft, gilt in gleicher Weise:
+
 
$$U(f) =  \frac{1}{{\rm j} \, \pi f }\, \star \, {\rm j} \cdot W(f) \quad \Rightarrow \quad U(f) = \frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{W(\nu)}{f - \nu}}\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$
 
  
 +
Mit der Korrespondenz  &nbsp; ${\rm sign}(t) \,  \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \, {1}/({{\rm j} \, \pi f })$ &nbsp; erhält man nach Ausschreiben des [[Signaldarstellung/Faltungssatz_und_Faltungsoperation#Faltung_im_Zeitbereich|Faltungsintegrals]]  mit der Integrationsvariablen&nbsp; $ν$ :
 +
:$${\rm j} \cdot W(f) =  \frac{1}{{\rm j} \, \pi f }\, \star \, U(f) \quad \Rightarrow \quad W(f) = -\frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{U(\nu)}{f - \nu}}\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$
 +
Da aber gleichzeitig auch &nbsp; $u(t) = \sign(t) · w(t)$ &nbsp; zutrifft, gilt in gleicher Weise:
 +
:$$U(f) =  \frac{1}{{\rm j} \, \pi f }\, \star \, {\rm j} \cdot W(f) \quad \Rightarrow \quad U(f) = \frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{W(\nu)}{f - \nu}}\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$
  
Man benennt diese ''Integraltransformation'' nach ihrem Entdecker [https://de.wikipedia.org/wiki/David_Hilbert David Hilbert].  Beide Varianten der Hilbert–Transformation werden im weiteren Verlauf mit folgenden Kurzzeichen gekennzeichnet:
+
Man hat diese &bdquo;Integraltransformationen&rdquo; nach ihrem Entdecker&nbsp; [https://de.wikipedia.org/wiki/David_Hilbert David Hilbert]&nbsp; benannt.   
$$W(f)  \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad U(f) \hspace{0.2cm}{\rm bzw.}\hspace{0.2cm}W(f)= {\cal H}\left\{U(f) \right \}\hspace{0.05cm}.$$
 
Zur Berechnung des durch die Pfeilspitze markierten Spektrums – hier $U(f)$ – wird von den beiden ansonsten identischen Gleichungen diejenige mit positivem Vorzeichen genommen. Das durch den Kreis markierte Spektrum – hier $W(f)$ – ergibt sich dagegen aus der Gleichung mit negativem Vorzeichen.
 
  
Bei doppelter Anwendung der Hilbert–Transformation erhält man wieder die ursprüngliche Funktion mit Vorzeichenwechsel, bei vierfacher Anwendung die ursprüngliche Funktion inklusive dem Vorzeichen:  
+
{{BlaueBox|TEXT= 
$${\cal H}\left\{ {\cal H}\left\{ U(f) \right \} \right \} = -U(f), \hspace{0.2cm}  {\cal H}\left\{ {\cal H}\left\{ {\cal H}\left\{ {\cal H}\left\{ U(f) \right \} \right \} \right \} \right \}= U(f)\hspace{0.05cm}.$$
+
$\text{Definition:}$&nbsp; Beide Varianten der&nbsp; '''Hilbert–Transformation'''&nbsp; werden im weiteren Verlauf mit folgenden Kurzzeichen gekennzeichnet:
{{Beispiel}}
+
:$$W(f)  \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad U(f) \hspace{0.8cm}{\rm bzw.}\hspace{0.8cm}W(f)= {\cal H}\left\{U(f) \right \}\hspace{0.05cm}.$$
In [Mar94]<ref>Marko, H.: ''Methoden der Systemtheorie.'' 3. Auflage. Berlin – Heidelberg: Springer, 1994.</ref> findet man die folgende Hilbert–Korrespondenz:
+
*Zur Berechnung des durch die Pfeilspitze markierten Spektrums – hier &nbsp;$U(f)$&nbsp; – wird von den beiden ansonsten identischen oberen Gleichungen die Gleichung mit positivem Vorzeichen genommen:
$$\frac{1}{1+x^2}  \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad \frac{x}{1+x^2}\hspace{0.05cm}.$$
+
:$$U(f) = \frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{W(\nu)}{f - \nu} }\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$
Hierbei steht $x$ stellvertretend für eine geeignet normierte Zeit– oder Frequenzvariable. Benutzen wir beispielsweise $x = f/f_{\rm G}$ als normierte Frequenzvariable, so erhält man daraus die Korrespondenz:
+
*Das durch den Kreis markierte Spektrum – hier &nbsp;$W(f)$&nbsp; – ergibt sich aus der Gleichung  mit negativem Vorzeichen:
$$\frac{1}{1+(f/f_{\rm G})^2}  \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad \frac{f/f_{\rm G}}{1+(f/f_{\rm G})^2}\hspace{0.05cm}.$$
+
:$$
 +
W(f) = -\frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{U(\nu)}{f - \nu} }\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$}}
 +
 
