Aufgaben:Aufgabe 1.6: Übergangswahrscheinlichkeiten: Unterschied zwischen den Versionen
(4 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 3: | Zeile 3: | ||
}} | }} | ||
− | [[Datei:P_ID451__Sto_A_1_6.png|right|frame|20 Realisierungen der betrachteten Markovkette]] | + | [[Datei:P_ID451__Sto_A_1_6.png|right|frame|$20$ Realisierungen der betrachteten Markovkette]] |
− | Rechts sehen Sie 20 Realisierungen einer binären homogenen Markovkette erster Ordnung mit den Ereignissen $A$ und $B$: | + | Rechts sehen Sie $20$ Realisierungen einer binären homogenen Markovkette erster Ordnung mit den Ereignissen $A$ und $B$: |
− | *Man erkennt bereits aus dieser Darstellung, dass zu Beginn ( | + | *Man erkennt bereits aus dieser Darstellung, dass zu Beginn $(ν = 0)$ das Ereignis $A$ überwiegt. |
− | *Zu späteren Zeitpunkten – etwa ab $ν = 4$ – tritt jedoch etwas häufiger das Ereignis $B$ auf. | + | *Zu späteren Zeitpunkten – etwa ab $ν = 4$ – tritt jedoch etwas häufiger das Ereignis $B$ auf. |
Zeile 13: | Zeile 13: | ||
:$${\rm Pr}(A_{\nu \hspace{0.05cm} = \hspace{0.05cm}0}) \approx 0.9, \hspace{0.3cm}{\rm Pr}(A_{\nu \hspace{0.05cm} = \hspace{0.05cm}1}) \approx 0.15, \hspace{0.3cm} {\rm Pr}(A_{\nu \hspace{0.05cm} > \hspace{0.05cm}4}) \approx 0.4.$$ | :$${\rm Pr}(A_{\nu \hspace{0.05cm} = \hspace{0.05cm}0}) \approx 0.9, \hspace{0.3cm}{\rm Pr}(A_{\nu \hspace{0.05cm} = \hspace{0.05cm}1}) \approx 0.15, \hspace{0.3cm} {\rm Pr}(A_{\nu \hspace{0.05cm} > \hspace{0.05cm}4}) \approx 0.4.$$ | ||
− | Diese empirischen Zahlenwerte sollen herangezogen werden, um die Parameter (Übergangswahrscheinlichkeiten) der Markovkette (näherungsweise) zu ermitteln. | + | Diese empirischen Zahlenwerte sollen herangezogen werden, um die Parameter (Übergangswahrscheinlichkeiten) der Markovkette (näherungsweise) zu ermitteln. |
− | + | ||
− | *Die Aufgabe gehört zum Kapitel [[Stochastische_Signaltheorie/Markovketten|Markovketten]]. | + | |
+ | |||
+ | |||
+ | Hinweise: | ||
+ | *Die Aufgabe gehört zum Kapitel [[Stochastische_Signaltheorie/Markovketten|Markovketten]]. | ||
− | *Sie können Ihre Ergebnisse mit dem interaktiven Applet [[Applets:Markovketten|Ereigniswahrscheinlichkeiten einer Markovkette | + | *Sie können Ihre Ergebnisse mit dem interaktiven SWF–Applet [[Applets:Markovketten|Ereigniswahrscheinlichkeiten einer Markovkette erster Ordnung]] überprüfen. |
Zeile 26: | Zeile 30: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Welche Wahrscheinlichkeiten ergeben sich zu den Zeiten $ν = 0$, $ν = 1$ und $ν = 9$, wenn man nur die 20 dargestellten Realisierungen berücksichtigt? | + | {Welche Wahrscheinlichkeiten ergeben sich zu den Zeiten $ν = 0$, $ν = 1$ und $ν = 9$, <br>wenn man nur die $20$ dargestellten Realisierungen berücksichtigt? |
|type="{}"} | |type="{}"} | ||
