Aufgaben:Aufgabe 2.6: PN-Generator der Länge 5: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(10 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID105__Sto_A_2_6.png|right|]]
+
[[Datei:P_ID105__Sto_A_2_6.png|right|frame|PN-Generator der Länge  $L = 5$]]
:In der Grafik sehen Sie einen Pseudozufallsgenerator der L&auml;nge <i>L</i> = 5, der zur Erzeugung einer Bin&auml;rfolge &#9001;<i>z<sub>&nu;</sub></i>&#9002; eingesetzt werden soll.
+
In der Grafik sehen Sie einen Pseudozufallsgenerator der L&auml;nge&nbsp; $L = 5$,&nbsp; der zur Erzeugung einer bin&auml;ren Zufallsfolge&nbsp; $\langle z_{\nu} \rangle$&nbsp; eingesetzt werden soll.
  
:Zum Startzeitpunkt seien alle Speicherzellen mit Einsen vorbelegt. Zu jedem Taktzeitpunkt wird der Inhalt des Schieberegisters um eine Stelle nach rechts verschoben und der aktuell erzeugte Bin&auml;rwert <i>z<sub>&nu;</sub></i> (0 oder 1) in die erste Speicherzelle eingetragen. Hierbei ergibt sich <i>z<sub>&nu;</sub></i> aus der Modulo-2-Addition zwischen <i>z</i><sub><i>&nu;</i>&ndash;3</sub> und <i>z</i><sub><i>&nu;</i>&ndash;5</sub>.
+
*Zum Startzeitpunkt seien alle Speicherzellen mit Einsen vorbelegt.  
 +
*Zu jedem Taktzeitpunkt wird der Inhalt des Schieberegisters um eine Stelle nach rechts verschoben.
 +
*Und der aktuell erzeugte Bin&auml;rwert&nbsp; $z_{\nu}$&nbsp; $(0$&nbsp; oder&nbsp; $1)$&nbsp; wird in die erste Speicherzelle eingetragen.  
 +
*Hierbei ergibt sich&nbsp; $z_{\nu}$&nbsp; aus der Modulo-2-Addition zwischen&nbsp; $z_{\nu-3}$&nbsp; und&nbsp; $z_{\nu-5}$.
  
:<b>Hinweis</b>: Die Aufgabe bezieht sich auf Lehrstoff von Kapitel 2.5. Wir möchten Sie gerne auch auf das folgende Lernvideo hinweisen: <br />
+
 
 +
 
 +
 
 +
 
 +
Hinweise:  
 +
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Stochastische_Signaltheorie/Erzeugung_von_diskreten_Zufallsgrößen|Erzeugung von diskreten Zufallsgrößen]].
 +
 +
*Wir verweisen hier auch auf das Lernvideo &nbsp; [[Erläuterung_der_PN–Generatoren_an_einem_Beispiel_(Lernvideo)|Erläuterung  der PN-Generatoren an einem Beispiel]].
  
  
Zeile 14: Zeile 24:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lautet das Generatorpolynom <i>G</i>(<i>D</i>) des dargestellten PN-Generators?
+
{Wie lautet das Generatorpolynom&nbsp; $G(D)$&nbsp; des dargestellten PN-Generators?
|type="[]"}
+
|type="()"}
- <i>D</i><sup>5</sup> + <i>D</i><sup>2</sup> + 1.
+
- $G(D) = D^5 + D^2 +1$.  
+ <i>D</i><sup>5</sup> + <i>D</i><sup>3</sup> + 1.
+
+ $G(D) = D^5 + D^3 +1$.  
- <i>D</i><sup>4</sup> + <i>D</i><sup>2</sup> + <i>D</i><sup>1</sup>.  
+
- $G(D) = D^4 + D^2 +D$.  
  