 +
 
 +
Bei doppelter Anwendung der Hilbert–Transformation erhält man wieder die ursprüngliche Funktion mit Vorzeichenwechsel, bei vierfacher Anwendung die ursprüngliche Funktion inklusive dem richtigen Vorzeichen:  
 +
:$${\cal H}\left\{ {\cal H}\left\{ U(f) \right \} \right \} = -U(f), \hspace{0.2cm}  {\cal H}\left\{ {\cal H}\left\{ {\cal H}\left\{ {\cal H}\left\{ U(f) \right \} \right \} \right \} \right \}= U(f)\hspace{0.05cm}.$$
 +
 
 +
{{GraueBox|TEXT= 
 +
$\text{Beispiel 3:}$&nbsp;
 +
In&nbsp; [Mar94]<ref name ='Mar94'>Marko, H.:&nbsp; Methoden der Systemtheorie.&nbsp; 3. Auflage. Berlin – Heidelberg: Springer, 1994.</ref>&nbsp; findet man die folgende Hilbert–Korrespondenz:
 +
:$$\frac{1}{1+x^2}  \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad \frac{x}{1+x^2}\hspace{0.05cm}.$$
 +
*Hierbei steht &nbsp;$x$&nbsp; stellvertretend für eine geeignet normierte Zeit– oder Frequenzvariable.  
 +
*Benutzen wir beispielsweise &nbsp;$x = f/f_{\rm G}$&nbsp; als normierte Frequenzvariable, so erhält man daraus die Korrespondenz:
 +
:$$\frac{1}{1+(f/f_{\rm G})^2}  \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad \frac{f/f_{\rm G} }{1+(f/f_{\rm G})^2}\hspace{0.05cm}.$$
 
Ausgehend von der Gleichung
 
Ausgehend von der Gleichung
$${\rm Im} \left\{ H(f) \right \}  \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad {\rm Re} \left\{ H(f) \right \}$$
+
:$${\rm Im} \left\{ H(f) \right \}  \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad {\rm Re} \left\{ H(f) \right \}$$
wird somit das auf der letzten Seite gefundene Ergebnis bestätigt:
+
wird somit das auf im&nbsp; [[Lineare_zeitinvariante_Systeme/Folgerungen_aus_dem_Zuordnungssatz#Real.E2.80.93_und_Imagin.C3.A4rteil_einer_kausalen_.C3.9Cbertragungsfunktion|$\text{Beispiel 2}$]]&nbsp; gefundene Ergebnis bestätigt:
$${\rm Im} \left\{ H(f) \right \}  = \frac{-f/f_{\rm G}}{1+(f/f_{\rm  G})^2}\hspace{0.05cm}.$$
+
:$${\rm Im} \left\{ H(f) \right \}  = \frac{-f/f_{\rm G} }{1+(f/f_{\rm  G})^2}\hspace{0.05cm}.$$}}
{{end}}
 
  
 
==Einige Paare von Hilbert–Korrespondenzen==
 
==Einige Paare von Hilbert–Korrespondenzen==
 +
<br>
 +
Zur Herleitung von Hilbert–Korrespondenzen geht man sehr pragmatisch vor, nämlich wie folgt:
 +
*Man berechnet die &nbsp;[[Lineare_zeitinvariante_Systeme/Laplace–Transformation_und_p–Übertragungsfunktion#Definition_der_Laplace.E2.80.93Transformation|Laplace–Transformierte]]&nbsp;  $Y_{\rm L}(p)$&nbsp; der Funktion &nbsp;$y(t)$, wie nachfolgend beschrieben. Diese ist bereits implizit kausal.
 +
[[Datei:P_ID1752__LZI_T_3_1_S4_neu.png|right|frame|Tabelle mit Hilbert–Korrespondenzen|class=fit]]
 +
 +
*Man wandelt die Spektralfunktion &nbsp;$Y_{\rm L}(p)$&nbsp; in das zugehörige Fourierspektrum &nbsp;$Y(f)$&nbsp; um und spaltet dieses in Real– und Imaginärteil auf.&nbsp; Dazu ersetzt man die Variable &nbsp;$p$&nbsp; durch &nbsp;${\rm j \cdot 2}πf.$
 +
 +
 +
Der Real&ndash; und Imaginärteil &ndash; also &nbsp;${\rm Re} \{Y(f)\}$&nbsp; und &nbsp;${\rm Im} \{Y(f)\}$ &ndash; sind somit ein Paar von Hilbert–Transformierten. Man ersetzt weiter
 +
#&nbsp; die Frequenzvariable &nbsp;$f$&nbsp; durch &nbsp;$x$,
 +
#&nbsp;  ${\rm Re} \{Y(f)\}$&nbsp; durch &nbsp;$g(x)$, und
 +
#&nbsp;  ${\rm Im} \{Y(f)\}$&nbsp; durch  &nbsp;${\cal H} \{g(x)\}$.
 +
  