${\rm Pr}(A_{\nu \hspace{0.05cm} = \hspace{0.05cm}0}) \ = \ $ { 0.85 3% } | ${\rm Pr}(A_{\nu \hspace{0.05cm} = \hspace{0.05cm}0}) \ = \ $ { 0.85 3% } | ||
Zeile 34: | Zeile 38: | ||
{Welche der Aussagen sind aufgrund der Musterfolgen zutreffend? | {Welche der Aussagen sind aufgrund der Musterfolgen zutreffend? | ||
|type="[]"} | |type="[]"} | ||
− | + Nach $A$ ist $B$ wahrscheinlicher als $A$. | + | + Nach $A$ ist $B$ wahrscheinlicher als $A$. |
− | + Sowohl nach $A$ als auch nach $B$ kann wieder $A$ oder $B$ folgen. | + | + Sowohl nach $A$ als auch nach $B$ kann wieder $A$ oder $B$ folgen. |
- Die Folge „$B\hspace{-0.05cm}-\hspace{-0.05cm}B \hspace{-0.05cm}-\hspace{-0.05cm}B\hspace{-0.05cm}-\hspace{-0.05cm}B\hspace{-0.05cm}-\hspace{-0.05cm}\text{...}$” ist nicht möglich. | - Die Folge „$B\hspace{-0.05cm}-\hspace{-0.05cm}B \hspace{-0.05cm}-\hspace{-0.05cm}B\hspace{-0.05cm}-\hspace{-0.05cm}B\hspace{-0.05cm}-\hspace{-0.05cm}\text{...}$” ist nicht möglich. | ||
− | {Berechnen Sie alle Übergangswahrscheinlichkeiten der Markovkette. Wie groß sind insbesondere ${\rm Pr}(A\hspace{0.05cm} | \hspace{0.05cm}A)$ und ${\rm Pr}(B\hspace{0.05cm} | \hspace{0.05cm}B)$? | + | {Berechnen Sie alle Übergangswahrscheinlichkeiten der Markovkette. Wie groß sind insbesondere ${\rm Pr}(A\hspace{0.05cm} | \hspace{0.05cm}A)$ und ${\rm Pr}(B\hspace{0.05cm} | \hspace{0.05cm}B)$? |
|type="{}"} | |type="{}"} | ||
${\rm Pr}(A\hspace{0.05cm} | \hspace{0.05cm}A) \ = \ $ { 0.1 3% } | ${\rm Pr}(A\hspace{0.05cm} | \hspace{0.05cm}A) \ = \ $ { 0.1 3% } | ||
${\rm Pr}(B\hspace{0.05cm} | \hspace{0.05cm}B) \ = \ $ { 0.4 3% } | ${\rm Pr}(B\hspace{0.05cm} | \hspace{0.05cm}B) \ = \ $ { 0.4 3% } | ||
− | {Wie groß ist die Wahrscheinlichkeit, dass die ersten zehn Elemente der Folge jeweils $B$ sind? | + | {Wie groß ist die Wahrscheinlichkeit, dass die ersten zehn Elemente der Folge jeweils $B$ sind? |
|type="{}"} | |type="{}"} | ||
${\rm Pr}(B_0, \hspace{0.05cm}\text{...}\hspace{0.05cm} , B_9)\ = \ $ { 2.62 3% } $\ \cdot 10^{-5}$ | ${\rm Pr}(B_0, \hspace{0.05cm}\text{...}\hspace{0.05cm} , B_9)\ = \ $ { 2.62 3% } $\ \cdot 10^{-5}$ | ||
− | {Wie groß ist die Wahrscheinlichkeit, dass sehr lange nach Einschalten der Kette die Zeichenfolge „$A\hspace{-0.05cm}-\hspace{-0.05cm}B \hspace{-0.05cm}-\hspace{-0.05cm}B\hspace{-0.05cm}-\hspace{-0.05cm}A$” erzeugt wird? | + | {Wie groß ist die Wahrscheinlichkeit, dass sehr lange nach Einschalten der Kette die Zeichenfolge „$A\hspace{-0.05cm}-\hspace{-0.05cm}B \hspace{-0.05cm}-\hspace{-0.05cm}B\hspace{-0.05cm}-\hspace{-0.05cm}A$” erzeugt wird? |
|type="{}"} | |type="{}"} | ||
${\rm Pr}(A\hspace{-0.05cm}-\hspace{-0.05cm}B \hspace{-0.05cm}-\hspace{-0.05cm}B\hspace{-0.05cm}-\hspace{-0.05cm}A)\ = \ $ { 8.64 3% } $\ \%$ | ${\rm Pr}(A\hspace{-0.05cm}-\hspace{-0.05cm}B \hspace{-0.05cm}-\hspace{-0.05cm}B\hspace{-0.05cm}-\hspace{-0.05cm}A)\ = \ $ { 8.64 3% } $\ \%$ | ||
