Aufgaben:Aufgabe 4.8: Numerische Auswertung der AWGN-Kanalkapazität: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(24 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID2936__Inf_A_4_8_Tab.png|right|]]
+
[[Datei:P_ID2936__Inf_A_4_8_Tab.png|right|frame|$C$  als Funktion von  $E_{\rm S}/{N_0}$]]
Für die Kanalkapazität <i>C</i> des AWGN&ndash;Kanals als obere Schranke für die Coderate <i>R</i> bei Digitalsignalübertragung gibt es zwei verschiedene Gleichungen :
+
Für die Kanalkapazität&nbsp; $C$&nbsp; des AWGN&ndash;Kanals als obere Schranke für die Coderate&nbsp; $R$&nbsp; bei Digitalsignalübertragung gibt es zwei verschiedene Gleichungen:
  
'''Kanalkapazität <i>C</i> in Abhängigkeit von <i>E</i><sub>S</sub>/<i>N</i><sub>0</sub>: '''
+
 
$$C( E_{\rm S}/{N_0}) = \frac{1}{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot E_{\rm S}}{N_0})  .$$
+
$\text{Kanalkapazität in Abhängigkeit der Energie pro Symbol}$:
 +
:$$C( E_{\rm S}/{N_0}) = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot E_{\rm S}}{N_0})  .$$
 
Hierbei sind folgende Abkürzungen verwendet:
 
Hierbei sind folgende Abkürzungen verwendet:
:* <i>E</i><sub>S</sub>: die Energie pro Symbol des Digitalsignals,
+
* $E_{\rm S}$&nbsp; bezeichnet die (mittlere) Energie pro Symbol des Digitalsignals,
:* <i>N</i><sub>0</sub>: die AWGN&ndash;Rauschleistungsdichte.
+
* $N_0$&nbsp; gibt die AWGN&ndash;Rauschleistungsdichte an.
 +
 
 +
 
 +
 
 +
$\text{Kanalkapazität in Abhängigkeit der Energie pro Bit}$:
 +
:$$C( E_{\rm B}/{N_0}) = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot R \cdot E_{\rm B}}{N_0}) .$$
 +
 
 +
*Zu berücksichtigen ist der Zusammenhang &nbsp;$E_{\rm S} = R \cdot E_{\rm B}$, wobei &nbsp;$R$&nbsp; die Coderate der bestmöglichen Kanalcodierung angibt.
 +
*Eine fehlerfreie Übertragung (bei optimalem Code) ist für das gegebene &nbsp;$E_{\rm B}/N_0$&nbsp; möglich, so lange &nbsp;$R \le C$&nbsp; gilt &nbsp; &#8658; &nbsp;  [[Informationstheorie/Anwendung_auf_die_Digitalsignalübertragung#Definition_und_Bedeutung_der_Kanalkapazit.C3.A4t|Kanalcodierungstheorem von Shannon]].
 +
 
 +
 
 +
Durch die Tabelle vorgegeben ist der Kurvenverlauf der Kanalkapazität in Abhängigkeit von &nbsp;$E_{\rm S}/N_0$.&nbsp; Im Mittelpunkt dieser Aufgabe steht die numerische Auswertung der zweiten Gleichung.
 +
 
 +
 
 +
 
  
'''Kanalkapazität <i>C</i> in Abhängigkeit von <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>:'''
 
$$C( E_{\rm B}/{N_0}) = \frac{1}{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot R \cdot E_{\rm B}}{N_0}) .$$
 
  
Berücksichtigt ist der Zusammenhang <i>E</i><sub>S</sub> = <i>R</i> &middot; <i>E</i><sub>B</sub>, wobei <i>R</i> die Coderate der bestmöglichen Kanalcodierung angibt. Eine fehlerfreie Übertragung (unter Berücksichtigung dieses optimalen Codes) ist für das gegebene <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub> möglich, so lange <i>R</i> &#8804; <i>C</i> gilt &nbsp;&#8658;&nbsp;  [[Informationstheorie/Anwendung_auf_die_Digitalsignalübertragung#Definition_und_Bedeutung_der_Kanalkapazit.C3.A4t|''Kanalcodierungstheorem von Shannon.''']]
 