Zur Herleitung von Hilbert–Korrespondenzen geht man sehr pragmatisch vor, nämlich wie folgt:
+
Die neue Variable &nbsp;$x$&nbsp; kann sowohl eine (geeignet) normierte Frequenz oder auch eine (geeignet) normierte Zeit beschreiben. Somit ist die&nbsp; [[Signaldarstellung/Analytisches_Signal_und_zugehörige_Spektralfunktion#Darstellung_mit_der_Hilberttransformation|Hilbert–Transformation]]&nbsp; auf verschiedene Probleme anwendbar.
*Man berechnet die [[Lineare_zeitinvariante_Systeme/Laplace–Transformation_und_p–Übertragungsfunktion#Definition_der_Laplace.E2.80.93Transformation|Laplace–Transformierte]]  $Y_{\rm L}(p)$ einer Zeitfunktion $y(t)$, wie im Kapitel 3.2 beschrieben. Diese ist somit bereits implizit kausal.
 
*Anschließend wandelt man die Spektralfunktion $Y_{\rm L}(p)$ in das zugehörige Fourierspektrum $Y(f)$ um und spaltet dieses in Real– und Imaginärteil auf. Dazu ersetzt man $p$ durch ${\rm j2}πf.$
 
*Re{ $Y(f)$} und Im{ $Y(f)$} sind somit ein Paar von Hilbert–Transformierten.
 
*Man ersetzt die Frequenzvariable $f$ durch $x$ sowie Re{ $Y(f)$} ⇒ $g(x)$ bzw. Im{ $Y(f)$} ⇒ H{ $g(x)$}.
 
*Die neue Variable $x$ kann sowohl eine geeignet normierte Frequenz oder auch eine normierte Zeit beschreiben. Somit ist die [[Signaldarstellung/Analytisches_Signal_und_zugehörige_Spektralfunktion#Darstellung_mit_der_Hilberttransformation|Hilbert–Transformation]] auf verschiedene Probleme anwendbar.
 
  
[[Datei:P_ID1752__LZI_T_3_1_S4_neu.png|Tabelle mit Hilbert–Korrespondenzen|class=fit]]
+
Die Tabelle zeigt einige solcher Hilbertpaare. &nbsp; Auf die Vorzeichen wurde verzichtet, so dass beide Richtungen gültig sind.  
  
Die Tabelle zeigt einige solcher Hilbertpaare. Auf die Vorzeichen wurde verzichtet, so dass beide Richtungen gültig sind. Gilt beispielsweise H{ $g(x)$} $= f(x)$, so folgt daraus auch H{ $f(x)$} $= –g(x)$:
+
{{GraueBox|TEXT= 
$${\cal H}\left \{ \cos(x) \right\} = \sin(x)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}  {\cal H}\left \{ \sin(x) \right\} = -\cos(x)\hspace{0.05cm}.$$
+
$\text{Beispiel 4:}$&nbsp; Gilt beispielsweise &nbsp;${\cal H} \{g(x)\} = f(x)$,&nbsp; so folgt daraus auch &nbsp;${\cal H} \{f(x)\} = \, –g(x)$.&nbsp; Insbesondere gilt auch:
 +
:$${\cal H}\left \{ \cos(x) \right\} = \sin(x)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}  {\cal H}\left \{ \sin(x) \right\} = -\cos(x)\hspace{0.05cm}.$$}}
  