  
{Welche Oktalkennung <i>O</i><sub>G</sub> hat dieser PN-Generator?
+
{Welche Oktalkennung&nbsp; $O_{\rm G}$&nbsp; hat dieser PN-Generator?
 
|type="{}"}
 
|type="{}"}
$O_G$ = { 51 3% } (oktal)
+
$O_{\rm G} \ = \ $ { 51 } $\ \rm (oktal)$
  
  
{Gehen Sie davon aus, dass das Generatorpolynom <i>G</i>(<i>D</i>) primitiv ist. Ist die Ausgangsfolge &#9001;<i>z<sub>&nu;</sub></i>&#9002; eine M-Sequenz? Wie gro&szlig; ist deren Periodendauer <i>P</i>?
+
{Gehen Sie davon aus,&nbsp; dass das Generatorpolynom&nbsp; $G(D)$&nbsp; primitiv ist. <br>Ist die Ausgangsfolge&nbsp; $〈z_ν \rangle$&nbsp; eine M-Sequenz?&nbsp; Wie gro&szlig; ist deren Periodendauer&nbsp; $P$?
 
|type="{}"}
 
|type="{}"}
$P$ = { 31 3% }
+
$P\ =  \ $ { 31 }
  
  
{Welche Oktalkennung <i>O</i><sub>R</sub> beschreibt das reziproke Polynom <i>G</i><sub>R</sub>(<i>D</i>)?
+
{Welche Oktalkennung&nbsp; $O_{\rm R}$&nbsp; beschreibt das zu&nbsp; $G(D)$&nbsp; reziproke Polynom&nbsp; $G_{\rm R}(D)$&nbsp;?
 
|type="{}"}
 
|type="{}"}
$O_R$ = { 45 3% } (oktal)
+
$O_{\rm R} \ = \ $ { 45 } $\ \rm (oktal)$
  
  
{Welche Aussagen gelten für die Konfiguration mit dem Polynom <i>G</i><sub>R</sub>(<i>D</i>)?
+
{Welche Aussagen gelten für die Konfiguration mit dem Polynom&nbsp; $G_{\rm R}(D)$?
 
|type="[]"}
 
|type="[]"}
 
+ Es handelt sich ebenfalls um eine Folge maximaler L&auml;nge.
 
+ Es handelt sich ebenfalls um eine Folge maximaler L&auml;nge.
- Die Ausgangsfolge von  <i>G</i><sub>R</sub>(<i>D</i>) ist die gleiche wie mit <i>G</i>(<i>D</i>).
+
- Die Ausgangsfolge von&nbsp; $G_{\rm R}(D)$&nbsp; ist die gleiche wie die des Generatorpolynoms&nbsp; $G(D)$.
+ <i>G</i><sub>R</sub>(<i>D</i>)&ndash; und <i>G</i>(<i>D</i>)&ndash;Ausgangsfolgen
+
+ Die Ausgangsfolgen von&nbsp; $G_{\rm R}(D)$&nbsp; und&nbsp; $G(D)$&nbsp; sind zueinander invers.
sind zueinander invers.
 
 
+ Beide Folgen zeigen gleiche statistische Eigenschaften.
 
+ Beide Folgen zeigen gleiche statistische Eigenschaften.
- Bei <i>G</i><sub>R</sub>(<i>D</i>) k&ouml;nnen alle Speicher mit Nullen vorbelegt sein.
+
- Bei&nbsp; $G_{\rm R}(D)$&nbsp; k&ouml;nnen alle Speicherelemente mit Nullen vorbelegt sein.
  