  
Durch die Tabelle vorgegeben ist der Kurvenverlauf <i>C</i>(<i>E</i><sub>S</sub>/<i>N</i><sub>0</sub>). Im Mittelpunkt dieser Aufgabe steht die numerische Auswertung der zweiten Gleichung.
+
 
'''Hinweis'''
+
 
:* Die Aufgabe gehört zum Themengebiet von [[Informationstheorie/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang|'''Kapitel 4.3.''']]
+
''Hinweise:''  
 +
*Die Aufgabe gehört zum Kapitel&nbsp; [[Informationstheorie/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang|AWGN–Kanalkapazität bei wertdiskretem Eingang]].
 +
*Bezug genommen wird insbesondere auf die Seiten&nbsp;
 +
**[[Informationstheorie/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang#Die_Kanalkapazit.C3.A4t_.7F.27.22.60UNIQ-MathJax83-QINU.60.22.27.7F_als_Funktion_von_.7F.27.22.60UNIQ-MathJax84-QINU.60.22.27.7F|Die Kanalkapazität&nbsp; $C$&nbsp; als Funktion von $E_{\rm S}/{N_0}$]],
 +
**[[Informationstheorie/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang#Die_Kanalkapazit.C3.A4t_.7F.27.22.60UNIQ-MathJax130-QINU.60.22.27.7F_als_Funktion_von_.7F.27.22.60UNIQ-MathJax131-QINU.60.22.27.7F|Die Kanalkapazität&nbsp; $C$&nbsp; als Funktion von $E_{\rm B}/{N_0}$]].
 +
*Da die Ergebnisse in &bdquo;bit&rdquo; angegeben werden sollen, wird in den Gleichungen  &bdquo;log&rdquo; &nbsp; &#8658; &nbsp; &bdquo;log<sub>2</sub>&rdquo; verwendet.
 +
 +
 
  
  
Zeile 25: Zeile 44:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Gleichungen beschreiben den Zusammenhang zwischen <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub> und der Rate <i>R</i> beim AWGN&ndash;Kanal exakt?
+
{Welche Gleichungen beschreiben den Zusammenhang zwischen &nbsp;$E_{\rm B}/{N_0}$&nbsp; und der Rate&nbsp; $R$&nbsp; beim AWGN&ndash;Kanal exakt?
 
|type="[]"}
 
|type="[]"}
+ <i>R</i> = 1/2 &middot; log<sub>2</sub> (1 + 2 &middot; <i>R</i> &middot; <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>),
+
+ Es gilt: &nbsp; $R = 1/2 \cdot \log_2  (1 + 2 \cdot  R \cdot E_{\rm B}/{N_0})$.
+ 2<sup>2</sup><sup><i>R</i></sup> = 1 + 2 &middot; <i>R</i> &middot; <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>,
+
+ Es gilt: &nbsp; $2^{2R} = 1 + 2 \cdot  R \cdot E_{\rm B}/{N_0}$.
+ <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub> = (2<sup>2</sup><sup><i>R</i></sup> &ndash;1)/(2<i>R</i>).
+
+ Es gilt: &nbsp; $E_{\rm B}/{N_0} = (2^{2R} -1)/(2R) $.
  
  
{Geben Sie den kleinstmöglichen Wert für <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub> an, mit dem man über den AWGN&ndash;Kanal noch fehlerfrei übertragen kann.
+
{Geben Sie den kleinstmöglichen Wert für &nbsp;$E_{\rm B}/{N_0}$&nbsp; an, mit dem man über den AWGN&ndash;Kanal noch fehlerfrei übertragen kann.
 
|type="{}"}
 
|type="{}"}
$Min [EB/N0]$ = { 0.693 3% }
+
$\text{Min} \ \big[E_{\rm B}/{N_0}\big] \ = \ $ { 0.693 3% }
  
{Welche Ergebnis erhält man in dB?
+
{Welches Ergebnis erhält man in&nbsp; $\rm dB$?
 
|type="{}"}
 
|type="{}"}
$Min[10 · lg (EB/N0)]$ = { 1.59 3% }
+
$\text{Min} \ \big[10 \cdot \lg (E_{\rm B}/{N_0})\big] \ = \ $ { -1.62--0.156 } $ \ \rm dB$
  
  
{Geben Sie die AWGN&ndash;Kanalkapazität für 10 &middot; lg (<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) = 0 dB an.
+
{Geben Sie die AWGN&ndash;Kanalkapazität&nbsp; $C$&nbsp; für &nbsp;$10 \cdot \lg (E_{\rm B}/{N_0}) = 0$&nbsp; dB an.
 
|type="{}"}
 
|type="{}"}
$10 · lg (EB/N0) = 0 dB:  C$ = { 0.5 3% }
+
$C \ = \ $ { 0.5 3% } $ \ \rm bit/Kanalzugriff$
  