 
==Dämpfung und Phase von Minimum–Phasen–Systemen==
 
==Dämpfung und Phase von Minimum–Phasen–Systemen==
 +
<br>
 +
Eine wichtige Anwendung der Hilbert–Transformation stellt der Zusammenhang zwischen Dämpfung und Phase bei den so genannten ''Minimum–Phasen–Systemen''&nbsp; dar. Im Vorgriff auf das folgende Kapitel &nbsp;[[Lineare_zeitinvariante_Systeme/Laplace–Transformation_und_p–Übertragungsfunktion|Laplace–Transformation und p–Übertragungsfunktion]]&nbsp;  sei erwähnt, dass diese Systeme in der rechten&nbsp; $p$–Halbebene weder Pole noch Nullstellen aufweisen dürfen.
 +
 +
Allgemein gilt für die Übertragungsfunktion &nbsp;$H(f)$&nbsp; mit dem &nbsp;[[Lineare_zeitinvariante_Systeme/Einige_Ergebnisse_der_Leitungstheorie#Ersatzschaltbild_eines_kurzen_Leitungsabschnitts|komplexen Übertragungsmaß]]&nbsp; $g(f)$&nbsp; sowie der Dämpfungsfunktion &nbsp;$a(f)$&nbsp; und der Phasenfunktion &nbsp;$b(f)$:
 +
:$$H(f) = {\rm e}^{-g(f)} = {\rm e}^{-a(f)\hspace{0.05cm}- \hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}b(f)}  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}  g(f) = a(f)+ {\rm j} \cdot b(f)\hspace{0.05cm}.$$
 +
Bei den Minimum–Phasen–Systemen gilt nun aber nicht nur wie bei allen realisierbaren Systemen die Hilbert–Transformation
 +
*bezüglich Imaginär– und Realteil &nbsp; &rArr; &nbsp; ${\rm Im} \left\{ H(f) \right \}  \, \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow \, {\rm Re} \left\{ H(f) \right \}\hspace{0.01cm},$
 +
*sondern zusätzlich auch noch die Hilbert–Korrespondenz zwischen der Phasen– und der Dämpfungsfunktion &nbsp; &rArr; &nbsp; $b(f)  \, \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow \, a(f)\hspace{0.05cm}.$
 +
 +
 +
{{GraueBox|TEXT= 
 +
$\text{Beispiel 5:}$&nbsp;
 +
Ein Tiefpass besitze im&nbsp; "Durchlassbereich"&nbsp; &ndash; also für &nbsp;$\vert f \vert < f_{\rm G}$ &ndash; den Frequenzgang &nbsp;$H(f) = 1$ &nbsp; ⇒  &nbsp; $a(f) =0$&nbsp; Neper&nbsp; ${\rm (Np)}$,&nbsp; während für größere Frequenzen die Dämpfungsfunktion &nbsp;$a(f)$&nbsp; den konstanten Wert &nbsp;$a_{\rm S}$ (in Neper) besitzt.
 +
 +
[[Datei:P_ID1753__LZI_T_3_1_S5_neu.png|right|frame|Dämpfungs&ndash; und Phasenfunktion eines beispielhaften Minimum–Phasen–Tiefpasses|class=fit]]
 +
 +
*In diesem&nbsp; "Sperrbereich"&nbsp; ist &nbsp;$H(f) = {\rm e}^{–a_{\rm S} }$&nbsp; zwar sehr klein, aber nicht Null.
 +
*Soll der Tiefpass kausal und damit realisierbar sein, so muss die Phasenfunktion &nbsp;$b(f)$&nbsp; gleich der Hilbert–Transformierten der Dämpfung &nbsp;$a(f)$&nbsp; sein.
 +
* Da die Hilbert–Transformierte einer Konstanten gleich Null ist, kann in gleicher Weise von der Funktion &nbsp;$a(f) - a_{\rm S}$&nbsp; ausgegangen werden.
 +
 +
 +
Diese in der Grafik gestrichelt eingezeichnete Funktion ist zwischen &nbsp;$±f_{\rm G}$&nbsp; rechteckförmig und gleichzeitig negativ.
 +
 +
Entsprechend der&nbsp; [[Lineare_zeitinvariante_Systeme/Folgerungen_aus_dem_Zuordnungssatz#Einige_Paare_von_Hilbert.E2.80.93Korrespondenzen|Tabelle]]&nbsp;auf der letzten Seite gilt deshalb:
 +
:$$b(f)  = {a_{\rm S} }/{\pi} \cdot {\rm ln}\hspace{0.1cm}\left\vert \frac{f+f_{\rm G} }{f-f_{\rm  G} }\right \vert \hspace{0.05cm}.$$
 +
Jeder andere Phasenverlauf würde dagegen zu einer akausalen Impulsantwort führen.}}
  
Eine wichtige Anwendung der Hilbert–Transformation stellt der Zusammenhang zwischen Dämpfung und Phase bei den sogenannten Minimum–Phasen–Systemen dar. Im Vorgriff auf das Kapitel 3.2  sei erwähnt, dass diese Systeme in der rechten $p$–Halbebene weder Pole noch Nullstellen aufweisen dürfen.
+
==Aufgaben zum Kapitel==
  
Allgemein gilt für die Übertragungsfunktion $H(f)$ mit dem komplexen Übertragungsmaß $g(f)$ sowie der Dämpfungsfunktion $a(f)$ und der Phasenfunktion $b(f)$:
+
[[Aufgaben:3.1_Kausalitätsbetrachtungen| Aufgabe 3.1: Kausalitätsbetrachtungen]]
$$H(f) = {\rm e}^{-g(f)} = {\rm e}^{-a(f)\hspace{0.05cm}- \hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}b(f)}  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}  g(f) = a(f)+ {\rm j} \cdot b(f)\hspace{0.05cm}.$$
 
Bei den Minimum–Phasen–Systemen gilt nun aber nicht nur wie bei allen realisierbaren Systemen die Hilbert–Transformation bezüglich Imaginär– und Realteil,
 
$${\rm Im} \left\{ H(f) \right \}  \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad {\rm Re} \left\{ H(f) \right \}\hspace{0.05cm},$$
 
sondern zusätzlich auch noch die Hilbert–Korrespondenz zwischen Phasen– und Dämpfungsfunktion:
 
$$b(f)  \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad a(f)\hspace{0.05cm}.$$
 
{{Beispiel}}
 
Ein Tiefpass besitze im Durchlassbereich, also für $|f| < f_{\rm G}$, den Frequenzgang $H(f) =$ 1 ⇒  $a(f) =$ 0 Np, während für größere Frequenzen die Dämpfungsfunktion $a(f)$ den konstanten Wert $a_{\rm S}$ (in Neper) besitzt. In diesem Sperrbereich ist $H(f) = {\rm exp}(–a_{\rm S})$ zwar sehr klein, aber nicht 0.
 