  
Zeile 51: Zeile 60:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Richtig ist <i>D</i><sup>5</sup> + <i>D</i><sup>3</sup> + 1 &nbsp;&#8658; <u>Lösungsvorschlag 2</u>. Das Generatorpolynom <i>G</i>(<i>D</i>) kennzeichnet die R&uuml;ckf&uuml;hrungen, die zur Modulo-2-Addition herangezogen werden. <i>D</i> ist ein formaler Parameter, der eine Verz&ouml;gerung um einen Takt angibt. <i>D</i><sup>3</sup> kennzeichnet dann eine Verz&ouml;gerung um drei Takte.
+
'''(1)'''&nbsp; Richtig ist der&nbsp; <u>Lösungsvorschlag 2</u> &nbsp; &#8658; &nbsp; $G(D) = D^5 + D^3 +1$.  
 +
*Das Generatorpolynom&nbsp; $G(D)$&nbsp; kennzeichnet die R&uuml;ckf&uuml;hrungen,&nbsp; die zur Modulo-2-Addition herangezogen werden.  
 +
*$D$&nbsp; ist ein formaler Parameter,&nbsp; der eine Verz&ouml;gerung um einen Takt angibt.  
 +
*$D^3$&nbsp; kennzeichnet dann eine Verz&ouml;gerung um drei Takte.
  
:<b>2.</b>&nbsp;&nbsp;Es ist <i>g</i><sub>0</sub> = <i>g</i><sub>3</sub> = <i>g</i><sub>5</sub> = 1; alle anderen R&uuml;ckf&uuml;hrungskoeffizienten sind 0. Daraus folgt:
+
 
 +
 
 +
'''(2)'''&nbsp; Es ist&nbsp; $g_0 = g_3 = g_5 = 1$.&nbsp;  
 +
*Alle anderen R&uuml;ckf&uuml;hrungskoeffizienten sind&nbsp; $0$.&nbsp; Daraus folgt:
 
:$$(g_{\rm 5}\hspace{0.1cm}g_{\rm 4}\hspace{0.1cm}g_{\rm 3}\hspace{0.1cm}g_{\rm 2}\hspace{0.1cm}g_{\rm 1}\hspace{0.1cm}g_{\rm 0})=\rm (101001)_{bin}\hspace{0.15cm} \underline{=(51)_{oct}}.$$
 
:$$(g_{\rm 5}\hspace{0.1cm}g_{\rm 4}\hspace{0.1cm}g_{\rm 3}\hspace{0.1cm}g_{\rm 2}\hspace{0.1cm}g_{\rm 1}\hspace{0.1cm}g_{\rm 0})=\rm (101001)_{bin}\hspace{0.15cm} \underline{=(51)_{oct}}.$$
  
:<b>3.</b>&nbsp;&nbsp;Da das Generatorpolynom <i>G</i>(<i>D</i>) primitiv ist, erh&auml;lt man eine M-Sequenz. Dementsprechend ist die Periodendauer maximal: <i>P</i> = 2<sup><i>L</i></sup> - 1 <u>= 31</u>. Im Theorieteil ist in der Tabelle mit den PN-Generatoren maximaler L&auml;nge (M-Sequenzen) für den Grad 5 die Konfiguration (51)<sub>oct</sub> aufgef&uuml;hrt.
 
  
:<b>4.</b>&nbsp;&nbsp;Das reziproke Polynom lautet:
 
:$$\it G_R(\it D)=\it D^{\rm 5}\cdot(\it D^{\rm -5}+\it D^{\rm -3}+\rm 1)=\it D^{\rm 5}+\it D^{\rm 2}+\rm 1.$$
 
  
:Somit ist die Oktalkennung f&uuml;r diese Konfiguration (100101)<sub>bin</sub> <u>= (45)<sub>oct</sub></u>.
+
'''(3)'''&nbsp; Da das Generatorpolynom&nbsp; $G(D)$&nbsp; primitiv ist,&nbsp; erh&auml;lt man eine&nbsp; "M-Sequenz".
 +
*Dementsprechend ist die Periodendauer maximal:  
 +
:$$P_{\rm max} = 2^{L}-1 \hspace{0.15cm}\underline {= 31}.$$
 +
*Im Theorieteil ist in der Tabelle mit den PN-Generatoren maximaler L&auml;nge&nbsp; ("M-Sequenzen")&nbsp; für den Grad&nbsp; $5$&nbsp; die Konfiguration&nbsp; $(51)_{\rm oct}$&nbsp; aufgef&uuml;hrt.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Das reziproke Polynom lautet:
 +
:$$G_{\rm R}(D)=D^{\rm 5}\cdot(D^{\rm -5}+\D^{\rm -3}+ 1)= D^{\rm 5}+D^{\rm 2}+1.$$
 +
 