  
{Geben Sie das erforderliche <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub> für fehlerfreie Übertragung mit <i>R</i> = 1 an. <u>Hinweis:</u> Die Lösung findet man in der Tabelle auf der Angabenseite.
+
{Geben Sie das erforderliche&nbsp; $E_{\rm B}/{N_0}$&nbsp; für fehlerfreie Übertragung mit&nbsp; $R = 1$&nbsp; an. &nbsp; <br><u>Hinweis:</u>&nbsp; Die Lösung findet man in der Tabelle auf der Angabenseite.
 
|type="{}"}
 
|type="{}"}
$R = 1:  Min [EB/N0]$ = { 1.5 3% }
+
$\text{Min} \ \big[E_{\rm B}/{N_0}\big] \ = \ $ { 1.5 3% }
  
  
{Wie kann ein Punkt der <i>C</i>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>)&ndash;Kurve einfacher ermittelt werden?
+
{Wie kann ein Punkt der &nbsp;$C(E_{\rm B}/{N_0})$&ndash;Kurve einfacher ermittelt werden?
|type="[]"}
+
|type="()"}
- Berechnung der Kanalkapazität <i>C</i> für das vorgegebene <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>.
+
- Berechnung der Kanalkapazität&nbsp; $C$&nbsp; für das vorgegebene &nbsp;$E_{\rm B}/{N_0}$.
+ Berechnung des  erforderlichen <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub> für das vorgegebene <i>C</i>.
+
+ Berechnung des  erforderlichen &nbsp;$E_{\rm B}/{N_0}$&nbsp; für das vorgegebene&nbsp; $C$.
  
  
Zeile 62: Zeile 81:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Ausgehend von der Gleichung
+
'''(1)'''&nbsp; <u>Alle Lösungsvorschläge</u> sind richtig:
$$C = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 +  { 2 \cdot E_{\rm S}}/{N_0}) $$
+
*Ausgehend von der Gleichung  
erhält man mit <i>C</i> = <i>R</i> und <i>E</i><sub>S</sub> = <i>R</i> &middot; <i>E</i><sub>B</sub> die Gleichung gemäß Lösungsvorschlag 1:
+
:$$C = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 +  { 2 \cdot E_{\rm S}}/{N_0}) $$
$$R = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 +  { 2 \cdot R \cdot E_{\rm B}}/{N_0})\hspace{0.05cm}. $$
+
:erhält man mit &nbsp;$C = R$&nbsp; und &nbsp;$E_{\rm S} = R &middot; E_{\rm B}$&nbsp; die Gleichung gemäß Lösungsvorschlag 1:
Bringt man den Faktor 1/2 auf die linke Seite der Gleichung und bildet die Potenz zur Basis 2, so erhält man den Lösungsvorschlag 2:
+
:$$R = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 +  { 2 \cdot R \cdot E_{\rm B}}/{N_0})\hspace{0.05cm}. $$
$$2^{2R} =  1 +  2 \cdot R \cdot E_{\rm B}/{N_0}\hspace{0.05cm}. $$
+
*Bringt man den Faktor&nbsp; $1/2$&nbsp; auf die linke Seite der Gleichung und bildet die Potenz zur Basis&nbsp; $2$, so erhält man den Vorschlag 2:
Löst man diese Gleichung nach <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub> auf, so ergibt sich
+
:$$2^{2R} =  1 +  2 \cdot R \cdot E_{\rm B}/{N_0}\hspace{0.05cm}. $$
$$E_{\rm B}/{N_0} = \frac{2^{2R} -  1}  { 2 R}  \hspace{0.05cm}. $$
+
*Löst man diese Gleichung nach &nbsp;$E_{\rm B}/{N_0}$&nbsp; auf, so ergibt sich
Das bedeutet: <u>Alle Lösungsvorschläge</u> sind richtig.
+
:$$E_{\rm B}/{N_0} = \frac{2^{2R} -  1}  { 2 R}  \hspace{0.05cm}. $$
 +
 
 +
 
  
'''(2)'''&nbsp; Über einen Kanal mit der Kanalkapazität <i>C</i> ist eine fehlerfreie Übertragung möglich, solange die Coderate <i>R</i> &#8804; <i>C</i> ist. Die absolute Grenze ergibt sich im Grenzfall <i>C</i> = <i>R</i> = 0. Oder präziser ausgedrückt: für ein beliebig kleines positives <i>&epsilon;</i>: <i>C</i> = <i>R</i> = <i>&epsilon;</i> mit <i>&epsilon;</i> &#8594; 0.
+
'''(2)'''&nbsp; Über einen Kanal mit der Kanalkapazität&nbsp; $C$&nbsp; ist eine fehlerfreie Übertragung möglich, solange die Coderate &nbsp;$R &#8804; C$&nbsp; ist.  
 +
*Die absolute Grenze ergibt sich im Grenzfall &nbsp;$C=R = 0$.
  