Zeile 58: | Zeile 62: | ||
'''(1)''' Die entsprechenden Wahrscheinlichkeiten sind: | '''(1)''' Die entsprechenden Wahrscheinlichkeiten sind: | ||
− | :$${\rm Pr}(A_\ | + | :$${\rm Pr}(A_{\nu=0}) = 17/20 \;\underline{= 0.85}, \hspace{0.2cm} {\rm Pr}(A_{\nu=1}) = 2/20 \;\underline{= 0.10}, \hspace{0.2cm} {\rm Pr}(A_{\nu=9}) = 8/20 \;\underline{= 0.40}.$$ |
+ | |||
+ | |||
+ | '''(2)''' Richtig sind die <u> Lösungsvorschläge 1 und 2</u>: | ||
+ | *Nach $A$ folgt $B$ sehr viel häufiger als $A$, das heißt, es wird sicher ${\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) > {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A)$ sein. | ||
+ | *Alle vier Übergänge zwischen den zwei Ereignissen $A$ und $B$ sind möglich. Daraus folgt, dass alle vier Übergangswahrscheinlichkeiten ungleich Null sein werden. | ||
+ | *Wegen ${\rm Pr}(B_\text{v=0}) \ne 0$ und ${\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B) \ne 0$ kann natürlich auch die Folge „$B\hspace{-0.05cm}-\hspace{-0.05cm}B \hspace{-0.05cm}-\hspace{-0.05cm}B\hspace{-0.05cm}-\hspace{-0.05cm}B\hspace{-0.05cm}-\hspace{0.15cm}...$” erzeugt werden, auch wenn diese bei den zwanzig hier ausgegebenen Markovketten nicht dabei ist. | ||
− | |||
− | |||
− | |||
− | |||
− | '''(3)''' Bei einer Markovkette erster Ordnung gilt mit | + | '''(3)''' Bei einer Markovkette erster Ordnung gilt mit den Abkürzungen ${\rm Pr}(A_0) = {\rm Pr}(A_{\nu=0})$ und ${\rm Pr}(A_1) = {\rm Pr}(A_{\nu=1})$: |
:$${\rm Pr}(A_1) = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} A) \cdot {\rm Pr}(A_0) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} B) \cdot {\rm Pr}(B_0).$$ | :$${\rm Pr}(A_1) = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} A) \cdot {\rm Pr}(A_0) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} B) \cdot {\rm Pr}(B_0).$$ | ||
− | Die ergodischen Wahrscheinlichkeiten sind ${\rm Pr}(A) = {\rm Pr}(A_{\nu \hspace{0.05cm} > \hspace{0.05cm}4}) = 0.4$ und ${\rm Pr}(B) = {\rm Pr}(B_{\nu \hspace{0.05cm} > \hspace{0.05cm}4}) = 0.6$. Zwischen diesen besteht folgender Zusammenhang: | + | *Die ergodischen Wahrscheinlichkeiten sind ${\rm Pr}(A) = {\rm Pr}(A_{\nu \hspace{0.05cm} > \hspace{0.05cm}4}) = 0.4$ und ${\rm Pr}(B) = {\rm Pr}(B_{\nu \hspace{0.05cm} > \hspace{0.05cm}4}) = 0.6$. Zwischen diesen besteht folgender Zusammenhang: |
:$${\rm Pr}(A) = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} A) \cdot {\rm Pr}(A) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} B) \cdot {\rm Pr}(B).$$ | :$${\rm Pr}(A) = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} A) \cdot {\rm Pr}(A) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} B) \cdot {\rm Pr}(B).$$ | ||
− | Mit den angegebenen Zahlenwerten erhält man aus diesen letzten beiden Gleichungen: | + | *Mit den angegebenen Zahlenwerten erhält man aus diesen letzten beiden Gleichungen: |