  
[[Datei:P_ID1753__LZI_T_3_1_S5_neu.png|Dämpfung und Phase eines beispielhaften Minimum–Phasen–Tiefpasses|class=fit]]
+
[[Aufgaben:3.1Z_Hilbert-Transformierte|Aufgabe 3.1Z: Hilbert-Transformierte]]
  
Soll der Tiefpass kausal und damit realisierbar sein, so muss die Phasenfunktion $b(f)$ gleich der Hilbert–Transformierten der Dämpfung $a(f)$ sein. Da die Hilbert–Transformierte einer Konstanten 0 ist, kann in gleicher Weise von der Funktion $a(f) – a_{\rm S}$ ausgegangen werden. Diese in der Grafik gestrichelt eingezeichnete Funktion ist zwischen $±f_{\rm G}$ (negativ) rechteckförmig. Entsprechend der Tabelle  auf der letzten Seite gilt deshalb:
 
$$b(f)  = \frac{a_{\rm S}}{\pi} \cdot {\rm ln}\hspace{0.1cm}\left|\frac{f+f_{\rm G}}{f-f_{\rm  G}}\right|\hspace{0.05cm}.$$
 
Jeder andere Phasenverlauf würde dagegen zu einer akausalen Impulsantwort führen.
 
{{end}}
 
  
 
==Quellenverzeichnis==
 
==Quellenverzeichnis==

Aktuelle Version vom 9. Oktober 2021, 15:17 Uhr

# ÜBERBLICK ZUM DRITTEN HAUPTKAPITEL #


In den beiden ersten Kapiteln wurden aus Darstellungsgründen meist Filterfunktionen mit reellwertigen Frequenzgängen betrachtet, so dass die dazugehörige Zeitfunktion symmetrisch zum Zeitnullpunkt ist. Die Impulsantwort eines realisierbaren Systems muss aber stets kausal sein, das heißt, es muss  $h(t)$  für  $t < 0$  identisch Null sein. Diese starke Asymmetrie der Zeitfunktion  $h(t)$  bedeutet aber gleichzeitig, dass der Frequenzgang  $H(f)$  eines realisierbaren Systems mit Ausnahme von  $H(f) = K$  immer komplexwertig ist, wobei zwischen dessen Realteil und Imaginärteil ein fester Zusammenhang besteht.

Dieses dritte Kapitel bringt eine zusammenfassende Darstellung der Beschreibung kausaler realisierbarer Systeme, die sich auch von den mathematischen Methoden her von den bei akausalen Systemen üblichen Verfahren unterscheiden.

Im Einzelnen wird nachfolgend behandelt:

  • die Hilbert–Transformation, die aussagt, wie Real– und Imaginärteil von  $H(f)$  zusammenhängen,
  • die Laplace–Transformation, die bei kausalem  $h(t)$  eine weitere Spektralfunktion  $H_{\rm L}(p)$  liefert,
  • die Beschreibung realisierbarer Systeme durch das Pol–Nullstellen–Diagramm, sowie
  • die Laplace–Rücktransformation unter Anwendung der Funktionentheorie (Residuensatz).


Zu diesem Kapitel empfehlen wir


Voraussetzungen für das gesamte Kapitel „Realisierbare Systeme”


In den beiden ersten Kapiteln wurden meist reelle  Übertragungsfunktionen   $H(f)$  betrachtet, bei denen demzufolge die zugehörige Impulsantwort  $h(t)$  stets symmetrisch zum Bezugszeitpunkt  $t = 0$  ist. Solche Übertragungsfunktionen

  • eignen sich, um grundlegende Zusammenhänge einfach zu erklären,
  • sind aber leider aus Kausalitätsgründen nicht realisierbar.


Dies wird deutlich, wenn man sich die Definition der Impulsantwort betrachtet:

$\text{Definition:}$  Die  Impulsantwort  $h(t)$  ist gleich dem Ausgangssignal  $y(t)$  des Systems, wenn am Eingang zum Zeitpunkt  $t = 0$  ein unendlich kurzer Impuls mit unendlich großer Ampltude anliegt:   $x(t) = δ(t)$. Man bezeichnet einen solchen Impuls als Diracimpuls.


Es ist offensichtlich, dass keine Impulsantwort realisiert werden kann, für die  $h(t < 0) ≠ 0$  gilt.

$\text{Definition:}$  Bei einem  kausalen System  ist die Impulsantwort $h(t)$ für alle Zeiten  $t < 0$  identisch Null.


Die einzige reelle Übertragungsfunktion, die der Kausalitätsbedingung „das Ausgangssignal kann nicht vor dem Eingangssignal beginnen” genügt, lautet:

$$H(f) = K \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h(t) = K \cdot \delta(t).$$

Alle anderen reellwertigen Übertragungsfunktionen  $H(f)$  beschreiben akausale Systeme und sind somit durch ein (elektrisches) Schaltungsnetzwerk nicht zu realisieren.