Mit dem Ergebnis der Teilaufgabe (a) lautet die Bestimmungsgleichung:
+
*Oder präziser ausgedrückt:&nbsp; Für ein beliebig kleines positives&nbsp; $&epsilon;$&nbsp; muss gelten: &nbsp; $C=R =&epsilon;$&nbsp; mit &nbsp;$&epsilon; &#8594; 0$.
$${\rm Min}\hspace{0.1cm}[E_{\rm B}/{N_0}] = \lim\limits_{R \hspace{0.05cm}\rightarrow \hspace{0.05cm}0}\frac{2^{2R} -  1}  { 2 R}  \hspace{0.05cm}. $$
+
 
Da hier der Quotient im Grenzübergang <i>R</i>&nbsp;&#8594;&nbsp;0 das Ergebnis &bdquo;0 geteilt durch 0&rdquo; liefert, ist hier die [https://de.wikipedia.org/wiki/Regel_von_de_l’Hospital|'''l'Hospitalsche Regel'''] anzuwenden: Man differenziert Zähler und Nenner, bildet den Quotienten und setzt schließlich <i>R</i> = 0 ein. Mit <i>x</i> = 2<i>R</i> lautet das Ergebnis:
+
*Mit dem Ergebnis der Teilaufgabe&nbsp; '''(1)'''&nbsp; lautet die Bestimmungsgleichung:
$${\rm Min}\hspace{0.1cm}[E_{\rm B}/{N_0}] = \lim\limits_{x \hspace{0.05cm}\rightarrow \hspace{0.05cm}0}\frac{2^{x} -  1}  { x} = \frac{{\rm ln}\hspace{0.1cm} (2) \cdot 2^{x} }  { 1} \hspace{0.05cm}\bigg |_{x=0}  
+
:$${\rm Min}\hspace{0.1cm}\big[E_{\rm B}/{N_0}\big] = \lim\limits_{R \hspace{0.05cm}\rightarrow \hspace{0.05cm}0}\frac{2^{2R} -  1}  { 2 R}  \hspace{0.05cm}. $$
 +
*Da hier der Quotient im Grenzübergang &nbsp;$ R &#8594; 0$&nbsp; das Ergebnis &bdquo;0 geteilt durch 0&rdquo; liefert, ist hier die&nbsp; [https://de.wikipedia.org/wiki/Regel_von_de_l’Hospital l'Hospitalsche Regel]&nbsp; anzuwenden:&nbsp; <br>Man differenziert Zähler und Nenner, bildet den Quotienten und setzt schließlich &nbsp;$R = 0$&nbsp; ein.&nbsp;
 +
*Mit &nbsp;$x = 2R$&nbsp;  lautet das Ergebnis:
 +
:$${\rm Min}\hspace{0.1cm}\big[E_{\rm B}/{N_0}\big] = \lim\limits_{x \hspace{0.05cm}\rightarrow \hspace{0.05cm}0}\frac{2^{x} -  1}  { x} = \frac{{\rm ln}\hspace{0.1cm} (2) \cdot 2^{x} }  { 1} \hspace{0.05cm}\bigg |_{x=0}  
 
= {\rm ln}\hspace{0.1cm} (2) \hspace{0.15cm}\underline{= 0.693}  
 
= {\rm ln}\hspace{0.1cm} (2) \hspace{0.15cm}\underline{= 0.693}  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
 +
 +
  
 
'''(3)'''&nbsp; In logarithmierter Form erhält man:
 
'''(3)'''&nbsp; In logarithmierter Form erhält man:
$${\rm Min}\hspace{0.1cm}[10\cdot  {\rm lg} \hspace{0.1cm}(E_{\rm B}/{N_0})] =
+
:$${\rm Min}\hspace{0.1cm}\big[10\cdot  {\rm lg} \hspace{0.1cm}(E_{\rm B}/{N_0})\big] =
 
10\cdot  {\rm lg} \hspace{0.1cm}(0.693) \hspace{0.15cm}\underline{= -1.59\,{\rm dB}}  
 
10\cdot  {\rm lg} \hspace{0.1cm}(0.693) \hspace{0.15cm}\underline{= -1.59\,{\rm dB}}  
 