:$$0.15 = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} A) \cdot 0.90 \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} B) \cdot 0.10 ,$$ | :$$0.15 = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} A) \cdot 0.90 \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} B) \cdot 0.10 ,$$ | ||
:$$0.40 = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} A) \cdot 0.40 \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} B) \cdot 0.60 .$$ | :$$0.40 = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} A) \cdot 0.40 \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} B) \cdot 0.60 .$$ | ||
− | Multipliziert man die erste Gleichung mit $6$ und subtrahiert davon die zweite, so ergibt sich: | + | *Multipliziert man die erste Gleichung mit $6$ und subtrahiert davon die zweite, so ergibt sich: |
:$$0.5 = 5 \cdot {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} A) \hspace{0.15cm} \Rightarrow | :$$0.5 = 5 \cdot {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} A) \hspace{0.15cm} \Rightarrow | ||
\hspace{0.15cm} {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} A) \hspace{0.15cm}\underline {= 0.1}.$$ | \hspace{0.15cm} {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} A) \hspace{0.15cm}\underline {= 0.1}.$$ | ||
− | Setzt man dieses Ergebnis in eine der oberen Gleichungen ein, so erhält man $ {\rm Pr}(A\hspace{0.05cm}|\hspace{0.05cm}B) = 0.6$. Die weiteren Wahrscheinlichkeiten sind: | + | *Setzt man dieses Ergebnis in eine der oberen Gleichungen ein, so erhält man $ {\rm Pr}(A\hspace{0.05cm}|\hspace{0.05cm}B) = 0.6$. Die weiteren Wahrscheinlichkeiten sind: |
− | $${\rm Pr}(B\hspace{0.05cm}|\hspace{0.05cm}A) = 1 - {\rm Pr}(A\hspace{0.05cm}|\hspace{0.05cm}A) = 0.9, \hspace{0.3cm} | + | :$${\rm Pr}(B\hspace{0.05cm}|\hspace{0.05cm}A) = 1 - {\rm Pr}(A\hspace{0.05cm}|\hspace{0.05cm}A) = 0.9, \hspace{0.3cm} |
{\rm Pr}(B\hspace{0.05cm}|\hspace{0.05cm}B) = 1 - {\rm Pr}(A\hspace{0.05cm}|\hspace{0.05cm}B)\ \underline{= 0.4}.$$ | {\rm Pr}(B\hspace{0.05cm}|\hspace{0.05cm}B) = 1 - {\rm Pr}(A\hspace{0.05cm}|\hspace{0.05cm}B)\ \underline{= 0.4}.$$ | ||
− | |||
− | |||
− | '''(5)''' Hier muss von der ergodischen Wahrscheinlichkeit ${\rm Pr}(A)$ ausgegangen werden und man erhält: | + | '''(4)''' Dieser Fall ist nur dann möglich, wenn die Markovkette mit $B$ beginnt und danach neunmal ein Übergang von $B$ nach $B$ stattfindet: |
+ | :$${\rm Pr}(B_0,\hspace{0.05cm}\text{...} \hspace{0.05cm}, B_{9}) = {\rm Pr}(B_0) \cdot {\rm Pr}(B\hspace{0.05cm}| \hspace{0.05cm} B)^9 = {\rm 0.1} \cdot {\rm 0.4}^9 \hspace{0.15cm}\underline {\approx 2.62 \cdot 10^{-5}}. $$ | ||
+ | |||
+ | |||
+ | '''(5)''' Hier muss von der ergodischen Wahrscheinlichkeit ${\rm Pr}(A)$ ausgegangen werden und man erhält: | ||