$\text{In anderen Worten:}$   Außer der Übertragungsfunktion  $H(f) = K$  ist jede realistische Übertragungsfunktion komplex.

  • Gilt zudem  $K=1$, so bezeichnet man die Übertragungsfunktion als ideal. 
  • Der Ausgang  $y(t)$  ist dann identische mit dem Eingang  $x(t)$  – auch ohne Dämpfung oder Verstärkung.

Real– und Imaginärteil einer kausalen Übertragungsfunktion


Jede kausale Impulsantwort  $h(t)$  kann als Summe eines geraden Anteils  $h_{\rm g}(t)$  und eines ungeraden Anteils  $h_{\rm u}(t)$  dargestellt werden:

$$\begin{align*} h_{ {\rm g}}(t) & = {1}/{2}\cdot \big[ h(t) + h(-t) \big]\hspace{0.05cm},\\ h_{ {\rm u}}(t) & = {1}/{2}\cdot \big[ h(t) - h(-t) \big] = h_{ {\rm g}}(t) \cdot {\rm sign}(t)\hspace{0.05cm} .\end{align*}$$

Hierbei ist die sogenannte  Signum–Funktion  verwendet:

$${\rm sign}(t) = \left\{ \begin{array}{c} -1 \\ +1 \\ \end{array} \right.\quad \quad \begin{array}{c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} { t < 0,} \\ { t > 0.} \\ \end{array}$$

$\text{Beispiel 1:}$  Die Grafik zeigt diese Aufspaltung für eine kausale exponentiell abfallende Impulsantwort eines Tiefpasses erster Ordnung entsprechend  Aufgabe 1.3Z:

Aufteilung der Impulsantwort in einen geraden und einen ungeraden Anteil
$$h(t) = \left\{ \begin{array}{c} 0 \\ 0.5/T \\ 1/T \cdot {\rm e}^{-t/T} \end{array} \right.\quad \begin{array}{c} {\rm{f\ddot{u}r} } \\ {\rm{f\ddot{u}r} } \\ {\rm{f\ddot{u}r} } \end{array}\begin{array}{*{20}c} { t < 0\hspace{0.05cm},} \\ { t = 0\hspace{0.05cm},} \\{ t > 0\hspace{0.05cm}.} \end{array}$$

Man erkennt:

  • Für positive Zeiten gilt  $h_{\rm g}(t) = h_{\rm u}(t) = h(t)/2$.
  • Für negative Zeiten unterscheiden sich  $h_{\rm g}(t)$  und  $h_{\rm u}(t)$  nur durch das Vorzeichen.
  • Für alle Zeiten gilt  $h(t) = h_{\rm g}(t) + h_{\rm u}(t)$, auch zum Zeitpunkt  $t = 0$ (durch Kreise markiert).


Betrachten wir nun den gleichen Sachverhalt im Spektralbereich. Nach dem  Zuordnungssatz  gilt für die komplexe Übertragungsfunktion:  

$$H(f) = {\rm Re} \left\{ H(f) \right \} + {\rm j} \cdot {\rm Im} \left\{ H(f) \right \} ,$$

wobei folgende Zuordnung gilt:

$${\rm Re} \left\{ H(f) \right \} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h_{ {\rm g}}(t)\hspace{0.05cm},$$
$${\rm j} \cdot {\rm Im} \left\{ H(f) \right\} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h_{ {\rm u}}(t)\hspace{0.05cm}.$$

Zunächst soll an einem weiteren Beispiel dieser Zusammenhang zwischen Real– und Imaginärteil von  $H(f)$  herausgearbeitet werden.

$\text{Beispiel 2:}$  Wir gehen von einem Tiefpass erster Ordnung aus, für dessen Übertragungsfunktion gilt:

$$H(f) = \frac{1}{1+{\rm j}\cdot f/f_{\rm G} } = \frac{1}{1+(f/f_{\rm G})^2}- {\rm j} \cdot \frac{f/f_{\rm G} }{1+(f/f_{\rm G})^2} \hspace{0.05cm}.$$
Frequenzgang eines Tiefpasses erster Ordnung  (Real– und Imaginärteil)

Hierbei gibt  $f_{\rm G}$  die 3dB–Grenzfrequenz an, bei der  $\vert H(f)\vert^2$  auf die Hälfte seines Maximums  $($bei  $f = 0)$  abgesunken ist. Die dazugehörige Impulsantwort  $h(t)$  wurde bereits im obigen  $\text{Beispiel 1}$  für  $f_{\rm G} = 1/(2πT)$  dargestellt.

Die Grafik zeigt den Realteil (blau) und den Imaginärteil (rot) von  $H(f)$. Grün–gestrichelt ist zudem der Betrag dargestellt.