\hspace{0.05cm}. $$
 
\hspace{0.05cm}. $$
  
'''(4)'''&nbsp; Der Abszissenwert lautet somit in nichtlogarithmierter Form: <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub> = 1. Daraus folgt mit <i>C</i>&nbsp;=&nbsp;<i>R</i>:
+
 
$$\frac{2^{2C} -  1}  { 2 C} \stackrel{!}{=} 1  
+
 
 +
'''(4)'''&nbsp; Der Abszissenwert lautet somit in nichtlogarithmierter Form: &nbsp; $E_{\rm B}/{N_0} = 1$.&nbsp; Daraus folgt mit &nbsp;$C=R$:
 +
:$$\frac{2^{2C} -  1}  { 2 C} \stackrel{!}{=} 1  
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm}\underline{C = 0.5}
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm}\underline{C = 0.5}
 
\hspace{0.05cm}. $$
 
\hspace{0.05cm}. $$
  
'''(5)'''&nbsp; Für <i>R</i> = 1 ist <i>E</i><sub>B</sub> = <i>E</i><sub>S</sub>. Deshalb gilt:
+
 
$$ C(E_{\rm B}/{N_0}) = 1 \hspace{0.3cm}\Longleftrightarrow \hspace{0.3cm}
+
 
 +
'''(5)'''&nbsp; Für &nbsp;$R = 1$&nbsp; ist &nbsp;$E_{\rm B} = E_{\rm S}$. Deshalb gilt:
 +
:$$ C(E_{\rm B}/{N_0}) = 1 \hspace{0.3cm}\Longleftrightarrow \hspace{0.3cm}
 
C(E_{\rm S}/{N_0}) = 1
 
C(E_{\rm S}/{N_0}) = 1
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
Aus der Tabelle auf der Angabenseite ist abzulesen:
+
*Aus der Tabelle auf der Angabenseite ist abzulesen:
$$ C(E_{\rm S}/{N_0}) = 1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
+
:$$ C(E_{\rm S}/{N_0}) = 1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
E_{\rm S}/{N_0} = 1.5 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
E_{\rm S}/{N_0} = 1.5 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
\underline{E_{\rm B}/{N_0} = 1.5}\hspace{0.05cm}.$$
 
\underline{E_{\rm B}/{N_0} = 1.5}\hspace{0.05cm}.$$
Der dazugehörige dB&ndash;Wert ist 10 &middot; lg (<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) = 1.76 dB.
+
*Der dazugehörige dB&ndash;Wert ist &nbsp;$10 \cdot \lg (E_{\rm B}/{N_0}) = 1.76 \ \rm dB$.
  
Zum gleichen Ergebnis kommt man mit <i>R</i> = 1 über die Gleichung
+
*Zum gleichen Ergebnis kommt man mit &nbsp;$R = 1$&nbsp; über die Gleichung
$$E_{\rm B}/{N_0} = \frac{2^{2R} -  1}  { 2 \cdot R}  
+
:$$E_{\rm B}/{N_0} = \frac{2^{2R} -  1}  { 2 \cdot R}  
 
  = \frac{4 -  1}  { 2 } = 1.5 \hspace{0.05cm}.$$
 
  = \frac{4 -  1}  { 2 } = 1.5 \hspace{0.05cm}.$$
'''(6)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>, wie an einem Beispiel gezeigt werden soll.
+
 
:* Gesucht ist die Kanalkapazität  <i>C</i> für 10 &middot; lg (<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) = 15 dB &nbsp;&#8658;&nbsp; <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub> = 31.62. Dann gilt entsprechend dem Lösungsvorschlag 1 mit <i>x</i> = 2<i>C</i>:
+
 
$$31.62 = \frac{2^{x} -  1}  { x}  
+
 
 +
'''(6)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>, wie an einem Beispiel gezeigt werden soll:
 +
 
 +
'''(a)'''&nbsp; Gesucht ist die Kanalkapazität  &nbsp;$C$&nbsp; für &nbsp;$10 \cdot \lg (E_{\rm B}/{N_0}) = 15 \ {\rm dB}$ &nbsp; &#8658; &nbsp; &nbsp;$E_{\rm B}/{N_0} = 31.62$.  
 +
*Dann gilt entsprechend dem Lösungsvorschlag 1 mit &nbsp;$x = 2C$:
 +
[[Datei:P_ID2940__Inf_T_4_3_S4.png|right|frame|Kanalkapazitätskurven als Funktion von &nbsp;<br>$10 \cdot \lg (E_{\rm S}/{N_0})$&nbsp; und &nbsp;$10 \cdot \lg (E_{\rm B}/{N_0})$&nbsp; ]]
 +
:$$31.62 = \frac{2^{x} -  1}  { x}  
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
31.62 \cdot x = 2^{x} -  1
 