:$${\rm Pr}(A_{\nu}, \hspace{0.05cm}B_{\nu +1}, \hspace{0.05cm}B_{\nu +2},\hspace{0.05cm} A_{\nu +3}) = {\rm Pr}(A) \hspace{0.01cm}\cdot \hspace{0.01cm}{\rm Pr}(B\hspace{0.05cm}| \hspace{0.05cm} A) \hspace{0.01cm}\cdot\hspace{0.01cm} {\rm Pr}(B\hspace{0.05cm}| \hspace{0.05cm} B)\hspace{0.01cm}\cdot \hspace{0.01cm}{\rm Pr}(A\hspace{0.05cm}| \hspace{0.05cm} B)\hspace{0.15cm}\underline {\approx 8.64 \% }.$$ | :$${\rm Pr}(A_{\nu}, \hspace{0.05cm}B_{\nu +1}, \hspace{0.05cm}B_{\nu +2},\hspace{0.05cm} A_{\nu +3}) = {\rm Pr}(A) \hspace{0.01cm}\cdot \hspace{0.01cm}{\rm Pr}(B\hspace{0.05cm}| \hspace{0.05cm} A) \hspace{0.01cm}\cdot\hspace{0.01cm} {\rm Pr}(B\hspace{0.05cm}| \hspace{0.05cm} B)\hspace{0.01cm}\cdot \hspace{0.01cm}{\rm Pr}(A\hspace{0.05cm}| \hspace{0.05cm} B)\hspace{0.15cm}\underline {\approx 8.64 \% }.$$ | ||
{{ML-Fuß}} | {{ML-Fuß}} |
Aktuelle Version vom 2. Dezember 2021, 15:10 Uhr
Rechts sehen Sie $20$ Realisierungen einer binären homogenen Markovkette erster Ordnung mit den Ereignissen $A$ und $B$:
- Man erkennt bereits aus dieser Darstellung, dass zu Beginn $(ν = 0)$ das Ereignis $A$ überwiegt.
- Zu späteren Zeitpunkten – etwa ab $ν = 4$ – tritt jedoch etwas häufiger das Ereignis $B$ auf.
Durch Mittelung über Millionen von Realisierungen wurden einige Ereigniswahrscheinlichkeiten numerisch ermittelt:
- $${\rm Pr}(A_{\nu \hspace{0.05cm} = \hspace{0.05cm}0}) \approx 0.9, \hspace{0.3cm}{\rm Pr}(A_{\nu \hspace{0.05cm} = \hspace{0.05cm}1}) \approx 0.15, \hspace{0.3cm} {\rm Pr}(A_{\nu \hspace{0.05cm} > \hspace{0.05cm}4}) \approx 0.4.$$
Diese empirischen Zahlenwerte sollen herangezogen werden, um die Parameter (Übergangswahrscheinlichkeiten) der Markovkette (näherungsweise) zu ermitteln.
Hinweise:
- Die Aufgabe gehört zum Kapitel Markovketten.
- Sie können Ihre Ergebnisse mit dem interaktiven SWF–Applet Ereigniswahrscheinlichkeiten einer Markovkette erster Ordnung überprüfen.
Fragebogen
Musterlösung
- $${\rm Pr}(A_{\nu=0}) = 17/20 \;\underline{= 0.85}, \hspace{0.2cm} {\rm Pr}(A_{\nu=1}) = 2/20 \;\underline{= 0.10}, \hspace{0.2cm} {\rm Pr}(A_{\nu=9}) = 8/20 \;\underline{= 0.40}.$$
(2) Richtig sind die Lösungsvorschläge 1 und 2:
- Nach $A$ folgt $B$ sehr viel häufiger als $A$, das heißt, es wird sicher ${\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) > {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A)$ sein.
- Alle vier Übergänge zwischen den zwei Ereignissen $A$ und $B$ sind möglich. Daraus folgt, dass alle vier Übergangswahrscheinlichkeiten ungleich Null sein werden.
- Wegen ${\rm Pr}(B_\text{v=0}) \ne 0$ und ${\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B) \ne 0$ kann natürlich auch die Folge „$B\hspace{-0.05cm}-\hspace{-0.05cm}B \hspace{-0.05cm}-\hspace{-0.05cm}B\hspace{-0.05cm}-\hspace{-0.05cm}B\hspace{-0.05cm}-\hspace{0.15cm}...$” erzeugt werden, auch wenn diese bei den zwanzig hier ausgegebenen Markovketten nicht dabei ist.