Nachdem die Zeitfunktionen  $h_{\rm g}(t)$  und  $h_{\rm u}(t)$  über die Signumfunktion zusammenhängen, besteht auch

  • zwischen dem Realteil   ⇒   ${\rm Re} \{H(f)\}$ 
  • und dem Imaginärteil   ⇒  ${\rm Im} \{H(f)\}$ 


der Übertragungsfunktion eine feste Verknüpfung   ⇒   die  Hilbert–Transformation.

Diese wird nachfolgend beschrieben.

Hilbert–Transformation


Wir betrachten hier ganz allgemein zwei Zeitfunktionen  $u(t)$  und  $w(t) = \sign(t) · u(t)$.

  • Die dazugehörigen Spektralfunktionen werden mit  $U(f)$  und  ${\rm j} · W(f)$  bezeichnet.
  • Das heißt, in diesem Abschnitt gilt  ${w(t) \, \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \, {\rm j} \cdot W(f) }$  und nicht die sonst übliche Fourierkorrespondenz  ${w(t) \, \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \, W(f)}.$


Mit der Korrespondenz   ${\rm sign}(t) \, \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \, {1}/({{\rm j} \, \pi f })$   erhält man nach Ausschreiben des Faltungsintegrals mit der Integrationsvariablen  $ν$ :

$${\rm j} \cdot W(f) = \frac{1}{{\rm j} \, \pi f }\, \star \, U(f) \quad \Rightarrow \quad W(f) = -\frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{U(\nu)}{f - \nu}}\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$

Da aber gleichzeitig auch   $u(t) = \sign(t) · w(t)$   zutrifft, gilt in gleicher Weise:

$$U(f) = \frac{1}{{\rm j} \, \pi f }\, \star \, {\rm j} \cdot W(f) \quad \Rightarrow \quad U(f) = \frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{W(\nu)}{f - \nu}}\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$

Man hat diese „Integraltransformationen” nach ihrem Entdecker  David Hilbert  benannt.

$\text{Definition:}$  Beide Varianten der  Hilbert–Transformation  werden im weiteren Verlauf mit folgenden Kurzzeichen gekennzeichnet:

$$W(f) \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad U(f) \hspace{0.8cm}{\rm bzw.}\hspace{0.8cm}W(f)= {\cal H}\left\{U(f) \right \}\hspace{0.05cm}.$$
  • Zur Berechnung des durch die Pfeilspitze markierten Spektrums – hier  $U(f)$  – wird von den beiden ansonsten identischen oberen Gleichungen die Gleichung mit positivem Vorzeichen genommen:
$$U(f) = \frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{W(\nu)}{f - \nu} }\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$
  • Das durch den Kreis markierte Spektrum – hier  $W(f)$  – ergibt sich aus der Gleichung mit negativem Vorzeichen:
$$ W(f) = -\frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{U(\nu)}{f - \nu} }\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$


Bei doppelter Anwendung der Hilbert–Transformation erhält man wieder die ursprüngliche Funktion mit Vorzeichenwechsel, bei vierfacher Anwendung die ursprüngliche Funktion inklusive dem richtigen Vorzeichen:

$${\cal H}\left\{ {\cal H}\left\{ U(f) \right \} \right \} = -U(f), \hspace{0.2cm} {\cal H}\left\{ {\cal H}\left\{ {\cal H}\left\{ {\cal H}\left\{ U(f) \right \} \right \} \right \} \right \}= U(f)\hspace{0.05cm}.$$

$\text{Beispiel 3:}$  In  [Mar94][1]  findet man die folgende Hilbert–Korrespondenz:

$$\frac{1}{1+x^2} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad \frac{x}{1+x^2}\hspace{0.05cm}.$$
  • Hierbei steht  $x$  stellvertretend für eine geeignet normierte Zeit– oder Frequenzvariable.
  • Benutzen wir beispielsweise  $x = f/f_{\rm G}$  als normierte Frequenzvariable, so erhält man daraus die Korrespondenz:
$$\frac{1}{1+(f/f_{\rm G})^2} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad \frac{f/f_{\rm G} }{1+(f/f_{\rm G})^2}\hspace{0.05cm}.$$

Ausgehend von der Gleichung

$${\rm Im} \left\{ H(f) \right \} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad {\rm Re} \left\{ H(f) \right \}$$

wird somit das auf im  $\text{Beispiel 2}$  gefundene Ergebnis bestätigt:

$${\rm Im} \left\{ H(f) \right \} = \frac{-f/f_{\rm G} }{1+(f/f_{\rm G})^2}\hspace{0.05cm}.$$

Einige Paare von Hilbert–Korrespondenzen


Zur Herleitung von Hilbert–Korrespondenzen geht man sehr pragmatisch vor, nämlich wie folgt:

  • Man berechnet die  Laplace–Transformierte  $Y_{\rm L}(p)$  der Funktion  $y(t)$, wie nachfolgend beschrieben. Diese ist bereits implizit kausal.
Tabelle mit Hilbert–Korrespondenzen
  • Man wandelt die Spektralfunktion  $Y_{\rm L}(p)$  in das zugehörige Fourierspektrum  $Y(f)$  um und spaltet dieses in Real– und Imaginärteil auf.  Dazu ersetzt man die Variable  $p$  durch  ${\rm j \cdot 2}πf.$


Der Real– und Imaginärteil – also  ${\rm Re} \{Y(f)\}$  und  ${\rm Im} \{Y(f)\}$ – sind somit ein Paar von Hilbert–Transformierten. Man ersetzt weiter

  1.   die Frequenzvariable  $f$  durch  $x$,
  2.   ${\rm Re} \{Y(f)\}$  durch  $g(x)$, und
  3.   ${\rm Im} \{Y(f)\}$  durch  ${\cal H} \{g(x)\}$.