31.62 \cdot x = 2^{x} -  1
 
\hspace{0.05cm}. $$
 
\hspace{0.05cm}. $$
 
   
 
   
Die Lösung <i>x</i> = 7.986 &nbsp;&#8658;&nbsp; <i>C</i> = 3.993 (bit/use) kann nur grafisch oder iterativ gefunden werden.
+
*Die Lösung $x = 7.986$ &nbsp; &#8658; &nbsp; $C = 3.993 \ \rm (bit/use)$ kann nur grafisch oder iterativ gefunden werden.
 +
 
  
:* Gesucht ist der notwendige Abszissenwert 10 &middot; lg (<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) für die Kapazität <i>C</i> = 4 bit/Symbol:
+
'''(b)'''&nbsp; Gesucht ist der notwendige Abszissenwert &nbsp;$10 \cdot \lg (E_{\rm B}/{N_0})$&nbsp; für die Kapazität &nbsp;$C = 4 \ \rm bit/Symbol$:
$$E_{\rm B}/{N_0} = \frac{2^{2C} -  1}  { 2 \cdot C}  
+
:$$E_{\rm B}/{N_0} = \frac{2^{2C} -  1}  { 2 \cdot C}  
 
  = \frac{2^8 -  1}  { 8 } = 31.875  
 
  = \frac{2^8 -  1}  { 8 } = 31.875  
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
+
$$
 +
:$$\Rightarrow \hspace{0.3cm}
 
10\cdot  {\rm lg} \hspace{0.1cm}(E_{\rm B}/{N_0}) = 15.03\,{\rm dB}
 
10\cdot  {\rm lg} \hspace{0.1cm}(E_{\rm B}/{N_0}) = 15.03\,{\rm dB}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
'''4.'''
+
 
'''5.'''
+
 
'''6.'''
+
Die Grafik zeigt die AWGN&ndash;Kanalkapazität abhängig von&nbsp;
'''7.'''
+
* $10 \cdot \lg (E_{\rm S}/{N_0})$ &nbsp;&#8658;&nbsp; rote Kurve und  Zahlen; <br>diese geben die Kanalkapazität &nbsp;$C$&nbsp; für das vorgegebene &nbsp;$10 \cdot \lg (E_{\rm S}/{N_0})$&nbsp; an;
 +
* $10 \cdot \lg (E_{\rm B}/{N_0})$ &nbsp;&#8658;&nbsp; grüne Kurve und Zahlen; <br>diese geben das erforderliche &nbsp;$10 \cdot \lg (E_{\rm B}/{N_0})$&nbsp; für die vorgegebene Kanalkapazität &nbsp;$C$&nbsp;  an.
 +
 
 +
 
 +
Der Schnittpunkt der beiden Kurven liegt bei &nbsp;$1.76\ \rm  dB$.
 +
 
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Informationstheorie|^4.3 AWGN–Kanalkapazität bei wertdiskretem Eingang^]]
+
[[Category:Aufgaben zu Informationstheorie|^4.3 AWGN & wertdiskreter Eingang^]]

Aktuelle Version vom 4. November 2021, 09:39 Uhr

$C$  als Funktion von  $E_{\rm S}/{N_0}$

Für die Kanalkapazität  $C$  des AWGN–Kanals als obere Schranke für die Coderate  $R$  bei Digitalsignalübertragung gibt es zwei verschiedene Gleichungen:


$\text{Kanalkapazität in Abhängigkeit der Energie pro Symbol}$:

$$C( E_{\rm S}/{N_0}) = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot E_{\rm S}}{N_0}) .$$

Hierbei sind folgende Abkürzungen verwendet:

  • $E_{\rm S}$  bezeichnet die (mittlere) Energie pro Symbol des Digitalsignals,
  • $N_0$  gibt die AWGN–Rauschleistungsdichte an.


$\text{Kanalkapazität in Abhängigkeit der Energie pro Bit}$:

$$C( E_{\rm B}/{N_0}) = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot R \cdot E_{\rm B}}{N_0}) .$$
  • Zu berücksichtigen ist der Zusammenhang  $E_{\rm S} = R \cdot E_{\rm B}$, wobei  $R$  die Coderate der bestmöglichen Kanalcodierung angibt.
  • Eine fehlerfreie Übertragung (bei optimalem Code) ist für das gegebene  $E_{\rm B}/N_0$  möglich, so lange  $R \le C$  gilt   ⇒   Kanalcodierungstheorem von Shannon.