(3) Bei einer Markovkette erster Ordnung gilt mit den Abkürzungen ${\rm Pr}(A_0) = {\rm Pr}(A_{\nu=0})$ und ${\rm Pr}(A_1) = {\rm Pr}(A_{\nu=1})$:
- $${\rm Pr}(A_1) = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} A) \cdot {\rm Pr}(A_0) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} B) \cdot {\rm Pr}(B_0).$$
- Die ergodischen Wahrscheinlichkeiten sind ${\rm Pr}(A) = {\rm Pr}(A_{\nu \hspace{0.05cm} > \hspace{0.05cm}4}) = 0.4$ und ${\rm Pr}(B) = {\rm Pr}(B_{\nu \hspace{0.05cm} > \hspace{0.05cm}4}) = 0.6$. Zwischen diesen besteht folgender Zusammenhang:
- $${\rm Pr}(A) = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} A) \cdot {\rm Pr}(A) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} B) \cdot {\rm Pr}(B).$$
- Mit den angegebenen Zahlenwerten erhält man aus diesen letzten beiden Gleichungen:
- $$0.15 = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} A) \cdot 0.90 \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} B) \cdot 0.10 ,$$
- $$0.40 = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} A) \cdot 0.40 \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} B) \cdot 0.60 .$$
- Multipliziert man die erste Gleichung mit $6$ und subtrahiert davon die zweite, so ergibt sich:
- $$0.5 = 5 \cdot {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} A) \hspace{0.15cm} \Rightarrow \hspace{0.15cm} {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} A) \hspace{0.15cm}\underline {= 0.1}.$$
- Setzt man dieses Ergebnis in eine der oberen Gleichungen ein, so erhält man $ {\rm Pr}(A\hspace{0.05cm}|\hspace{0.05cm}B) = 0.6$. Die weiteren Wahrscheinlichkeiten sind:
- $${\rm Pr}(B\hspace{0.05cm}|\hspace{0.05cm}A) = 1 - {\rm Pr}(A\hspace{0.05cm}|\hspace{0.05cm}A) = 0.9, \hspace{0.3cm} {\rm Pr}(B\hspace{0.05cm}|\hspace{0.05cm}B) = 1 - {\rm Pr}(A\hspace{0.05cm}|\hspace{0.05cm}B)\ \underline{= 0.4}.$$
(4) Dieser Fall ist nur dann möglich, wenn die Markovkette mit $B$ beginnt und danach neunmal ein Übergang von $B$ nach $B$ stattfindet:
- $${\rm Pr}(B_0,\hspace{0.05cm}\text{...} \hspace{0.05cm}, B_{9}) = {\rm Pr}(B_0) \cdot {\rm Pr}(B\hspace{0.05cm}| \hspace{0.05cm} B)^9 = {\rm 0.1} \cdot {\rm 0.4}^9 \hspace{0.15cm}\underline {\approx 2.62 \cdot 10^{-5}}. $$
(5) Hier muss von der ergodischen Wahrscheinlichkeit ${\rm Pr}(A)$ ausgegangen werden und man erhält:
- $${\rm Pr}(A_{\nu}, \hspace{0.05cm}B_{\nu +1}, \hspace{0.05cm}B_{\nu +2},\hspace{0.05cm} A_{\nu +3}) = {\rm Pr}(A) \hspace{0.01cm}\cdot \hspace{0.01cm}{\rm Pr}(B\hspace{0.05cm}| \hspace{0.05cm} A) \hspace{0.01cm}\cdot\hspace{0.01cm} {\rm Pr}(B\hspace{0.05cm}| \hspace{0.05cm} B)\hspace{0.01cm}\cdot \hspace{0.01cm}{\rm Pr}(A\hspace{0.05cm}| \hspace{0.05cm} B)\hspace{0.15cm}\underline {\approx 8.64 \% }.$$