 +
*Somit ist die Oktalkennung f&uuml;r diese Konfiguration&nbsp; $\rm (100101)_{bin}\hspace{0.15cm} \underline{=(45)_{oct}}.$
 +
 
 +
 
  
:<b>5.</b>&nbsp;&nbsp;Die Ausgangsfolge der reziproken Realisierung <i>G</i><sub>R</sub>(<i>D</i>) eines primitiven Polynoms <i>G</i>(<i>D</i>) ist immer ebenfalls eine M-Sequenz. Beide Folgen sind zueinander invers.
+
'''(5)'''&nbsp; Richtig sind die&nbsp; <u>Lösungsvorschläge 1,&nbsp; 3&nbsp; und&nbsp; 4</u>:
 +
*Die Ausgangsfolge der reziproken Realisierung&nbsp; $G_{\rm R}(D)$&nbsp; eines primitiven Polynoms&nbsp; $G(D)$&nbsp; ist immer ebenfalls eine&nbsp; "M-Sequenz".  
 +
*Beide Folgen sind zueinander invers.&nbsp; Das bedeutet:
 +
*Die Ausgangsfolge von&nbsp; $(45)_{\rm oct}$&nbsp; ist gleich der Folge von&nbsp; $(51)_{\rm oct}$,&nbsp; wenn man diese von rechts nach links liest und zusätzlich eine Phase (zyklische Verschiebung) ber&uuml;cksichtigt.
 +
*Voraussetzung ist auch hier,&nbsp; dass nicht alle Speicherzellen mit Nullen vorbelegt sind.
 +
*Unter dieser Bedingung weisen beide Folgen tatsächlich auch gleiche statistische Eigenschaften auf.
  
:Das bedeutet: Die Ausgangsfolge von (45)<sub>oct</sub> ist gleich der Folge von (51)<sub>oct</sub>, wenn man diese von rechts nach links liest und eine Phase (zyklische Verschiebung) ber&uuml;cksichtigt. Voraussetzung ist wieder, dass nicht alle Speicherzellen mit Nullen vorbelegt sind. Unter dieser Bedingung weisen beide Folgen tatsächlich auch gleiche statistische Eigenschaften auf.
 
  
:Richtig sind somit die <u>Lösungsvorschläge 1, 3 und 4</u>.
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Aktuelle Version vom 28. Dezember 2021, 16:05 Uhr

PN-Generator der Länge  $L = 5$

In der Grafik sehen Sie einen Pseudozufallsgenerator der Länge  $L = 5$,  der zur Erzeugung einer binären Zufallsfolge  $\langle z_{\nu} \rangle$  eingesetzt werden soll.

  • Zum Startzeitpunkt seien alle Speicherzellen mit Einsen vorbelegt.
  • Zu jedem Taktzeitpunkt wird der Inhalt des Schieberegisters um eine Stelle nach rechts verschoben.
  • Und der aktuell erzeugte Binärwert  $z_{\nu}$  $(0$  oder  $1)$  wird in die erste Speicherzelle eingetragen.
  • Hierbei ergibt sich  $z_{\nu}$  aus der Modulo-2-Addition zwischen  $z_{\nu-3}$  und  $z_{\nu-5}$.



Hinweise:


Fragebogen

1

Wie lautet das Generatorpolynom  $G(D)$  des dargestellten PN-Generators?

$G(D) = D^5 + D^2 +1$.
$G(D) = D^5 + D^3 +1$.
$G(D) = D^4 + D^2 +D$.

2

Welche Oktalkennung  $O_{\rm G}$  hat dieser PN-Generator?