Durch die Tabelle vorgegeben ist der Kurvenverlauf der Kanalkapazität in Abhängigkeit von  $E_{\rm S}/N_0$.  Im Mittelpunkt dieser Aufgabe steht die numerische Auswertung der zweiten Gleichung.





Hinweise:



Fragebogen

1

Welche Gleichungen beschreiben den Zusammenhang zwischen  $E_{\rm B}/{N_0}$  und der Rate  $R$  beim AWGN–Kanal exakt?

Es gilt:   $R = 1/2 \cdot \log_2 (1 + 2 \cdot R \cdot E_{\rm B}/{N_0})$.
Es gilt:   $2^{2R} = 1 + 2 \cdot R \cdot E_{\rm B}/{N_0}$.
Es gilt:   $E_{\rm B}/{N_0} = (2^{2R} -1)/(2R) $.

2

Geben Sie den kleinstmöglichen Wert für  $E_{\rm B}/{N_0}$  an, mit dem man über den AWGN–Kanal noch fehlerfrei übertragen kann.

$\text{Min} \ \big[E_{\rm B}/{N_0}\big] \ = \ $

3

Welches Ergebnis erhält man in  $\rm dB$?

$\text{Min} \ \big[10 \cdot \lg (E_{\rm B}/{N_0})\big] \ = \ $

$ \ \rm dB$

4

Geben Sie die AWGN–Kanalkapazität  $C$  für  $10 \cdot \lg (E_{\rm B}/{N_0}) = 0$  dB an.

$C \ = \ $

$ \ \rm bit/Kanalzugriff$

5

Geben Sie das erforderliche  $E_{\rm B}/{N_0}$  für fehlerfreie Übertragung mit  $R = 1$  an.  
Hinweis:  Die Lösung findet man in der Tabelle auf der Angabenseite.

$\text{Min} \ \big[E_{\rm B}/{N_0}\big] \ = \ $

6

Wie kann ein Punkt der  $C(E_{\rm B}/{N_0})$–Kurve einfacher ermittelt werden?

Berechnung der Kanalkapazität  $C$  für das vorgegebene  $E_{\rm B}/{N_0}$.
Berechnung des erforderlichen  $E_{\rm B}/{N_0}$  für das vorgegebene  $C$.


Musterlösung

(1)  Alle Lösungsvorschläge sind richtig:

  • Ausgehend von der Gleichung
$$C = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + { 2 \cdot E_{\rm S}}/{N_0}) $$
erhält man mit  $C = R$  und  $E_{\rm S} = R · E_{\rm B}$  die Gleichung gemäß Lösungsvorschlag 1:
$$R = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + { 2 \cdot R \cdot E_{\rm B}}/{N_0})\hspace{0.05cm}. $$
  • Bringt man den Faktor  $1/2$  auf die linke Seite der Gleichung und bildet die Potenz zur Basis  $2$, so erhält man den Vorschlag 2:
$$2^{2R} = 1 + 2 \cdot R \cdot E_{\rm B}/{N_0}\hspace{0.05cm}. $$
  • Löst man diese Gleichung nach  $E_{\rm B}/{N_0}$  auf, so ergibt sich
$$E_{\rm B}/{N_0} = \frac{2^{2R} - 1} { 2 R} \hspace{0.05cm}. $$


(2)  Über einen Kanal mit der Kanalkapazität  $C$  ist eine fehlerfreie Übertragung möglich, solange die Coderate  $R ≤ C$  ist.

  • Die absolute Grenze ergibt sich im Grenzfall  $C=R = 0$.
  • Oder präziser ausgedrückt:  Für ein beliebig kleines positives  $ε$  muss gelten:   $C=R =ε$  mit  $ε → 0$.
  • Mit dem Ergebnis der Teilaufgabe  (1)  lautet die Bestimmungsgleichung:
$${\rm Min}\hspace{0.1cm}\big[E_{\rm B}/{N_0}\big] = \lim\limits_{R \hspace{0.05cm}\rightarrow \hspace{0.05cm}0}\frac{2^{2R} - 1} { 2 R} \hspace{0.05cm}. $$
  • Da hier der Quotient im Grenzübergang  $ R → 0$  das Ergebnis „0 geteilt durch 0” liefert, ist hier die  l'Hospitalsche Regel  anzuwenden: 
    Man differenziert Zähler und Nenner, bildet den Quotienten und setzt schließlich  $R = 0$  ein. 
  • Mit  $x = 2R$  lautet das Ergebnis:
$${\rm Min}\hspace{0.1cm}\big[E_{\rm B}/{N_0}\big] = \lim\limits_{x \hspace{0.05cm}\rightarrow \hspace{0.05cm}0}\frac{2^{x} - 1} { x} = \frac{{\rm ln}\hspace{0.1cm} (2) \cdot 2^{x} } { 1} \hspace{0.05cm}\bigg |_{x=0} = {\rm ln}\hspace{0.1cm} (2) \hspace{0.15cm}\underline{= 0.693} \hspace{0.05cm}.$$