Die neue Variable  $x$  kann sowohl eine (geeignet) normierte Frequenz oder auch eine (geeignet) normierte Zeit beschreiben. Somit ist die  Hilbert–Transformation  auf verschiedene Probleme anwendbar.

Die Tabelle zeigt einige solcher Hilbertpaare.   Auf die Vorzeichen wurde verzichtet, so dass beide Richtungen gültig sind.

$\text{Beispiel 4:}$  Gilt beispielsweise  ${\cal H} \{g(x)\} = f(x)$,  so folgt daraus auch  ${\cal H} \{f(x)\} = \, –g(x)$.  Insbesondere gilt auch:

$${\cal H}\left \{ \cos(x) \right\} = \sin(x)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} {\cal H}\left \{ \sin(x) \right\} = -\cos(x)\hspace{0.05cm}.$$

Dämpfung und Phase von Minimum–Phasen–Systemen


Eine wichtige Anwendung der Hilbert–Transformation stellt der Zusammenhang zwischen Dämpfung und Phase bei den so genannten Minimum–Phasen–Systemen  dar. Im Vorgriff auf das folgende Kapitel  Laplace–Transformation und p–Übertragungsfunktion  sei erwähnt, dass diese Systeme in der rechten  $p$–Halbebene weder Pole noch Nullstellen aufweisen dürfen.

Allgemein gilt für die Übertragungsfunktion  $H(f)$  mit dem  komplexen Übertragungsmaß  $g(f)$  sowie der Dämpfungsfunktion  $a(f)$  und der Phasenfunktion  $b(f)$:

$$H(f) = {\rm e}^{-g(f)} = {\rm e}^{-a(f)\hspace{0.05cm}- \hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}b(f)} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} g(f) = a(f)+ {\rm j} \cdot b(f)\hspace{0.05cm}.$$

Bei den Minimum–Phasen–Systemen gilt nun aber nicht nur wie bei allen realisierbaren Systemen die Hilbert–Transformation

  • bezüglich Imaginär– und Realteil   ⇒   ${\rm Im} \left\{ H(f) \right \} \, \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow \, {\rm Re} \left\{ H(f) \right \}\hspace{0.01cm},$
  • sondern zusätzlich auch noch die Hilbert–Korrespondenz zwischen der Phasen– und der Dämpfungsfunktion   ⇒   $b(f) \, \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow \, a(f)\hspace{0.05cm}.$


$\text{Beispiel 5:}$  Ein Tiefpass besitze im  "Durchlassbereich"  – also für  $\vert f \vert < f_{\rm G}$ – den Frequenzgang  $H(f) = 1$   ⇒   $a(f) =0$  Neper  ${\rm (Np)}$,  während für größere Frequenzen die Dämpfungsfunktion  $a(f)$  den konstanten Wert  $a_{\rm S}$ (in Neper) besitzt.

Dämpfungs– und Phasenfunktion eines beispielhaften Minimum–Phasen–Tiefpasses
  • In diesem  "Sperrbereich"  ist  $H(f) = {\rm e}^{–a_{\rm S} }$  zwar sehr klein, aber nicht Null.
  • Soll der Tiefpass kausal und damit realisierbar sein, so muss die Phasenfunktion  $b(f)$  gleich der Hilbert–Transformierten der Dämpfung  $a(f)$  sein.
  • Da die Hilbert–Transformierte einer Konstanten gleich Null ist, kann in gleicher Weise von der Funktion  $a(f) - a_{\rm S}$  ausgegangen werden.


Diese in der Grafik gestrichelt eingezeichnete Funktion ist zwischen  $±f_{\rm G}$  rechteckförmig und gleichzeitig negativ.

Entsprechend der  Tabelle auf der letzten Seite gilt deshalb:

$$b(f) = {a_{\rm S} }/{\pi} \cdot {\rm ln}\hspace{0.1cm}\left\vert \frac{f+f_{\rm G} }{f-f_{\rm G} }\right \vert \hspace{0.05cm}.$$

Jeder andere Phasenverlauf würde dagegen zu einer akausalen Impulsantwort führen.

Aufgaben zum Kapitel

Aufgabe 3.1: Kausalitätsbetrachtungen

Aufgabe 3.1Z: Hilbert-Transformierte


Quellenverzeichnis

  1. Marko, H.:  Methoden der Systemtheorie.  3. Auflage. Berlin – Heidelberg: Springer, 1994.