$O_{\rm G} \ = \ $

$\ \rm (oktal)$

3

Gehen Sie davon aus,  dass das Generatorpolynom  $G(D)$  primitiv ist.
Ist die Ausgangsfolge  $〈z_ν \rangle$  eine M-Sequenz?  Wie groß ist deren Periodendauer  $P$?

$P\ = \ $

4

Welche Oktalkennung  $O_{\rm R}$  beschreibt das zu  $G(D)$  reziproke Polynom  $G_{\rm R}(D)$ ?

$O_{\rm R} \ = \ $

$\ \rm (oktal)$

5

Welche Aussagen gelten für die Konfiguration mit dem Polynom  $G_{\rm R}(D)$?

Es handelt sich ebenfalls um eine Folge maximaler Länge.
Die Ausgangsfolge von  $G_{\rm R}(D)$  ist die gleiche wie die des Generatorpolynoms  $G(D)$.
Die Ausgangsfolgen von  $G_{\rm R}(D)$  und  $G(D)$  sind zueinander invers.
Beide Folgen zeigen gleiche statistische Eigenschaften.
Bei  $G_{\rm R}(D)$  können alle Speicherelemente mit Nullen vorbelegt sein.


Musterlösung

(1)  Richtig ist der  Lösungsvorschlag 2   ⇒   $G(D) = D^5 + D^3 +1$.

  • Das Generatorpolynom  $G(D)$  kennzeichnet die Rückführungen,  die zur Modulo-2-Addition herangezogen werden.
  • $D$  ist ein formaler Parameter,  der eine Verzögerung um einen Takt angibt.
  • $D^3$  kennzeichnet dann eine Verzögerung um drei Takte.


(2)  Es ist  $g_0 = g_3 = g_5 = 1$. 

  • Alle anderen Rückführungskoeffizienten sind  $0$.  Daraus folgt:
$$(g_{\rm 5}\hspace{0.1cm}g_{\rm 4}\hspace{0.1cm}g_{\rm 3}\hspace{0.1cm}g_{\rm 2}\hspace{0.1cm}g_{\rm 1}\hspace{0.1cm}g_{\rm 0})=\rm (101001)_{bin}\hspace{0.15cm} \underline{=(51)_{oct}}.$$


(3)  Da das Generatorpolynom  $G(D)$  primitiv ist,  erhält man eine  "M-Sequenz".

  • Dementsprechend ist die Periodendauer maximal:
$$P_{\rm max} = 2^{L}-1 \hspace{0.15cm}\underline {= 31}.$$
  • Im Theorieteil ist in der Tabelle mit den PN-Generatoren maximaler Länge  ("M-Sequenzen")  für den Grad  $5$  die Konfiguration  $(51)_{\rm oct}$  aufgeführt.


(4)  Das reziproke Polynom lautet:

$$G_{\rm R}(D)=D^{\rm 5}\cdot(D^{\rm -5}+\D^{\rm -3}+ 1)= D^{\rm 5}+D^{\rm 2}+1.$$
  • Somit ist die Oktalkennung für diese Konfiguration  $\rm (100101)_{bin}\hspace{0.15cm} \underline{=(45)_{oct}}.$


(5)  Richtig sind die  Lösungsvorschläge 1,  3  und  4:

  • Die Ausgangsfolge der reziproken Realisierung  $G_{\rm R}(D)$  eines primitiven Polynoms  $G(D)$  ist immer ebenfalls eine  "M-Sequenz".
  • Beide Folgen sind zueinander invers.  Das bedeutet:
  • Die Ausgangsfolge von  $(45)_{\rm oct}$  ist gleich der Folge von  $(51)_{\rm oct}$,  wenn man diese von rechts nach links liest und zusätzlich eine Phase (zyklische Verschiebung) berücksichtigt.
  • Voraussetzung ist auch hier,  dass nicht alle Speicherzellen mit Nullen vorbelegt sind.
  • Unter dieser Bedingung weisen beide Folgen tatsächlich auch gleiche statistische Eigenschaften auf.