(3)  In logarithmierter Form erhält man:

$${\rm Min}\hspace{0.1cm}\big[10\cdot {\rm lg} \hspace{0.1cm}(E_{\rm B}/{N_0})\big] = 10\cdot {\rm lg} \hspace{0.1cm}(0.693) \hspace{0.15cm}\underline{= -1.59\,{\rm dB}} \hspace{0.05cm}. $$


(4)  Der Abszissenwert lautet somit in nichtlogarithmierter Form:   $E_{\rm B}/{N_0} = 1$.  Daraus folgt mit  $C=R$:

$$\frac{2^{2C} - 1} { 2 C} \stackrel{!}{=} 1 \hspace{0.3cm}\Rightarrow\hspace{0.3cm}\underline{C = 0.5} \hspace{0.05cm}. $$


(5)  Für  $R = 1$  ist  $E_{\rm B} = E_{\rm S}$. Deshalb gilt:

$$ C(E_{\rm B}/{N_0}) = 1 \hspace{0.3cm}\Longleftrightarrow \hspace{0.3cm} C(E_{\rm S}/{N_0}) = 1 \hspace{0.05cm}.$$
  • Aus der Tabelle auf der Angabenseite ist abzulesen:
$$ C(E_{\rm S}/{N_0}) = 1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} E_{\rm S}/{N_0} = 1.5 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \underline{E_{\rm B}/{N_0} = 1.5}\hspace{0.05cm}.$$
  • Der dazugehörige dB–Wert ist  $10 \cdot \lg (E_{\rm B}/{N_0}) = 1.76 \ \rm dB$.
  • Zum gleichen Ergebnis kommt man mit  $R = 1$  über die Gleichung
$$E_{\rm B}/{N_0} = \frac{2^{2R} - 1} { 2 \cdot R} = \frac{4 - 1} { 2 } = 1.5 \hspace{0.05cm}.$$


(6)  Richtig ist der Lösungsvorschlag 2, wie an einem Beispiel gezeigt werden soll:

(a)  Gesucht ist die Kanalkapazität  $C$  für  $10 \cdot \lg (E_{\rm B}/{N_0}) = 15 \ {\rm dB}$   ⇒    $E_{\rm B}/{N_0} = 31.62$.

  • Dann gilt entsprechend dem Lösungsvorschlag 1 mit  $x = 2C$:
Kanalkapazitätskurven als Funktion von  
$10 \cdot \lg (E_{\rm S}/{N_0})$  und  $10 \cdot \lg (E_{\rm B}/{N_0})$ 
$$31.62 = \frac{2^{x} - 1} { x} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 31.62 \cdot x = 2^{x} - 1 \hspace{0.05cm}. $$
  • Die Lösung $x = 7.986$   ⇒   $C = 3.993 \ \rm (bit/use)$ kann nur grafisch oder iterativ gefunden werden.


(b)  Gesucht ist der notwendige Abszissenwert  $10 \cdot \lg (E_{\rm B}/{N_0})$  für die Kapazität  $C = 4 \ \rm bit/Symbol$:

$$E_{\rm B}/{N_0} = \frac{2^{2C} - 1} { 2 \cdot C} = \frac{2^8 - 1} { 8 } = 31.875 $$
$$\Rightarrow \hspace{0.3cm} 10\cdot {\rm lg} \hspace{0.1cm}(E_{\rm B}/{N_0}) = 15.03\,{\rm dB} \hspace{0.05cm}.$$


Die Grafik zeigt die AWGN–Kanalkapazität abhängig von 

  • $10 \cdot \lg (E_{\rm S}/{N_0})$  ⇒  rote Kurve und Zahlen;
    diese geben die Kanalkapazität  $C$  für das vorgegebene  $10 \cdot \lg (E_{\rm S}/{N_0})$  an;
  • $10 \cdot \lg (E_{\rm B}/{N_0})$  ⇒  grüne Kurve und Zahlen;
    diese geben das erforderliche  $10 \cdot \lg (E_{\rm B}/{N_0})$  für die vorgegebene Kanalkapazität  $C$  an.


Der Schnittpunkt der beiden Kurven liegt bei  $1.76\ \rm dB$.